30.11.2014 Views

Ecology of Red Maple Swamps in the Glaciated Northeast: A ...

Ecology of Red Maple Swamps in the Glaciated Northeast: A ...

Ecology of Red Maple Swamps in the Glaciated Northeast: A ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Table 5.4. Nutrient mncvnfmtions jp&gl <strong>in</strong> lie:tcya~td su$~rypcnt fmm n Connecticut red mapleswamp<br />

(fmrn r17 an 1979 cutd Luuntirc 1986)).<br />

Leaf litter 2,687 77 8.6 12 225 7 2<br />

stems (0.542 0.1Ph) reported by Elrrenfeld (19%)<br />

for sou<strong>the</strong>rn New Jersey red maple swamps fi1ll<br />

with<strong>in</strong> <strong>the</strong> general range reported for o<strong>the</strong>r swamps<br />

and floodpla<strong>in</strong> forests. Additional data on tllr? nutrient<br />

content <strong>of</strong> red maple stem, branch, amld leLkf<br />

tissues from New Jersey swmps are provided <strong>in</strong><br />

Table 5.3.<br />

Damman (1979) and Laundre (1980) found<br />

higher concentrations <strong>of</strong> K, Mn, and Zn <strong>in</strong> red<br />

maple leaf litter <strong>of</strong> a Connecticut swamp than <strong>in</strong><br />

<strong>the</strong> upper 40 cm <strong>of</strong> organic soil beneath, but fourld<br />

higher levels <strong>of</strong> Fe, Pb, and Ni <strong>in</strong> <strong>the</strong> soil; Ievcls <strong>of</strong><br />

Na and Cu were similar <strong>in</strong> <strong>the</strong> two compartnlcnts<br />

flable 5.4). These data suggest that K, Mxl, and<br />

Zn are readily taken up by <strong>the</strong> vegetation and<br />

rapidly cycled, enrich<strong>in</strong>g <strong>the</strong> surface <strong>of</strong> <strong>the</strong> swamp<br />

annually<br />

The <strong>in</strong>itial leach<strong>in</strong>g <strong>of</strong> ions from Iitkr <strong>of</strong>ten<br />

reverses with time, as concentrations <strong>of</strong> many<br />

m<strong>in</strong>erals subsequently <strong>in</strong>crease <strong>the</strong>re (van der<br />

Valk et al. 1979). 1mmobiIization <strong>of</strong> nutrients by<br />

microbes associated with decompos<strong>in</strong>g plant. mnterial<br />

has been demonstrated or <strong>in</strong>ferred <strong>in</strong> many<br />

wetland studies (Mason and Bryant 1975; Br<strong>in</strong>aon<br />

1977; Day 1982). In <strong>the</strong> Great Dismal Swamp,<br />

litter concentrations <strong>of</strong> N and P rema<strong>in</strong>ed unchanged<br />

or <strong>in</strong>creased over a 1-year period, while<br />

K levela decreased <strong>in</strong>itiaHy and <strong>the</strong>n <strong>in</strong>creased<br />

(Day 1982). These data suggest <strong>the</strong>re was active<br />

immobilization <strong>of</strong> nutrienh from external sources<br />

and net m<strong>in</strong>eralization <strong>of</strong> Ca and Mg. Laborabry<br />

studies also have shown that, without accrual <strong>of</strong><br />

nukients from external sources, N and P levels <strong>in</strong><br />

decompos<strong>in</strong>g red maple leaf litter cont<strong>in</strong>ue tx, decl<strong>in</strong>e<br />

(Day 1983). <strong>in</strong> study<strong>in</strong>g a North Carol<strong>in</strong>a<br />

water tupelo (Nyssa aquatics) swamp, Brimon<br />

(1977) concluded that element accumulation<br />

through immobilization appesed to be an important<br />

mechanism for trapp<strong>in</strong>g nutrients that might<br />

o<strong>the</strong>rwise exist <strong>in</strong> dissolved form and be expo*d.<br />

He found that immobilization generally lasted<br />

beyond spr<strong>in</strong>g months, mak<strong>in</strong>g <strong>the</strong> nutrients<br />

available for plant uptake dur<strong>in</strong>g <strong>the</strong> grow<strong>in</strong>g 8 ~ -<br />

SQn.<br />

Them has been so little research on nutrient<br />

cycl<strong>in</strong>g <strong>in</strong> rial-<strong>the</strong>astern forested wetlands that it is<br />

I~~sibltx to develop oxdy a very simplified scenario<br />

<strong>of</strong> sorrrc <strong>of</strong> <strong>the</strong> seasonal processes that occur <strong>in</strong> <strong>the</strong>se<br />

swaIrrps (Fig. 5.4). As with most wetlands, <strong>the</strong> extent<br />

to which red maple swmps reta<strong>in</strong> and cycle<br />

nutrients is stroilgly <strong>in</strong>fluenced by hydrology,<br />

which h~s prono~lnced seasonal variability. Both<br />

leachirtg r~nct <strong>in</strong>~rnobilizat~ion <strong>of</strong> nutrients from extcmd<br />

sources rnay occur from fall <strong>in</strong>to spr<strong>in</strong>g.<br />

l.fydrologi:ic cvents clearly can <strong>in</strong>fluenc~ <strong>the</strong> magnitrtdc<br />

and tirnirrg <strong>of</strong> <strong>the</strong>se processes; flush<strong>in</strong>g events,<br />

which rarnove detritus, or backwater flood<strong>in</strong>g,<br />

which br<strong>in</strong>gs enriched waters <strong>in</strong>to <strong>the</strong> wetlands,<br />

are examples. Streams carry<strong>in</strong>g suspended sediments<br />

and dissolved nutrients overflow <strong>in</strong>to<br />

Inany swamps dur<strong>in</strong>g flood periods. As water<br />

velocities decrease <strong>in</strong> <strong>the</strong> wetlands, suspended<br />

particles and adsorbed constituents (e.g., phosphorus<br />

and heavy metals) settle to <strong>the</strong> soil surface,<br />

turd dissolved nutrienb <strong>in</strong> <strong>the</strong> water may<br />

diffu~e with<strong>in</strong> <strong>the</strong> soil and detrital layers. Surface<br />

water run<strong>of</strong>f from surround<strong>in</strong>g upland areas alsa<br />

may contribute significant load<strong>in</strong>gs tx, wetlands<br />

(van der Valk et al. 1979). The follow<strong>in</strong>g are conservative<br />

estimates for annual nutrient and metal<br />

removal via sediment deposition <strong>in</strong> 1 m2 <strong>of</strong><br />

nor<strong>the</strong>astern wetland soils: N, 1.5 g; F: 375 mg;<br />

Cu, Pb, and Zn, 25 mg; Cd, 0.2 mg; and Wg, 0.2-<br />

2.5 mg (Nixon and h e 1986). Soil adsorption,<br />

immobilization by microbial decomposers, algal<br />

uptake, denitrification, and chemical complex<strong>in</strong>g<br />

(e.g., as ferric phosphate) may all <strong>in</strong>fluence mtrient<br />

pathways dur<strong>in</strong>g <strong>the</strong> dormant season<br />

(Richardson et al. 1978; Br<strong>in</strong>son et al. 1981a,b).<br />

With <strong>the</strong> onset <strong>of</strong> <strong>the</strong> grow<strong>in</strong>g season and<br />

warmer conditions <strong>in</strong> a red maple swamp, <strong>in</strong>creased<br />

decomposition <strong>of</strong> organic matter speeds<br />

<strong>the</strong> releaae <strong>of</strong> nutrients at <strong>the</strong> same time that<br />

plant uptake <strong>in</strong>creases. Heightened evapotranspiration<br />

gradualIy lowers <strong>the</strong> water table, typically<br />

to a po<strong>in</strong>t with<strong>in</strong>, or just below, <strong>the</strong> root<br />

zone. As a result, soil oxygen levels <strong>in</strong>crease,<br />

and soil chemical and biochemical procestres are<br />

affeekd. Br<strong>in</strong>son et al. (19$lb), for example,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!