30.11.2014 Views

Ecology of Red Maple Swamps in the Glaciated Northeast: A ...

Ecology of Red Maple Swamps in the Glaciated Northeast: A ...

Ecology of Red Maple Swamps in the Glaciated Northeast: A ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Technical IIbpg~rt Series<br />

U.S. Fish and Wildlife Service<br />

The Fish and Wildlife Service publishes five technical report. series. Manuscripts are accepted from Service<br />

employees or contractors, students and faculty associated with cooperative fish and wildlife research units, and<br />

o<strong>the</strong>r persons whose work is sponsored by <strong>the</strong> Service. Manuscripts are received with <strong>the</strong> understand<strong>in</strong>g that <strong>the</strong>y<br />

are unpublished. Most manuscripts receive anonymous peer review. The f<strong>in</strong>al decision to publish lies with <strong>the</strong><br />

editor.<br />

Editorial Staff<br />

MANAGIN(: El)lr~u)tz<br />

Paul A. Opler<br />

h5sIsTAhFl" SI.:~"SI~N LI",AI)I",IZ<br />

Paul A. Vohs<br />

~11.i~1.11~K~ E1)ITt)lt<br />

Elizabeth n. Iiockwell<br />

Frsr ir.:rzrics ,.:r)rru)lt<br />

James R. Zuby<br />

F>~JIrru)18<br />

Deborah K. Ilanris, Senior Editor<br />

John S. Rumsey<br />

INE.XII~~$ATION<br />

Vlsi~~i,<br />

SI)I


Biological Report 12<br />

June lCB:1<br />

<strong>Ecology</strong> <strong>of</strong> <strong>Red</strong> <strong>Maple</strong> <strong>Swamps</strong><br />

<strong>in</strong> <strong>the</strong> <strong>Glaciated</strong> Nor<strong>the</strong>ast:<br />

A Community Pr<strong>of</strong>ile<br />

Francis (:. C;olcli, ~lrarn J. K. C:iilfi~)~~~~,<br />

W~lliarri Ii. I)~TC;~gctlt, Ilertnis J. I~)\-rrry,<br />

aild Arthur J. Gold<br />

U.S. X>epartrnent, <strong>of</strong> <strong>the</strong> Irrtcrior.<br />

Fish and Wildlife Service<br />

Wash<strong>in</strong>ta~u, D.G. %I2413


Preface<br />

In many areas <strong>of</strong> <strong>the</strong> glaciated nor<strong>the</strong>astern United States, forested wetlands dom<strong>in</strong>ated by red maple<br />

(Acer rubmrn) cover more <strong>of</strong> <strong>the</strong> landscape than all o<strong>the</strong>r nontidal wetland types comb<strong>in</strong>ed. Yet<br />

surpris<strong>in</strong>gly little <strong>of</strong> <strong>the</strong>ir ecology, functions, or social sidcance has been documented. Bogs, salt<br />

marshes, Atlantic white cedar swamps, and o<strong>the</strong>r less common types <strong>of</strong> wetlands have received<br />

considerable attention from scientists, but, except for botanical surveys, red maple swamps have been<br />

largely ignored. This report conveys what is known about <strong>the</strong>se common wetlands and identifies topics<br />

most <strong>in</strong> need <strong>of</strong> <strong>in</strong>vestigation.<br />

<strong>Red</strong> maple swanlps are so abundant and so widely distributed <strong>in</strong> <strong>the</strong> Nor<strong>the</strong>ast that <strong>the</strong>ir physical,<br />

chemical, and biological properties range widely as well, and <strong>the</strong>ir values to society are diverse. The<br />

central focus <strong>of</strong> <strong>the</strong> U.S. Fish and Wildlife Service community pr<strong>of</strong>ile series is <strong>the</strong> plant and animal<br />

communities <strong>of</strong> wetlands and deepwater habitats. However, <strong>the</strong> abiotic environment, particularly<br />

hydrogeologic sett<strong>in</strong>g and water regime, is also <strong>of</strong> critical importance because it largely determ<strong>in</strong>es <strong>the</strong><br />

structure and species composition <strong>of</strong> <strong>the</strong> biota and controls major wetland functions and values. The<br />

importance <strong>of</strong> abiotic factors is given especially strong emphasis <strong>in</strong> this pr<strong>of</strong>ile.<br />

For most aspects <strong>of</strong> red maple swamp ecology, significant research has been limited to one or two<br />

studies; <strong>in</strong> some cases, <strong>the</strong>re are no studies at all. For that reason, we have consciously avoided broad<br />

generalizations <strong>in</strong> this report. Instead, we frequently present detailed results from isolated studies,<br />

particularly where <strong>the</strong>y were comprehensive or quantitative works. We hope such <strong>in</strong>-depth review will<br />

shed light on <strong>the</strong> characteristics and functions <strong>of</strong> red maple swamps <strong>in</strong> o<strong>the</strong>r parts <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>ast,<br />

and even outside <strong>of</strong> <strong>the</strong> region.<br />

Through our field research and work on this report, we have found red maple swamps to be highly<br />

diverse, productive, aes<strong>the</strong>tically pleas<strong>in</strong>g ecosystems that are <strong>of</strong> great significance to society. However,<br />

our understand<strong>in</strong>g <strong>of</strong> <strong>the</strong>se wetlands is only beg<strong>in</strong>n<strong>in</strong>g. We hope that <strong>the</strong> obvious <strong>in</strong>formation gaps<br />

identified <strong>in</strong> our report will stimulate more <strong>in</strong>vestigation <strong>in</strong>to <strong>the</strong> ecology <strong>of</strong> this valuable resource.<br />

This community pr<strong>of</strong>ile is one <strong>in</strong> a series coord<strong>in</strong>ated by <strong>the</strong> U.S. Fish and Wildlife Service's National<br />

Wetlm~ds Research Center. Questions or comments concern<strong>in</strong>g this publication or o<strong>the</strong>rs <strong>in</strong> <strong>the</strong><br />

community and estuar<strong>in</strong>e pr<strong>of</strong>iles series should be directed to:<br />

Center Director<br />

U.S. Fish and Wildlife Service<br />

National Wetlands Research Center<br />

700 Cajundome Boulevard<br />

Lafayette, LA 70506


Conversion Table<br />

Metric to U.S. Customary<br />

Multiply<br />

millimeters (mm)<br />

centimeters (cm)<br />

meters (m)<br />

kilometers (km)<br />

square meters (m2)<br />

square kilometers (Ian2)<br />

hectares (ha)<br />

liters (L)<br />

cubic meters (m3)<br />

cubic meters (m3)<br />

milligrams (mg)<br />

grams (g)<br />

kilograms (kg)<br />

metric tom (t)<br />

metric tons (t)<br />

kilocalories (kcal)<br />

Celsius degrees (" C)<br />

To obta<strong>in</strong><br />

<strong>in</strong>ches<br />

<strong>in</strong>ches<br />

feet<br />

miles<br />

square feet<br />

square miles<br />

acres<br />

gallons<br />

cubic feet<br />

acre-feet<br />

ounces<br />

ounces<br />

pounds<br />

pounds<br />

short tons<br />

British <strong>the</strong>rmal units<br />

Fahrenheit degrees<br />

U.S. Customary to Metric<br />

<strong>in</strong>ches<br />

<strong>in</strong>ches<br />

feet (ft)<br />

miles (mi)<br />

nautical miles (nrni)<br />

square feet (ft?)<br />

square miles (mi2)<br />

acres<br />

gallons (gal)<br />

cubic feet (ft'3<br />

acre-feet<br />

ounces (02)<br />

ounces (oz)<br />

pounds Ob)<br />

pounds Ob)<br />

short tons (tan)<br />

British <strong>the</strong>rmal mita @Tv)<br />

nheit degrees (O F)<br />

millimeters<br />

centimeters<br />

meters<br />

kilometers<br />

kilometers<br />

square meters<br />

square kilometers<br />

hectares<br />

liters<br />

cubic meters<br />

cubic meters<br />

milligrams<br />

gr-s<br />

kilograms<br />

metric tons<br />

metric tons<br />

kilocalories<br />

Celsius degrees


Acer rubrum (red maple) diagnostic features. 1. leaves, 2. flower<strong>in</strong>g branch with male flowers, 3. fruit<strong>in</strong>g branch,<br />

3a. lower leaf surface, 3b. upper leaf surface, 4. bark, 5a. seed, 5b. fruit, paired samaras, 6a., b. male flowers, Ta.,<br />

b. bisexual flowers. Dmw<strong>in</strong>g by K. Schmidt.


Contents<br />

Befa ce ...............................................<br />

iii<br />

ConversionTable ......................................... iv<br />

Frontispiece ............................................ v<br />

Chapter 1 . Introduction ...................................... 2<br />

Wetland Forests <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>ast .............................. 2<br />

Classification ....................................... 2<br />

<strong>Red</strong> <strong>Maple</strong> Forested Wetlands .............................. 2<br />

Regional Sett<strong>in</strong>g ........................................ 4<br />

Physiography ....................................... 4<br />

Climate ........................................... 5<br />

Major Forest Regions ................................... 6<br />

<strong>Ecology</strong> and Distribution <strong>of</strong> <strong>Red</strong> <strong>Maple</strong> ........................... 6<br />

Relative Abundance <strong>of</strong> %d <strong>Maple</strong> <strong>Swamps</strong> ......................... 8<br />

Statewide Wetland Invexlbry Statistics ......................... 8<br />

Physiographic Variation <strong>in</strong> Wetland Abundance .................... 9<br />

Chapter 2 . The Physical Environment .............................. 11<br />

Surfkid Geology ....................................... 11<br />

Till ............................................. 11<br />

Stratified Drift. ....................................... 11<br />

Alluvium .......................................... 12<br />

Illydrogeologic Sett<strong>in</strong>gs <strong>of</strong> <strong>Red</strong> <strong>Maple</strong> Swmps ....................... 12<br />

Surface-water Depression Wetlands ........................... 14<br />

Surface-water Slope Wetlands .............................. 14<br />

Groundwater Depression Wetlaxlds ........................... 14<br />

Groundwater Slope Wetlands ............................... 16<br />

Hydrologic Budgets <strong>in</strong> <strong>Red</strong> <strong>Maple</strong> <strong>Swamps</strong> ......................... 17<br />

WaterRegimcs ........................................ 19<br />

Def<strong>in</strong>itions and Key Characteristics ........................... 19<br />

Water Levels <strong>in</strong> Rhode Island Swanlps ......................... 20<br />

Soils .............................................. 24<br />

Basic Types: Organic and M<strong>in</strong>erd ............................ 24<br />

I-Iyckic Soil Dra<strong>in</strong>age Classes ............................... 25<br />

Soil Type and Wetland Sett<strong>in</strong>g .............................. 25<br />

Phgrsicd and Morphollogic Properties ........................... 26<br />

Base Status and pH .................................... 26<br />

Chaphr 3 . The Plmt Community ................................ 28<br />

Community Structure ..................................... 34<br />

TreeLnlyer ......................................... 34<br />

SbbLayer ........................................ 36<br />

EIerbbyer ......................................... 37<br />

Spies Richness ....................................... 37<br />

Floristic Composition ..................................... 46<br />

Zone 1 . Sou<strong>the</strong>rn New England Upland, Seaboard Lowland, and Coastal Pla<strong>in</strong> .... 47<br />

Zone I1 . Greret Lakes and <strong>Glaciated</strong> Allegheny Plateau ................. 51


Zone 111 . St . Lawrence Valley and Lake Champla<strong>in</strong> Bas<strong>in</strong> ............... 52<br />

Zone TV . Nor<strong>the</strong>astern Mounta<strong>in</strong>s ............................ 53<br />

Zone V . Nor<strong>the</strong>rn New England Upland ......................... 53<br />

Calcareous Seepage <strong>Swamps</strong> ............................... 54<br />

Transitional <strong>Swamps</strong> ................................... 55<br />

Plants <strong>of</strong> Special Concern ................................... 55<br />

.....................<br />

Hydrology ........................................... 57<br />

Influence on Community Structure ........................... 57<br />

Influence on Floristic Composition ............................ 58<br />

Microrelief ........................................... 68<br />

Orig<strong>in</strong> and Relationship to Water Regime ........................ 68<br />

Influence on Swamp Vegetation ............................. 70<br />

Chemical and Physical Properties <strong>of</strong> Soils .......................... 73<br />

.................................<br />

Productivity .......................................... 76<br />

Annual Radial Tree Growth ............................... 76<br />

Biomass and Net Primary Productivity ......................... 79<br />

Organic Matter Decomposition and Nutrient Cycl<strong>in</strong>g .................... 80<br />

Factors Affect<strong>in</strong>g Decomposition Rates ......................... 80<br />

Nutrient Cycl<strong>in</strong>g ...................................... 81<br />

Detritus Export and Food Cha<strong>in</strong> Support .......................... 84<br />

..................................<br />

Basic Concepts and Processes ................................ 86<br />

Succession. Climax. and Wetland Dynamics ....................... 86<br />

Directions <strong>of</strong> Wetland Change .............................. 87<br />

Wetland Dynamics <strong>in</strong> Sou<strong>the</strong>rn New England: An Overview ................ 87<br />

...............................<br />

Chapter 4 . Abiotic Influences on <strong>the</strong> Plant Community 57<br />

Chapter 5 . Ecosystem I>rocesses 76<br />

Chapter 6 . Wetland Dynamics 86<br />

Dynamics <strong>of</strong> <strong>Red</strong> <strong>Maple</strong> <strong>Swamps</strong> 89<br />

Swamp Orig<strong>in</strong>s and Development ............................ 89<br />

Retrogressive Changes .................................. 91<br />

Successional Relationships Among Wetland Forest Trees ............... 93<br />

...................................<br />

Wetland Dependence <strong>of</strong> Wildlife ............................... 94<br />

Wetland-dependent Species ................................ 94<br />

Facultative Species .................................... 94<br />

Reptiles and Amphibians ................................... 95<br />

Bkds .............................................. 97<br />

Species Composition .................................... 97<br />

Factors Affect<strong>in</strong>g Avian Richness and Abundance .................... 99<br />

<strong>Red</strong> <strong>Maple</strong> <strong>Swamps</strong> as Waterfowl Habitat ........................ 102<br />

Mammals ........................................... 104<br />

SmallMamrnals ...................................... 104<br />

Chapter 7 . Vertebrate Fauna 94<br />

...........................<br />

................................<br />

.........................<br />

........................<br />

.....................................<br />

Groundwater Functions .................................. 109<br />

WaterQuality Improvement ............................... 110<br />

Medium-sized and Large Mammals 106<br />

Vertebrates <strong>of</strong> Special Concern 108<br />

Chapter 8 . Values. Impacts. and Management 109<br />

Functions and Values <strong>of</strong> <strong>Red</strong> <strong>Maple</strong> <strong>Swamps</strong> 3.09<br />

Flood Abatement 109


......................................<br />

.......................................<br />

...................................<br />

........................................<br />

...................................<br />

............................<br />

...........................<br />

...................................<br />

...................................<br />

......................<br />

................................<br />

....................................<br />

.........................................<br />

WIf&ifenabitat 111<br />

WoodProdueb 111<br />

Smiwulturd Values. 112<br />

fi(.lamanlmpacb 113<br />

kbs <strong>of</strong> Wetland l~nss 115<br />

Pr<strong>in</strong>cipal Causes <strong>of</strong> Wetland lloss 115<br />

aher Forms <strong>of</strong> Wetland Alteration 118<br />

Key E/Emagernent Issties 121<br />

&undtuy l)el<strong>in</strong>eation 122<br />

Mitig~tion by kpiacement or Enhancement 122<br />

Proktion <strong>of</strong> Buffer Zones 123<br />

Exempted Wetlarlds 126<br />

Acknowledgments 127<br />

bferences ............................................. 127<br />

.........<br />

Apgxtldix A . Sourccs <strong>of</strong> Floristic Data for Northoast~rn Krci <strong>Maple</strong> Swarrlps 139<br />

Appendix R . I'laxkts <strong>of</strong> Special Concern That Have fken Obscrved <strong>in</strong> Nor<strong>the</strong>astern<br />

......................................<br />

fhd <strong>Maple</strong> Swarnps 141<br />

Aplwndix C . Verf~br~fmi n~zit f lave hen Observed <strong>in</strong> Norttteastern <strong>Red</strong> <strong>Maple</strong><br />

<strong>Swamps</strong> ............................................ 145<br />

Apl~bndix D . Vertcbraks <strong>of</strong> S~x?ci~l Concc~~~ That lfnve hex1 Observed <strong>in</strong><br />

NorCtlea~~lni ItrtI Mtiple Swltnlps .............................. 149<br />

.<br />

.........<br />

liir regiorls <strong>of</strong> <strong>the</strong> glaciated Nortllenst ................... 3<br />

....................<br />

. <strong>of</strong> rcatl rnuplt ................................. 8<br />

Fig 1.1. l3ror*d-lerived dtbritluoua forest& wct land dorni11atn4 hy red maple 3<br />

Fig . 1.2. I?lyrasogrr\l><br />

Fig . 1.3. Majar forest rtgiorls <strong>of</strong> tllcx glac<strong>in</strong>tcd Northr.asC 6<br />

IJig . 1.4. 7litb rrsrlg<<br />

Fig . 2.1. IbI~tlvt' lillld~l'it~~' ~ O H I ~ ~ <strong>of</strong> O t ~ l S prillcip~l ~ ~ t.ypes <strong>of</strong> surficial geologic<br />

drp~it~ ............................................ 12<br />

Fig . 2.2. Irllarld wr~tll-lrltl<br />

Fig . 2.3. Ibtf n l i ~ p l t b SWNII~)<br />

Fig . 2.4. h d maple sw8rrnp i r ~<br />

tlycirologit clnsscs ........................... 15<br />

ill thc &TOUII(ZW>~~P~ ctty)ression hydrologic class ......... 16<br />

............<br />

<strong>the</strong> grr, uiidwaier slope izyclrologic class 17<br />

Fig . 2.5. Inflow-outflow coriiporlcvits an(i watcr budget t?quation for 8% red maple<br />

svvftmp ............................................. 18<br />

Fig . 2.6. SC~SC)I~IP~~~<br />

fl(n)(itd red 11i>tplta swarllj) .......................... 20<br />

Fig . 2.7. Water Ievc.ls 111 six XZI~C)~C IsXaxld r~x(j. rilaplc swznllp~s tltlrirlg a 7-year period .... 22<br />

Fig . 2.8. Grountlwiltn*r lcvcls irk very poorly clri-t<strong>in</strong>cd and poorly ctrairled soils <strong>in</strong> Rhode<br />

XsIand red muple swtrxnl>s dur<strong>in</strong>g a 3-ycwr period ...................... 22<br />

Fig . 2.9. Seasoxlnlly siiturwt~d red nlaplc swaxnp corltairli~lg poorly dra<strong>in</strong>ed and very<br />

~mrly dra<strong>in</strong>ed soilR ...................................... 25<br />

F L . 2.10. ~ Major areas <strong>of</strong> <strong>the</strong> glaciated Northcast with high soil base saturation ....... 27<br />

Fig. 3.1. Common broad-leaved deciduotls trees <strong>of</strong> nor<strong>the</strong>askrn red maple swamps ..... 29<br />

Fig . 3.2 . Gmrrnc31l needle-leaved trees <strong>of</strong> nomhcastsnl red ntaple swaps .......... 30<br />

Fig. 3.3. Common si~mlbs <strong>of</strong> nor<strong>the</strong>astern red maple swamps ................. 31<br />

Fig . 3.4. Cormur~on fcnxs and .rx losses <strong>of</strong> nor<strong>the</strong>astern red maple swamps ........... 32<br />

Fig . 3.5. Gonwotl forb3 and granr<strong>in</strong>oids <strong>of</strong> lort <strong>the</strong> astern red maple swamps ......... 33<br />

Fig . 3.6. S~ructurd p~<strong>of</strong>iIe <strong>of</strong> a seasonally flooded red maple swamp ............. 34


Fig . 3.7. <strong>Red</strong> maple swap with understory dom<strong>in</strong>ated by great rhododendron ........ 36<br />

Fig . 3.8. Young red maple forested wetland with a poorly developed shrub layer ....... 37<br />

Fig . 3.9. <strong>Red</strong> maple swamp with an herb layer dom<strong>in</strong>ated by c<strong>in</strong>namon fern ......... 39<br />

Fig . 3.10. Zones depict<strong>in</strong>g variation <strong>in</strong> floristic composition and relative abundance <strong>of</strong><br />

red maple swamps <strong>in</strong> <strong>the</strong> glaciated Nor<strong>the</strong>ast ........................ 47<br />

Fig 3.11. <strong>Red</strong> maple swamp along an upland dra<strong>in</strong>ageway <strong>in</strong> sou<strong>the</strong>rn New England 49<br />

. ....<br />

Fig . 3.12. Sou<strong>the</strong>rn New England alluvial swamp <strong>in</strong> mid-April ................ 50<br />

Pig . 4.1. Toposequences <strong>of</strong> plant communities on a till-covered gneiss hill <strong>in</strong> western<br />

Connecticut ........................................... 59<br />

Fig . 4.2. Water level fluctuation <strong>in</strong> red maple swamps and o<strong>the</strong>r wetland communities<br />

<strong>of</strong> northwestern Connecticut ................................. 60<br />

Fig . 4.3. Relative importance <strong>of</strong> plants from five wetland <strong>in</strong>dicator categories along a<br />

soil moisture gradient <strong>in</strong> sou<strong>the</strong>rn Rhode Island ...................... 63<br />

Fig . 4.4. <strong>Red</strong> maple tree toppled by w<strong>in</strong>d ............................. 68<br />

Fig . 4.5. Mound-and-pool microrelief <strong>in</strong> a seasonally flooded red maple swamp ........ 69<br />

Fig . 4.6. Influence <strong>of</strong> microrelief on plant distribution <strong>in</strong> a red maple swamp .....,... 70<br />

Fig . 4.7. Frequency distributions <strong>of</strong> five plant species accord<strong>in</strong>g to microsite and water<br />

regime <strong>in</strong> a central New York swamp ............................ 71<br />

. .....<br />

Fig 4.8. <strong>Red</strong> maple seedl<strong>in</strong>gs <strong>in</strong> sphagnum moss on <strong>the</strong> floor <strong>of</strong> a red maple swamp 72<br />

Fig . 4.9. Ecological position <strong>of</strong> red maple swamps and o<strong>the</strong>r wetland types <strong>of</strong><br />

northwestern Connecticut with respect to moisture regime and pH near <strong>the</strong> soil<br />

surface ............................................. 74<br />

Fig . 5.1. Annual radial growth <strong>of</strong> red maple <strong>in</strong> six Rhode Island swamps ........... 77<br />

Fig . 5.2. Relationship between annual radial growth <strong>of</strong> red maple and mean annual<br />

water level <strong>in</strong> six Rhode Island red maple swamps from 1976 through 1981 ....... 78<br />

Fig . 5.3. <strong>Red</strong> maple leaf litter on <strong>the</strong> floor <strong>of</strong> a seasonally flooded alluvial swamp <strong>in</strong><br />

earlyspr<strong>in</strong>g .......................................... 80<br />

...*.<br />

.<br />

......................<br />

Fig 5.4. Nutrient-cycl<strong>in</strong>g processes and pathways <strong>in</strong> a red maple forested wetland 82<br />

Fig 5.5. <strong>Red</strong> maple swamp along a perennial stream 84<br />

Fig . 6.1. Major changes <strong>in</strong> sou<strong>the</strong>rn New England freshwater wetlands over a 20- to<br />

33-year period ......................................... 88<br />

Fig . 6.2. Former wet meadow <strong>in</strong>vaded by red maple ....................... 90<br />

Fig . 6.3. Stunted red maple sapl<strong>in</strong>gs <strong>in</strong> a shrub swamp with cont<strong>in</strong>uously saturated<br />

soil ............................................... 90<br />

Fig . 6.4. Retrogressive changes <strong>in</strong> nor<strong>the</strong>astern red maple swamps due to water level<br />

rise or cutt<strong>in</strong>g ......................................... 91<br />

Fig . 6.5. Active beaver pond constructed <strong>in</strong> a former red maple swamp ............ 92<br />

Fig . 6.6. Recently abandoned beaver flowage dom<strong>in</strong>ated by gram<strong>in</strong>oids ............ 92<br />

Fig . 7.1. Wood frog ......................................... $33<br />

Fig . 7.2. Nor<strong>the</strong>rn waterthrush .................................* 99<br />

Fig . 7.3. Canada warbler ..................................... 99<br />

Fig . 7.4. Avian breed<strong>in</strong>g species richness as a function <strong>of</strong> wetland size <strong>in</strong> nohheastem<br />

red maple swamps ...................................... 108<br />

Fig . 7.5. Breed<strong>in</strong>g bird richness and diversity <strong>in</strong> major NoAh American vegetation<br />

types .............................................. 101


........................................<br />

................................<br />

....................................<br />

....................................<br />

Fig . 7.6. Wad duck 103<br />

Fig . 7.7. Sou<strong>the</strong>rn red-backed vole 1%<br />

Fig . 7.8. Mite-tailed deer 107<br />

Fig . 8.1. Sweet pepperbush 113<br />

Fig . 8.2. <strong>Red</strong> maple swamp provid<strong>in</strong>g open space arnidst residential and <strong>in</strong>dustrial<br />

development ......................................... 114<br />

Fig .,. 8.3. Sou<strong>the</strong>rn New England red maple swamp cleared for cranberry bog<br />

expansion ........................................... 117<br />

Fig . 8.4. Electric utility l<strong>in</strong>es pass<strong>in</strong>g through a former red maple swamp .......... 119<br />

Fig . 8.5. Stormwater discharge <strong>in</strong> a red maple swamp ..................... 120<br />

Fig . 8.6. Wetland buffer width model developed for wildlife habitat functions <strong>in</strong><br />

..............................<br />

Rhode Island red maple swamps 126<br />

Table 1.1. Synaptic outl<strong>in</strong>e <strong>of</strong> <strong>the</strong> physiographic regions <strong>of</strong> <strong>the</strong> glaciated Nor<strong>the</strong>ast .....<br />

Table 1.2. Climatic data for <strong>the</strong> nor<strong>the</strong>astern United States. by physiographic region ....<br />

Table 1.3. Pr<strong>in</strong>cipal tree species <strong>in</strong> upland md wetland forests <strong>of</strong> <strong>the</strong> glaciated<br />

Nor<strong>the</strong>ast, by forest region ..................................<br />

Table 1.4. Relative abundance <strong>of</strong> forested wetland and broad-leaved deciduous<br />

forested wetland <strong>in</strong> <strong>the</strong> glaciated nor<strong>the</strong>astern United States ...............<br />

Table 1.5. I'erccrltiige <strong>of</strong> total land arca <strong>in</strong> each glaciated nor<strong>the</strong>astern state covered<br />

by pnlustri~~r wet. land and by forested wetland .......................<br />

Table 2.1. ICydrogeologic classificatior~ <strong>of</strong> x~or<strong>the</strong>astern <strong>in</strong>land wetlands ...........<br />

Table 2.2. Gentam1 characteristics <strong>of</strong> red maple forested wetlands studied by O'Brien ....<br />

Tablo 2.3. Water regimes <strong>of</strong> nor<strong>the</strong>astrn red maple swamps .................<br />

Table 2.4. Soil drn<strong>in</strong>age classes .................................<br />

'ikble 2.5. IIydrc~logic d~aracteristics <strong>of</strong> seasonally saturated soils from Rhode Island<br />

red maple Hwanlps dur<strong>in</strong>g <strong>the</strong> grow<strong>in</strong>g season .......................<br />

Table 2.6. Percentage <strong>of</strong> <strong>the</strong> grow<strong>in</strong>g season dur<strong>in</strong>g which air-filled porosity at a<br />

30-cxn depth was 15% or less <strong>in</strong> soils from EUlode Island red maple swamps and<br />

adjacent upland forests ...................................<br />

Table 3.1, Stmttural characteristics <strong>of</strong> <strong>the</strong> tree layer <strong>in</strong> nor<strong>the</strong>astern red rnaple<br />

swamps ............................................<br />

Table 3.2. Structural charactfiristics <strong>of</strong> <strong>the</strong> shrub and herb layers <strong>in</strong> nortl~eastern red<br />

maple swamps . ........................................<br />

Table 3.3. Flora <strong>of</strong> red maple swamps <strong>in</strong> <strong>the</strong> glaciated Nor<strong>the</strong>ast ...............<br />

Table 4.1. Soil and water table characteristics <strong>of</strong> three forested wetland communities<br />

at Labrador kIollow S wap <strong>in</strong> central New York ......................<br />

Table 4.2. Relative abundance <strong>of</strong> plant species <strong>in</strong> wetland, transition, and uplarld<br />

zones associated with eight red maple swamps <strong>in</strong> nor<strong>the</strong>astern Connecticut .......<br />

Table 4.3. Wetland <strong>in</strong>dicator categories for plant species that occur <strong>in</strong> wetlands .......<br />

Tmble 4.4 Frequency <strong>of</strong> occurrence <strong>of</strong> major tree, shrub, and herb layer species by<br />

soil &&age class <strong>in</strong> <strong>the</strong> wetland-upland transition zone <strong>of</strong> three Rhode Island<br />

red mtrple swrunps . ......................................


Table 4.5. Flood tolerance <strong>of</strong> trees and large skrubs that occur <strong>in</strong> nor<strong>the</strong>astern red<br />

mapleswamps . ........................................<br />

Table 5.1. hual<br />

radial growth <strong>of</strong> red maple trees <strong>in</strong> relation to surface-water<br />

hy&operiod <strong>in</strong> 10 Lake Chmplailr wetlands . . . . . . . . . . . . . . . . . . . . . . .<br />

Table 5.2. Mean aboveground biomass values for nor<strong>the</strong>astern red maple swamps . . . . .<br />

Table 5.3. Nutrient concentrations <strong>in</strong> <strong>the</strong> tissues <strong>of</strong> red maple trees from New Jersey<br />

swamps ............................................<br />

Table 5.4. Nutrient concentrations <strong>in</strong> litter and surface peat from a Connecticut red<br />

mapleswamp .........................................<br />

Table 6.1. Degree <strong>of</strong> change <strong>of</strong> sou<strong>the</strong>rn New England freshwater wetland types<br />

dur<strong>in</strong>g <strong>the</strong> recent past . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Table 7.1. Use <strong>of</strong> red maple swamps by amphibians and reptiles <strong>in</strong> New England . . . . . .<br />

Table 7.2. Relative abundance <strong>of</strong> reptiles and amphibians captured with<strong>in</strong> or<br />

immediately adjacent to red maple swamps <strong>in</strong> New Hampshire and mode Island . . . .<br />

Table 7.3. Relative abundance <strong>of</strong> breed<strong>in</strong>g birds <strong>in</strong> red maple swamps <strong>of</strong> <strong>the</strong> glaciated<br />

Nor<strong>the</strong>ast ...........................................<br />

Table 7.4. Wetland dependence <strong>of</strong> mammals occurr<strong>in</strong>g <strong>in</strong> red maple swamps <strong>of</strong> <strong>the</strong><br />

glaciated Nor<strong>the</strong>ast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Table 7.5. Small-mammal communities <strong>in</strong> red maple swamps and o<strong>the</strong>r habitats <strong>of</strong><br />

New Jersey and Connecticut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

Table 8.1. Examples <strong>of</strong> gross loss rates for <strong>in</strong>land vegetated wetlands <strong>in</strong> <strong>the</strong> glaciated<br />

Nor<strong>the</strong>ast ...........................................<br />

Table 8.2. Relative importance <strong>of</strong> various causes <strong>of</strong> <strong>in</strong>land wetland loss <strong>in</strong> sou<strong>the</strong>rn<br />

NewEngland .........................................<br />

Table 8.3. Birds and mammals observed <strong>in</strong> <strong>the</strong> transition zone between red maple<br />

swamp and upland forest <strong>in</strong> Rhode Island . . . . . . . . . . . . . . . . . . . . . . . . .


Ecoloa <strong>of</strong> <strong>Red</strong> <strong>Maple</strong> <strong>Swamps</strong> <strong>in</strong> <strong>the</strong> <strong>Glaciated</strong> Nor<strong>the</strong>ast:<br />

A Community Pr<strong>of</strong>ile<br />

Francis C. Golet, Arm J.K. Calhoun, and<br />

William R. DeRagon<br />

Department <strong>of</strong> Natuml Resources Science<br />

University <strong>of</strong> Rhode Island<br />

K<strong>in</strong>gston, R W Island 02881<br />

Dennis J. Lowry<br />

IEP/l&gro-McClelland, Inc.<br />

Northborough, Massachusetts 01532<br />

and<br />

Arthur J. Gold<br />

Department <strong>of</strong> Natural Resources Science<br />

University <strong>of</strong> Rhode Island<br />

K<strong>in</strong>gston, R W Island 02881<br />

Abstract. This report is part <strong>of</strong> a series <strong>of</strong> pr<strong>of</strong>iles on <strong>the</strong> ecology <strong>of</strong> wetland and<br />

deepwater habitats. This particular pr<strong>of</strong>ile addresses red maple swamps <strong>in</strong> <strong>the</strong> glaciated<br />

nor<strong>the</strong>astern United States. <strong>Red</strong> maple (Acer rubrum) swamp is a dom<strong>in</strong>ant wetland<br />

type <strong>in</strong> most <strong>of</strong> <strong>the</strong> region; it reaches its greatest abundance <strong>in</strong> sou<strong>the</strong>rn New England<br />

and nor<strong>the</strong>rn New Jersey, where it comprises 60-80% <strong>of</strong> all <strong>in</strong>land wetlands. <strong>Red</strong> maple<br />

swamps occur <strong>in</strong> a wide variety <strong>of</strong> hydrogeologic sett<strong>in</strong>gs, from small, isolated bas<strong>in</strong>s <strong>in</strong><br />

till or glaci<strong>of</strong>luvial deposits to extensive wetland complexes on glacial lake beds, and from<br />

hillside seeps to stream floodpla<strong>in</strong>s and lake edges. Individual swamps may be seasonally<br />

flooded, temporarily flooded, or seasonally saturated, and soils may be m<strong>in</strong>eral or organic.<br />

As many as five dist<strong>in</strong>ct vegetation layers may occur <strong>in</strong> <strong>the</strong>se swamps, <strong>in</strong>clud<strong>in</strong>g trees,<br />

sapl<strong>in</strong>gs, shrubs, herbs, and ground cover plants such as bryophytes and clubrnosses. Cm<br />

a regional scale, red maple swamps support at least 50 species <strong>of</strong> trees, more than<br />

90 species <strong>of</strong> shrubs and v<strong>in</strong>es, and more than 300 species <strong>of</strong> nonwoody plants. These<br />

swamps also provide habitat for a rich faunal community, <strong>in</strong>clud<strong>in</strong>g several<br />

wetland-dependent species. In areas that are becom<strong>in</strong>g urbanized, <strong>the</strong>se wetlands <strong>of</strong>ten<br />

constitute critical habitat for facultative species as well. <strong>Red</strong> maple swamps also are<br />

important sites for flood storage, water quality improvement, recreation, scenic beauty,<br />

and open space.<br />

Key words: Swamp, red maple, Awr rubrum, forested wetlands, deciduous forest,<br />

nor<strong>the</strong>mtern United States.


Chapter I. Introduction<br />

Wetland kbrsests <strong>of</strong> <strong>the</strong><br />

Northd'afit<br />

(Tsly,vt cfmmxknsis), white p<strong>in</strong>e (f<strong>in</strong>us stmbus), and<br />

pitch p<strong>in</strong>t (I-"<strong>in</strong>us rgdu).<br />

Broad-leaved deciduous forested wetlands are<br />

<strong>the</strong> predom<strong>in</strong>ant ~utxlms <strong>in</strong> <strong>the</strong> Nor<strong>the</strong>ast. Abundant<br />

<strong>in</strong> all parts <strong>of</strong> <strong>the</strong> regiorr exc~pt for <strong>the</strong> sprucefir<br />

zones, broad-leaved deciduous wetland forests<br />

occur <strong>in</strong> a variety <strong>of</strong> sett<strong>in</strong>gs. On major river floodpI;z1t1s,<br />

~Zonl<strong>in</strong>nx~t spc~ies typically <strong>in</strong>clude silver<br />

maple (Amr scrrtclmr<strong>in</strong>um), easterri cottonwml.<br />

(I2opu lus c-lr.1 toicfts), asheas (filrc~r<strong>in</strong>uspp.), black<br />

wlllow (Sulix nigrcr), sycamore (Platanus occidentnlis),<br />

p<strong>in</strong> oak (Qucrcus pcxlustris), elm (Ulmus<br />

spp.), wnrl rivw birch (Retula nigm) (Teskey and<br />

t ilr:r-klc>y l""i8tt; 1 lolland and B~ark 1984; Metzler<br />

~tntl I)ii~i~liiiirl 1985; ltfrer 1985). Broad-leaved dccrtliro~ls<br />

fonast~.d wtd IzulcLr illso WIW <strong>in</strong> Lwlated up-<br />

1:trld ttcyrc.ssio~ls, rat td:c~hcaciwatcru <strong>of</strong> strr~mls, dong<br />

t,iit, S~OM'S <strong>of</strong> liikt's arid high-gradient prexulid wat~~tuu~um3s,<br />

tu~d as wet cxpax~ses <strong>in</strong> bmd vdleya arid<br />

(YMB~JZ~ 10wIartds. 111 all <strong>of</strong> <strong>the</strong>m x~onfloodplR<strong>in</strong> wtti~~w,<br />

izrtd <strong>in</strong> <strong>the</strong> wcatl~>r parts <strong>of</strong> numy floodplaim its<br />

well, <strong>the</strong> do1 n<strong>in</strong>rtrrt sgx~irs throughout <strong>the</strong> Nor<strong>the</strong>ast<br />

al~~lost i~ivartizbly is red nlrrple (Awr rubmm)<br />

(Fig. 1 .I). '171:s cc~rimluirity pr<strong>of</strong>ile d~~4critK.s <strong>the</strong> mloby<br />

<strong>of</strong> wtf rri;q)lc) forested wetlards <strong>in</strong> <strong>the</strong> glaciated<br />

p~t'lloxt. <strong>of</strong> <strong>the</strong> rtortlleimt~n~ 'CJ~ritd Stah.<br />

IZcd Map Er I%rt~st~d Wet lands.<br />

1x1 reti xnaplt forested weLlruids, red maple is <strong>the</strong><br />

tialxlir~r+rlt overstory six-ics-<strong>the</strong> "dom<strong>in</strong>ance type"<br />

<strong>of</strong> Cowartiirl 6.t nl. (1979)). In Ixlarv broad-leaved<br />

cfr~cidunus forcasted w~*tlitncls irr <strong>the</strong> glaciated Nor<strong>the</strong>ii~t,<br />

red JLI it pic C


Fig. 1.1. Broad-leaved deciduous forested wetland dom<strong>in</strong>ated by red maple (Acer rubrum).<br />

maple forested wetlands are commonly referred to moet recent, or Wiscons<strong>in</strong>, glaciation @l<strong>in</strong>t 1971).<br />

as red maple swamps (Golet and Larson 1974), and The region <strong>in</strong>cludes New England, all <strong>of</strong> New York<br />

that more familiar term will be used <strong>in</strong>terchangeably except for a small area along <strong>the</strong> Bnnsylvania border<br />

with " f d wetland" <strong>in</strong> this report.<br />

<strong>in</strong> <strong>the</strong> western part <strong>of</strong> <strong>the</strong> state, nor<strong>the</strong>astern and<br />

For our purpoees, <strong>the</strong> sou<strong>the</strong>rn limit <strong>of</strong> <strong>the</strong> glaciated northwestern Pennsylvania, and nor<strong>the</strong>rn New<br />

Nor<strong>the</strong>ast co<strong>in</strong>cides with <strong>the</strong> maximum extent <strong>of</strong> <strong>the</strong> Jersey (Fig. 1.2). While red maple swamps occur<br />

..,.<br />

: A :<br />

.<br />

... .<br />

...<br />

Limit <strong>of</strong> Wiscons<strong>in</strong> Glaciot~on<br />

Catskill Mounta<strong>in</strong>s<br />

: 8 : Connecticut River Valley<br />

.<br />

ig. 1.2. Physiographic regions <strong>of</strong> <strong>the</strong><br />

glaciated Nor<strong>the</strong>ast (adapted from<br />

Lull 1968 and Fenneman 1938). The<br />

Catskill Mounta<strong>in</strong>s and Connecticut<br />

River valley are shown for reference<br />

pusposes, but are not considered separate<br />

regions.


Regional Sett<strong>in</strong>g<br />

throughout <strong>the</strong> glaciated Nor<strong>the</strong>ast, <strong>the</strong>ir size,<br />

-<br />

abundance, typicd landscape positions, edaphic<br />

characteristics, flora, and fauna all vary as a<br />

Pk~ysiography<br />

result <strong>of</strong> <strong>the</strong> physiographic and climatic diversity<br />

<strong>of</strong> <strong>the</strong> region. The follow<strong>in</strong>g section outl<strong>in</strong>es <strong>the</strong> The physiogrcbphy <strong>of</strong> <strong>the</strong> glaciated Nor<strong>the</strong>ast is exregional<br />

sett<strong>in</strong>g or context with<strong>in</strong> which north- tremely varied (Fig. 1.2, Table 1.1). Elevations<br />

eastern red maple swamps are found.<br />

from sea level <strong>in</strong> <strong>the</strong> Goastal Ra<strong>in</strong> arid New England<br />

Table 1 .I, Synoptic outl<strong>in</strong>e <strong>of</strong> <strong>the</strong> physiographic regions <strong>of</strong> <strong>the</strong> glaciated Nortkmt (based on Fenneman<br />

1938, Lull 1968, and Cunn<strong>in</strong>ghum and Ciolkosz 1984).<br />

Elevation above<br />

Region sea level (m) Salient features Geology<br />

New England Seaboard<br />

Lowland<br />

New England Upland<br />

White Mounta<strong>in</strong>s<br />

Green Mounta<strong>in</strong>s<br />

St. Lawrence Valley<br />

Great Lakes<br />

<strong>Glaciated</strong> ,4llegheny<br />

Plateau<br />

Xidge and Valley<br />

Piedmont<br />

Coastal Pla<strong>in</strong><br />

370-600<br />

(average)<br />

< 60<br />

(average)<br />

Narrow, low-ly<strong>in</strong>g coastal zone with<br />

varied shorel<strong>in</strong>e, <strong>in</strong>clud<strong>in</strong>g rocky<br />

shores, barrier spits and islands,<br />

and sand beaches<br />

Elevated pla<strong>in</strong> with roll<strong>in</strong>g hills,<br />

narrow valleys, numerous lakes;<br />

also conta<strong>in</strong>s Connecticut River<br />

valley (elev. 5120 m)<br />

White Mounta<strong>in</strong>s and adjacent<br />

elevated lands formed by massive<br />

granite <strong>in</strong>trusion; steep slopes<br />

and narrow valleys<br />

Low mounta<strong>in</strong> ranges, <strong>in</strong>clud<strong>in</strong>g<br />

Green Mounta<strong>in</strong>s and Taconic<br />

Range, separated by a narrow<br />

valley<br />

Low-ly<strong>in</strong>g pla<strong>in</strong> along St. Lawrence<br />

Ever and <strong>in</strong> Lake Champla<strong>in</strong><br />

bas<strong>in</strong>; scattered druml<strong>in</strong>s up to<br />

30 m high<br />

Broad plateau (elevation approximately<br />

600 m) <strong>in</strong> western portion,<br />

mounta<strong>in</strong>s <strong>in</strong> east; more than<br />

2,000 lakes<br />

Low-ly<strong>in</strong>g region between F<strong>in</strong>ger<br />

Lakes and skes Erie and<br />

Ontario<br />

Broad, uplifted pla<strong>in</strong> west <strong>of</strong><br />

Appalachians; elevations drop to<br />

120 m <strong>in</strong> river valleys and climb<br />

to 1,200 m <strong>in</strong> Catskill Mounta<strong>in</strong>s<br />

Long, narrow, flat-topped ridges<br />

and deep valleys on western slope<br />

<strong>of</strong> Appalachians; most <strong>of</strong> region<br />

is unglaciakd<br />

Region <strong>of</strong> gentle slopes (relief<br />

< 15 m) except <strong>in</strong> river valleys;<br />

sndl segment <strong>of</strong> large, mairJy<br />

unglaciated region<br />

Coastal strip limited to Cape Cod,<br />

Mass., hng Island, N.Y., and<br />

nor<strong>the</strong>astern N.J.; part <strong>of</strong> much<br />

larger, primarily unglaciated,<br />

region<br />

Granite and schist <strong>in</strong> Ma<strong>in</strong>e, granite,<br />

sedimentary, and metamorphic rocks<br />

elsewhere; abundant stratified drift<br />

<strong>in</strong> sou<strong>the</strong>rn New England<br />

Granite, gneiss, schist, slate, shale,<br />

some Thassic sandstone <strong>in</strong><br />

Connecticut River valley; diverse<br />

glacial deposits dom<strong>in</strong>ated by till<br />

Intrusive igneous rocks, ma<strong>in</strong>ly<br />

granite, overla<strong>in</strong> by till<br />

Slate and schist <strong>in</strong> mounta<strong>in</strong>s,<br />

limestone and marble <strong>in</strong> lowland<br />

between ranges<br />

Glacial drift and mar<strong>in</strong>e clays and<br />

sands over sandstone, limestone,<br />

and shale<br />

Precambrian igneous rocks, primarily<br />

granite, overla<strong>in</strong> by till<br />

Limestone, sandstone, and shale<br />

overla<strong>in</strong> by glacial Iake deposib and<br />

o<strong>the</strong>r drift<br />

Limestone, sandstone, shale, and<br />

conglomerate; diverse glacial<br />

deposits<br />

Ridges: sandstone and conglomerate;<br />

valleys: shale and limestone<br />

Triassic sandstone, shale, and<br />

conglomerate; extensive glacial lake<br />

deposits -h nor<strong>the</strong>rn New Jersey<br />

Glacial end mora<strong>in</strong>es and outwash<br />

over Cretaceous and Tertiary<br />

sedimentary rocks


Seabard Lowlarad =@om $a more than 1 ,504) rn <strong>in</strong><br />

<strong>the</strong> 'M7kite Mounts md Ahndacb. Coastal<br />

areas (<strong>in</strong>cluw <strong>the</strong> Great Lakes region) generally<br />

are relatively flat> while mounta<strong>in</strong>ous regions are<br />

chcaracterized by step slopes and nmow valleys.<br />

The bulk <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>ast falls with<strong>in</strong> <strong>the</strong> New<br />

England Upland and <strong>Glaciated</strong> Allegheny Plateau<br />

regions, where moderate elevations (150-600 m),<br />

roll<strong>in</strong>g hills, and nmw<br />

river valleys predom<strong>in</strong>ate.<br />

Bedrock types <strong>in</strong>clude primarily igneous and<br />

metamorphic mks through most <strong>of</strong> New England<br />

and <strong>in</strong> <strong>the</strong> Adkrondack Mounta<strong>in</strong>s and limestone,<br />

sandstone, and shale <strong>in</strong> much <strong>of</strong> <strong>the</strong> rest <strong>of</strong> <strong>the</strong><br />

Nor<strong>the</strong>ast vable 1.1). Unstratified glacial deposits,<br />

more commonly known as till, predom<strong>in</strong>ate <strong>in</strong><br />

<strong>the</strong> region. Stratified deposits are found <strong>in</strong> abundance<br />

<strong>in</strong> lowlands near <strong>the</strong> glacial limit, especially<br />

<strong>in</strong> sou<strong>the</strong>rn New England (Seaboard Lowland) and<br />

nor<strong>the</strong>rn New Jersey (Coastal Ma<strong>in</strong> and Piedmont),<br />

but also <strong>in</strong> deep preglacial valleys <strong>of</strong> central<br />

New Uork and <strong>in</strong> low-ly<strong>in</strong>g areas with<strong>in</strong> <strong>the</strong> Great<br />

Lakes and St. Lawrence Valley physiographic regions.<br />

Mar<strong>in</strong>e sediments occur <strong>in</strong> parts <strong>of</strong> <strong>the</strong> New<br />

England Seaboard Lowland and St. Lawrence Val-<br />

Iey (Ferneman 1938; Lull 1968; Cunn<strong>in</strong>gham and<br />

Ciolkosz 1984).<br />

Climate<br />

G h t e <strong>in</strong> <strong>the</strong> Nor<strong>the</strong>ast is highly varied because <strong>of</strong><br />

<strong>the</strong> wide range <strong>of</strong> physiographic conditions and <strong>the</strong><br />

idu- <strong>of</strong> <strong>the</strong> Atlantic Ocean and Great Lakes (Cunnhgham<br />

and Ciolkcsz 1934). Variability <strong>in</strong> time and<br />

is probably <strong>the</strong> most mntpicuous as@ <strong>of</strong> <strong>the</strong><br />

region's climate. There are wide ranges <strong>in</strong> daily and<br />

mual tempsmh, wide variations <strong>in</strong> temperature<br />

and pmipihtion for <strong>the</strong> same month or season<br />

<strong>in</strong> different years, and marked fluctuations <strong>in</strong><br />

wea<strong>the</strong>r conditions over short periods (Ruffner<br />

1985).<br />

bughout<strong>the</strong> glaciated Nor<strong>the</strong>ast, precipitation is<br />

evenly distxibuted over <strong>the</strong> year. Total annual precipitation<br />

ranges from more than 135 cm <strong>in</strong>certa<strong>in</strong>amas<br />

<strong>of</strong> <strong>the</strong> White Mounta<strong>in</strong>s, Green Mounta<strong>in</strong>s, and Catskhllstolessthan75cm<strong>in</strong>~eGreatLakesregionand<br />

<strong>the</strong> Lake Champla<strong>in</strong> bas<strong>in</strong> (Moody et it. 1986). Mean<br />

annual precipitation values for <strong>the</strong> variou9 nor<strong>the</strong>astern<br />

stah are similar, however, gendy averag<strong>in</strong>g<br />

102- 122 cm. Total snowfall varies greatly over<strong>the</strong> glaci-<br />

ated Nor<strong>the</strong>ast, Annual m10unts from less than<br />

81cmon<strong>the</strong>~astalRa<strong>in</strong>toasmu&as400cm<strong>in</strong>par@<br />

<strong>of</strong> <strong>the</strong> White Mounta<strong>in</strong>s &dl 1968).<br />

Mean annual air temperatures range from less<br />

than 4" C <strong>in</strong> nor<strong>the</strong>rn New England to 10" C <strong>in</strong> parts<br />

<strong>of</strong> sou<strong>the</strong>astern New England, nor<strong>the</strong>rn New Jersey,<br />

and nor<strong>the</strong>astern Pennsylvania (Cunn<strong>in</strong>gham and<br />

Ciokosz 1984). Average daily m<strong>in</strong>imum temperatures<br />

<strong>in</strong> January are below freez<strong>in</strong>g throughout <strong>the</strong><br />

glaciated Nor<strong>the</strong>ast, rang<strong>in</strong>g from -18" C <strong>in</strong> nor<strong>the</strong>rn<br />

New England to -3" C along <strong>the</strong> Atlantic coast (Lull<br />

1968). Average daily maximum temperatures <strong>in</strong> July<br />

range from 21" to 30" C. The length <strong>of</strong><strong>the</strong> bze-free<br />

period varies from less than 90 days <strong>in</strong> parts <strong>of</strong> <strong>the</strong><br />

White Mountah, Gren Mounta<strong>in</strong>s, and Adirondacksto<br />

180-210 days <strong>in</strong> coastal areas <strong>of</strong> wu<strong>the</strong>rnNew<br />

England (Lull 1968). Table 1.2 summks climatic<br />

Table 1.2. Climatic data for <strong>the</strong> nor<strong>the</strong>astern United States, by physiographic region (from Lull 1968).<br />

Region<br />

Mean annual Mean annual<br />

Mean freezeprecipitation<br />

snowfall _M+daily_ +sArnp2-CQ free period<br />

(cm> (cm) Jan. m<strong>in</strong>. July max. (days)<br />

New England Upland 107 188 -13 27 128<br />

New England Seaboard Lowland 109 145 -9 27 157<br />

White Mounta<strong>in</strong>s 102 257 - 16 26 112<br />

Green Mounta<strong>in</strong>s 107 188 -12 27 111<br />

Adirondacks 107 272 - 14 27 114<br />

Great Lakesa 84 190 -10 28 14-8<br />

<strong>Glaciated</strong> Allegheny Plateau 102 163 -9 28 127<br />

Ridge and ~dle$ 102 84 -6 29 159<br />

Fiedmontb 112 66 -4 31 172<br />

Coastal Pla<strong>in</strong>b<br />

114 46 -3 29 192<br />

-<br />

- - -.-- -- -- - -- --<br />

- -- --- - --- -- aIncludes ~lunatic data from thr St Lawrence 'balley region described <strong>in</strong> this report<br />

-- --<br />

'~ncludes data from unglac~ated<br />

and Mew Jersey<br />

states (West Virg<strong>in</strong>~n, Maryland, and 1)elaaare) and fro1-r) uxrglaciatcd ponlons <strong>of</strong> Pennsyl-vanla<br />

--


C-J Spruce-Fa<br />

Beech-Birch-<strong>Maple</strong><br />

Mite Ptne-Hemlock-Hardwood<br />

<strong>in</strong>] Oak-Yellow Poplar<br />

Pitch P<strong>in</strong>e-Hardwood<br />

Fig. 1.3. Major forest regj om <strong>of</strong> <strong>the</strong> glaciated<br />

Nor<strong>the</strong>ast (after Lull 1968 and<br />

Little 1979).<br />

Limit <strong>of</strong> Wiscons<strong>in</strong><br />

T<br />

data for each physiographic region <strong>in</strong> <strong>the</strong> Nor<strong>the</strong>ast.<br />

Major Forest Regions<br />

The forests <strong>of</strong> <strong>the</strong> glaciated Nor<strong>the</strong>ast can be divided<br />

<strong>in</strong>to five major regions (Fig. 1.3), which are<br />

differentiated accord<strong>in</strong>g to <strong>the</strong> forest associations that<br />

dom<strong>in</strong>ate <strong>the</strong> upland landscape: spruce-fir, beechbirch-maple,<br />

white p<strong>in</strong>e-hemlock-hardwood, oakyellow-poplar,<br />

and pitch p<strong>in</strong>e-hardwood. As comparison<br />

<strong>of</strong> Figs. 1.2 and 1.3 suggests, <strong>the</strong> confition <strong>of</strong><br />

<strong>the</strong> various forest regions is determ<strong>in</strong>ed largely by<br />

physiography and related climatic fa&.<br />

Table 1.3 identifies <strong>the</strong> most common tree species<br />

found on upland and wetland sites <strong>in</strong> <strong>the</strong> five forest<br />

regions. <strong>Red</strong> maple swamps occur throughout <strong>the</strong><br />

North&, but <strong>the</strong>ir relative abundance and floristic<br />

mmposition vary with physiography and forest region<br />

Cenerallx Cdese wetlands are most abundant <strong>in</strong> <strong>the</strong><br />

white p<strong>in</strong>e-hemlock-hardwd region and least abundant<br />

<strong>in</strong> <strong>the</strong> spmm-fir region.<br />

Eeologg~ and Distribution <strong>of</strong><br />

<strong>Red</strong> <strong>Maple</strong><br />

<strong>Red</strong> maple is an extremely broadly adapted species<br />

that OGCWS <strong>in</strong> both wetland and upland habitats<br />

throughout <strong>the</strong> eastern United States @owells<br />

1965). It is found virtually everywhere east <strong>of</strong> <strong>the</strong><br />

100th meridian where precipitation is adequate to<br />

support tree growth (Fig. 1.4). It occurs on dry,<br />

moist, and wet soils derived from a wide variety <strong>of</strong><br />

bedrock types, rang<strong>in</strong>g from acidic granites and<br />

gneisses to basic sedimentary rocks such as limestone.<br />

It grows on dry mounta<strong>in</strong> ridges, <strong>in</strong> seasonally<br />

flooded depressions with organic or m<strong>in</strong>eral<br />

soils, <strong>in</strong> mesic hardwood forests, <strong>in</strong> bored conifer<br />

forests, and <strong>in</strong> sou<strong>the</strong>rn bottomlands. Both nor<strong>the</strong>rn<br />

and sou<strong>the</strong>rn wetland studies characterize red<br />

maple as a moderately flood-tolerant tree (Hall and<br />

Smith 1955; Teskey and H<strong>in</strong>ckley 1978a, 197810;<br />

McKnight et al. 1981; Theriot 1988) that is most<br />

common on sites that are <strong>in</strong>termediate <strong>in</strong> wetness<br />

between permanent flood<strong>in</strong>g and temporary or <strong>in</strong>termittent<br />

flood<strong>in</strong>g (Buell and Wistendahl 1955;<br />

Satterlund 1960; Monk 1966; Sollers 1973; Dabel<br />

and Day 1977; Conner and Day 1982; Huenneke<br />

1982). In <strong>the</strong> glaciated Nor<strong>the</strong>ast, red maple predom<strong>in</strong>ates<br />

<strong>in</strong> swamps where soils are saturated or<br />

flooded from late fall through early summer <strong>in</strong> most<br />

years.<br />

The Society <strong>of</strong> American Foresters (SAF) currently<br />

recognizes 90 forest cover types <strong>in</strong> <strong>the</strong> eastern<br />

United States (Eyre 1980). <strong>Red</strong>maple is a major<br />

component (i.e., composes at least 2% <strong>of</strong> total<br />

stand basal area) <strong>in</strong> five <strong>of</strong> <strong>the</strong>se types and is listed<br />

as an associated species <strong>in</strong> 63 o<strong>the</strong>rs. It is a major<br />

or associated species <strong>in</strong> 41 <strong>of</strong> <strong>the</strong> 43 forest cover


Table 1.3. Pr<strong>in</strong>cipal tree species <strong>in</strong> upland and wetland forests <strong>of</strong> <strong>the</strong>glaciated Nor<strong>the</strong>ast, by forest region<br />

(based primarily on Lull 1968; names modi%d after Little 1979).<br />

Forest region<br />

Spruce-fir<br />

Beech-birchmaplen<br />

White p<strong>in</strong>ehendockhardwood<br />

Upland forests<br />

<strong>Red</strong> spruce<br />

White spruce<br />

Black spruce<br />

Balsam fi<br />

American beech<br />

Yellow birch<br />

Sugar maple<br />

American beech<br />

Yellow birch<br />

Sugar maple<br />

Eastern hemlock<br />

Black birch<br />

<strong>Red</strong> maple<br />

Basswood<br />

White ash<br />

Nor<strong>the</strong>rn red oak<br />

White p<strong>in</strong>e<br />

Eastern hemlock<br />

Nor<strong>the</strong>rn red oak<br />

Wetland forests<br />

Black spruce<br />

Tamarack<br />

Nor<strong>the</strong>rn white<br />

cedar<br />

Balsam fir<br />

<strong>Red</strong> maple<br />

Black ash<br />

Nor<strong>the</strong>rn white<br />

cedar<br />

Black spruce<br />

Tamarack<br />

<strong>Red</strong> maple<br />

Black ash<br />

nAlso frequently referred Lo us rlortliern hardwoods.<br />

/<br />

Pitch p<strong>in</strong>e-<br />

<strong>Red</strong> maple hardwood<br />

Ashes<br />

Eastern hemlock<br />

I<br />

I<br />

Forest region<br />

(cont<strong>in</strong>ued)<br />

Upland forests<br />

-- - --<br />

American beech<br />

Yellow birch<br />

Sugar maple<br />

O<strong>the</strong>r oaks<br />

Yellow-poplar<br />

Hickories<br />

<strong>Red</strong> maple<br />

White oak<br />

Nor<strong>the</strong>rn red oak<br />

Black oak<br />

Scarlet oak<br />

Chestnut oak<br />

Hickories<br />

Yellow-poplar<br />

Pitch p<strong>in</strong>e<br />

Bear oak<br />

Wetland forests<br />

White p<strong>in</strong>e<br />

Atlantic white<br />

cedar<br />

Fbd maple<br />

Atlantic white<br />

cedar<br />

Black gum<br />

<strong>Red</strong> maple<br />

Black g um<br />

Atlantic white<br />

cedar<br />

types occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong> glaciated Nor<strong>the</strong>ast. Of <strong>the</strong><br />

five forest cover types <strong>in</strong> which it is a major component,<br />

three (white p<strong>in</strong>e-nor<strong>the</strong>rn red oak-red maple,<br />

gray birch-red maple, and black cherry-maple)<br />

are upland forest types, one (black ash-American<br />

elm-red maple) is a wetland type, and one (red<br />

maple) may occur on ei<strong>the</strong>r wetland or upland sites.<br />

So, while red maple is <strong>the</strong> dom<strong>in</strong>ant tree <strong>in</strong> <strong>the</strong> vast<br />

majority <strong>of</strong> broad-leaved deciduous wetland forests<br />

<strong>in</strong> <strong>the</strong> Nor<strong>the</strong>ast, it is classified as a facultative<br />

species, that is, one that occurs <strong>in</strong> wetlands from<br />

one-third to two-thirds <strong>of</strong> <strong>the</strong> time (Reed 1988).<br />

The distribution <strong>of</strong> red maple forested wetlands<br />

generally co<strong>in</strong>cides with <strong>the</strong> comb<strong>in</strong>ed distributions<br />

<strong>of</strong> <strong>the</strong> black ash-American elm-red maple cover<br />

type (SAF type no. 39) and <strong>the</strong> red maple type (no.<br />

108). The former type is found throughout <strong>the</strong> glaciated<br />

Nor<strong>the</strong>ast and <strong>the</strong> Great Lakes States, and<br />

from sou<strong>the</strong>rn Manitoba to Newfoundland (Eyre<br />

1980). In <strong>the</strong> Great Lakes States, black ash may be<br />

as abundant as elm and red maple <strong>in</strong> t.his cover<br />

type, but elsewhere it usually composes a small<br />

percentage <strong>of</strong> <strong>the</strong> stand. American elm has greatly<br />

decl<strong>in</strong>ed <strong>in</strong> abundance due tcr Dutch elm disease, so<br />

red maple has become <strong>the</strong> dom<strong>in</strong>ant species <strong>in</strong> <strong>the</strong> disturbed sites.<br />

black ash-American elm-red maple type throughout<br />

<strong>the</strong> Nor<strong>the</strong>ast.<br />

The red maple cover type (SAF no. 108) is most<br />

common <strong>in</strong> New England, <strong>the</strong> Middle Atlantic<br />

States, <strong>the</strong> Upper Pen<strong>in</strong>sula <strong>of</strong> Michigan, and<br />

nor<strong>the</strong>astern Wiscons<strong>in</strong>. Toward <strong>the</strong> western and<br />

sou<strong>the</strong>rn limits <strong>of</strong> its range, this type generally<br />

occurs on wetland soils; <strong>in</strong> New England and <strong>the</strong><br />

Upper Pen<strong>in</strong>sula <strong>of</strong> Michigan, it is found both <strong>in</strong><br />

wetlands and on dry, sandy, or rocky upland sites.<br />

In Pennsylvania, most red maple stands are found<br />

on mesic to dry upland sites (Eyre 1980).<br />

The SAF established <strong>the</strong> red maple forest cover<br />

type <strong>in</strong> 1988; before that, red maple was merely<br />

listed as a codom<strong>in</strong>ant or associated species <strong>in</strong> a<br />

number <strong>of</strong> o<strong>the</strong>r types. The dramatic <strong>in</strong>crease <strong>in</strong> <strong>the</strong><br />

proportion <strong>of</strong> red maple <strong>in</strong> many stands s<strong>in</strong>ce <strong>the</strong><br />

previous SAF classification (SAM' 1954) has been<br />

attributed to disturbances such as logg<strong>in</strong>g and fwe<br />

and <strong>the</strong> progressive elim<strong>in</strong>ation <strong>of</strong> American elm by<br />

Dutch elm disease (Eyre 1980). Production <strong>of</strong> heavy<br />

seed crops nearly every spr<strong>in</strong>g, rapid seed germ<strong>in</strong>ation,<br />

and vigorous sprout<strong>in</strong>g from stumps m d dmaged<br />

seedl<strong>in</strong>gs give red maple a competitive advantage<br />

over associated species on a wide variety <strong>of</strong>


Fig. 1.4. The range <strong>of</strong> red maple (after Fowells 1965). Dots along <strong>the</strong> western edge <strong>of</strong> <strong>the</strong> range represent isolated<br />

or disjunct occurrences <strong>of</strong> <strong>the</strong> species.<br />

Relative Abundance <strong>of</strong> <strong>Red</strong><br />

<strong>Maple</strong> <strong>Swamps</strong><br />

T<strong>in</strong>er, U.S. Fish and Wildlife Service, Newton Corner,<br />

Mass., personal communication). National<br />

Wetlands Inventory data also have been wmpiled<br />

for 105 towns along coastal Ma<strong>in</strong>e (Fefer 1980)<br />

Statewide Wetland Inventory Statistics and, on a sample basis, for <strong>the</strong> state <strong>of</strong> Pennsylvania<br />

('her and F<strong>in</strong>n 1986; T<strong>in</strong>er 1989a). While <strong>the</strong><br />

The most comprehensive statistics on <strong>the</strong> areal NWI does not provide area statistics for red maple<br />

extent <strong>of</strong> wetlands <strong>in</strong> <strong>the</strong> glaciated Nor<strong>the</strong>ast have swamps <strong>in</strong> cases it does give<br />

been wmpded by <strong>the</strong> Fish and MUdlife Sent-- totals for <strong>the</strong> broad-leaved deciduous forested wetice's<br />

(FWS) National Weth-ds Inventory (NWI). land subclass. For our purposes, <strong>the</strong>se two catego-<br />

As <strong>of</strong> this writ<strong>in</strong>g, statewide area statistics have ries me considered synonymoug, and NWI statisbeen<br />

published for New Jersey and Rhode Island tics for broad-leaved deciduous forested wetlands<br />

('her 1985, 1989b) and are also available for are taken to represent <strong>the</strong> abundance <strong>of</strong> red maple<br />

Vermont, Connecticut, and Massachusetts (It. swamps <strong>in</strong> <strong>the</strong> states listed above.


--<br />

Table 1.4. Relaztive abundance <strong>of</strong> forested wetland and broacl-leaved deciduous (D) forested wetlad<br />

<strong>in</strong> t h glaciated nodhasten United States (based on Nationnl Wetlands Inventory and New York<br />

State Wetlamb Inventory data5).<br />

-- - -- - - -- ppp<br />

---<br />

Total palustr<strong>in</strong>e Forested BLD forested BLD forested<br />

wetland wetland wetland wetland<br />

State O.4 ("/) (O'9<br />

- ~<br />

Bode Island 23,12<br />

New Jersey b 42,145 68 68 28,644<br />

Massachusetts 188,714 71 64 121,067<br />

Connecticut 61,454 €4 60 36,863<br />

Ma<strong>in</strong>e" 76,802 64<br />

firms ylvania d 90,900 56<br />

New York 360,905 48 34 123,934<br />

Vermont 88,514 55 27<br />

--.- --<br />

23,728<br />

aN~tional Wetland Inventory (NWI) data were u rk. All NWI statistics except for Island<br />

(T<strong>in</strong>er 1989b), New Jersey (T<strong>in</strong>er 1985), and Ma<strong>in</strong>e (Fefer 1980) are unpublist~ed and were providedby R. T<strong>in</strong>er, U.S. Fish<br />

and Wildlife Service, Newton Corner, Mass. Statistics for New York were gent:mted by <strong>the</strong> New York State Wetlands Inventory<br />

(Wonnor and Cole 1989).<br />

'Data are from eight nor<strong>the</strong>rn counties that are at least 50041 ylac<strong>in</strong>kd: Susscx, I'assaic, 13(:rye11, Essex, Iiudsor,, Warren, Morris,<br />

and Union.<br />

" Data are from 105-town coastal zone only (Fefer 1980).<br />

d~ata are from glaciated regions <strong>of</strong> state only: Middle Western Upland Pla<strong>in</strong>, Nor<strong>the</strong>rn and Soutllern Poconos, and O<strong>the</strong>r <strong>Glaciated</strong><br />

Nor<strong>the</strong>ast Pennsylvania. See T<strong>in</strong>er (1989~) for region locatio~ks.<br />

National Wetlands Inventory mapp<strong>in</strong>g has not<br />

been completed <strong>in</strong> New York, but comparable statewide<br />

wetland area statistics have been generated by<br />

<strong>the</strong> New York State Wetlands Inventory, which was<br />

conducted by <strong>the</strong> state's Department <strong>of</strong> Environmental<br />

Conservation <strong>in</strong> <strong>the</strong> 1970's (Hardy and<br />

Johnston 1975; Q'Connor and Cole 1989). Those<br />

data have been used <strong>in</strong> this pr<strong>of</strong>de to estimate <strong>the</strong><br />

abundance <strong>of</strong> red maple swamps <strong>in</strong> New York.<br />

Statewide wetland <strong>in</strong>ventory statistics are currently<br />

unavailable for New Hampshire and Ma<strong>in</strong>e.<br />

In <strong>the</strong> six states for which statewide NWI statistics<br />

are available, forested wetland constitutes<br />

from 55% (Vermont) to 83% (Rhode Island) <strong>of</strong> all<br />

palustr<strong>in</strong>e wetland (Table 1.4). In New York, <strong>the</strong><br />

estimate is 48%, and <strong>in</strong> coastal Ma<strong>in</strong>e, 64%. Wid<strong>of</strong>f<br />

(1988) estimated an area <strong>of</strong> about 2 million hectares<br />

<strong>of</strong> palustr<strong>in</strong>e wetland <strong>in</strong> Ma<strong>in</strong>e as a whole, <strong>of</strong><br />

which 1.2 million (60%) are forested.<br />

The broad-leaved deciduous subclass <strong>of</strong> forested<br />

wetland predom<strong>in</strong>ates <strong>in</strong> all areas <strong>of</strong> <strong>the</strong> glaciated<br />

Nor<strong>the</strong>ast except for <strong>the</strong> spruce-fir regions. In <strong>the</strong><br />

sou<strong>the</strong>rn New England-nor<strong>the</strong>rn New Jersey ma,<br />

broad-leaved deciduous forested wetlands compose<br />

fmm 60 to 77% <strong>of</strong> all palwtg<strong>in</strong>e wetland Fable 1.4).<br />

In <strong>the</strong> colder parts <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>ast, particdarly <strong>in</strong><br />

nor<strong>the</strong>rn New England and <strong>the</strong> Adirondacks, broadleaved<br />

deciduous wetland forests decl<strong>in</strong>e <strong>in</strong> abun-<br />

dance, while needle-leaved evergreen wetland forests<br />

<strong>in</strong>crease markedly. In Vermont, for example,<br />

broad-leaved deciduous swamps constitute only<br />

27% <strong>of</strong> all palustr<strong>in</strong>e wetland; needle-leaved evergreen<br />

swamps account for 24% <strong>of</strong> <strong>the</strong> total. Accord<strong>in</strong>g<br />

to NWI statistics, <strong>the</strong> total area <strong>of</strong> broad-leaved<br />

deciduous forested wetland ranges from 18,000 ha<br />

<strong>in</strong> Rhode Island to 121,000 ha <strong>in</strong> Massachusetts<br />

(Table 1.4). New York has at least 124,W ha<br />

(O'Connor and Cole 1989).<br />

Physiographic Variation <strong>in</strong> Wet land<br />

The size and relative abundance <strong>of</strong> <strong>in</strong>land wetlands<br />

(and red maple swamps) vary markedly from<br />

one part <strong>of</strong> <strong>the</strong> glaciated Nor<strong>the</strong>ast to ano<strong>the</strong>r, chiefly<br />

as a result <strong>of</strong> differences <strong>in</strong> topographic relief, swcfxeial<br />

geology, and related surface dra<strong>in</strong>age. Wetlands are<br />

especially abundant wherever togographic and geologic<br />

conditions prevent water from freely ~ t s a ~<br />

soils or flow<strong>in</strong>g <strong>of</strong>f <strong>the</strong> land surface. Ln central and<br />

eastern Ma<strong>in</strong>e, where shallow soils ad a mll<strong>in</strong>rg,<br />

bedrock-c0nfsoIIed Iandscape provide an abundance<br />

<strong>of</strong> moisture at <strong>the</strong> surface year-round, weUands have<br />

been esthat~d to cover 9-1F/o <strong>of</strong> <strong>the</strong> landscape<br />

(Wid<strong>of</strong>f 1988). In sou<strong>the</strong>astern New England, broad<br />

lowlands, high regional groundwater tables, and<br />

generally congested surface &ahage also lead to a


~ b 1.5, h fircort~ <strong>of</strong><br />

Wet landc Irt ucr<br />

land trrea <strong>in</strong> each gicxcicrt~d nortl~asf~rn state couered Sy palustr<strong>in</strong>e<br />

{baspd on fitional WetLand.j Inventor.?; jhrWI] and ,yew Yurk State<br />

St at*'<br />

Iaxcxir. i~faxtd<br />

6.0<br />

%$.ansrpcrcl~trrwbtrt 2,Q%7,36fi 9.3 6.6<br />

?JItti~v'( 835,375 9.2 5.9<br />

New .Jcar~c~y 534,534 7.9 54 5.4<br />

Q'ntrtlt~l ic~t 1,2U2,267 4 9 3. 1 2.9<br />

E ~rhr.atlrsylvrti~ilr" 2,049,318 4.4 2.3<br />

V~mkotd 2,40"2,7 I2 3.7 2.0 1 .o<br />

Nthw York I 2,?AO,Rf%3 2.9 1.4 - -- 1 .O - -<br />

" VWt r.itrr~ avrr ttrrt-tl for dl rrcr1tr.w hrrt Nvw York All NWI ~tat~wt~c.fi


Cllapter 2. The Physical<br />

Environment<br />

Surf icial Geolloa<br />

Most <strong>of</strong> <strong>the</strong> unconsolidated geologic deposits<br />

cover<strong>in</strong>g <strong>the</strong> nor<strong>the</strong>astern landscape were laid<br />

down dur<strong>in</strong>g <strong>the</strong> Wiscons<strong>in</strong> cont<strong>in</strong>ental glaciation<br />

(Fl<strong>in</strong>t 1971). S<strong>in</strong>ce <strong>the</strong> retreat <strong>of</strong> <strong>the</strong> glacier<br />

12,000-18,000 years ago, glacial deposits, <strong>of</strong>ten<br />

referred to as drift, have been eroded, wea<strong>the</strong>red,<br />

and, <strong>in</strong> some <strong>in</strong>stances, buried by postglacial<br />

w<strong>in</strong>dblown (aeolian) or water-carried (alluvial)<br />

material. The physiographic diversity that is so<br />

characteristic <strong>of</strong> <strong>the</strong> glaciated Nor<strong>the</strong>ast results<br />

from highly varied preglacial bedrock-controlled<br />

topography, as well as glacial and postglacial<br />

erosion, transport, and deposition. This comb<strong>in</strong>ation<br />

<strong>of</strong> geologic conditions and hydrology controls<br />

<strong>the</strong> size, distribution, and, to a large extent, <strong>the</strong><br />

form and functions <strong>of</strong> nor<strong>the</strong>astern wetlands. The<br />

<strong>in</strong>fluence <strong>of</strong> bedrock on wetlands is largely hydrologic<br />

(e.g., perch<strong>in</strong>g <strong>of</strong> groundwater) and chemical.<br />

While some wetlands <strong>in</strong> <strong>the</strong> region occur<br />

directly on bedrock, most red maple swamps have<br />

developed <strong>in</strong> unconsolidated surficial deposits.<br />

For this reason, we place major emphasis on surficial<br />

geology.<br />

The surficial geologic deposits <strong>of</strong> <strong>the</strong> glaciated<br />

Nor<strong>the</strong>ast can be broadly categorized as follows:<br />

A. Glacial deposits<br />

1. Till<br />

2. Stratified drift<br />

a. Glaci<strong>of</strong>luvial deposits<br />

b. Glaciolacustr<strong>in</strong>e deposits<br />

c. Glaciomar<strong>in</strong>e deposits<br />

B. Postglacial Deposits<br />

1. Stream terrace deposits<br />

2. Modern fluvial deposits (alluvium)<br />

3. Aeolian deposits<br />

The orig<strong>in</strong> and characteristics <strong>of</strong> <strong>the</strong> three<br />

pr<strong>in</strong>cipal types <strong>of</strong> surficial deposits-tiill, stratified<br />

drift, and alluvium-are outl<strong>in</strong>ed below;<br />

<strong>the</strong>ir relative positions on <strong>the</strong> landscape are<br />

illustrated <strong>in</strong> Fig. 2.1. Glaciomar<strong>in</strong>e deposits,<br />

which <strong>in</strong>clude stratified drift laid down <strong>in</strong> ma-<br />

r<strong>in</strong>eorestuar<strong>in</strong>eenvironrnents;streamterracedeposits,which<br />

represent historic floodpla<strong>in</strong>s; and<br />

aeolian deposits, which consist <strong>of</strong> a th<strong>in</strong> mantle <strong>of</strong><br />

f<strong>in</strong>e sand or silt deposited by w<strong>in</strong>d shortly after<br />

deglaciation, are <strong>of</strong> limited extent <strong>in</strong> <strong>the</strong> Nor<strong>the</strong>ast<br />

and thus are rarely associated with red maple<br />

swamps. Unless o<strong>the</strong>rwise <strong>in</strong>dicated, <strong>the</strong> follow<strong>in</strong>g<br />

descriptions follow Fl<strong>in</strong>t (1971).<br />

Till<br />

Till is a heterogeneous mixture <strong>of</strong> particles,<br />

rang<strong>in</strong>g <strong>in</strong> size from clay to boulders, that was laid<br />

down directly by <strong>the</strong> glacier as it moved or as it<br />

melted. Material deposited beneath <strong>the</strong> glacier is<br />

<strong>of</strong>ten f<strong>in</strong>e gra<strong>in</strong>ed and exceed<strong>in</strong>gly compact due to<br />

<strong>the</strong> weight <strong>of</strong> <strong>the</strong> overly<strong>in</strong>g ice. This "lodgement<br />

till" is commonly encountered as a dense, low-permeability<br />

soil layer. Till dropped dur<strong>in</strong>g melt<strong>in</strong>g <strong>of</strong><br />

<strong>the</strong> ice, <strong>of</strong>ten referred to as ablation till, is frequently<br />

lighter and thus more permeable. In general,<br />

however, <strong>the</strong> poor sort<strong>in</strong>g <strong>of</strong> particles <strong>in</strong> till<br />

results <strong>in</strong> pemeabilities that are far lower than<br />

those found <strong>in</strong> most stratified drift depsits (Motts<br />

and OBrien 1981). Lodgement till typically exhibits<br />

hydraulic properties comparable to clay or bedrock.<br />

The thickness <strong>of</strong> till deposits <strong>in</strong> <strong>the</strong> Nor<strong>the</strong>ast<br />

ranges from a few meters, where b ehk is close<br />

to <strong>the</strong> surface, to tens <strong>of</strong> meters. Till and bedrock<br />

are generally exposed <strong>in</strong> topographically high areas<br />

<strong>of</strong> <strong>the</strong> landscape; <strong>in</strong> lowland areas, <strong>the</strong>y are<br />

commonly buried beneath stratified drift or postglacial<br />

deposits.<br />

Stratified Drift<br />

This category <strong>of</strong> glacial deposits <strong>in</strong>cludes matepid<br />

laid down <strong>in</strong> glacial shams or lakes. Followlngmnaximum<br />

glacial advance. some 18 21,000 years ags<br />

<strong>in</strong> <strong>the</strong> Nor<strong>the</strong>ast, <strong>the</strong> ice hnt receded air pulses over<br />

several thousand years. As <strong>the</strong> glacier ~treaM,<br />

rnekwater issu<strong>in</strong>g h m beneath <strong>the</strong> ie deposited<br />

stsatifid sediments <strong>in</strong> low areas <strong>of</strong> <strong>the</strong> lshndscape<br />

(ICokff 1974).


Fig. 22. &~lrit~ve Irtndtici~pe yosttions <strong>of</strong> <strong>the</strong> prtnrlpa]. typru <strong>of</strong> sux+f<strong>in</strong>nl geologic deposits (modified after Morrissey<br />

1:@'7).<br />

(;leoic>fluvIai IJepcr~sit~<br />

drposit.q. C:l:3ciol;ic~~str<strong>in</strong>e deposits arc gexlerallly <strong>of</strong><br />

Stsnt,ified rntrtr~riiils tlclw)sitcd by flowiiqz <strong>in</strong>rltlow<br />

lxmticvtbility, although highly permeable hori-<br />

WI~~L&**PN, cifI~w <strong>in</strong> c~xltaci with <strong>the</strong> iw (ice co~ltacf<br />

zoris lnay CK'CII~ (Mot19 ad 073rien 1981). Where<br />

dt'~xAqit8) or ~ x~yo~~d fik;e ~fl~rgh]. <strong>of</strong> fh~<br />

glilcicr (pmg1eei<strong>of</strong>luvi;tl<br />

alld glaciolacustrie deposits are laid<br />

glac.iid (iqx)~it~), an3 ~ ~~frmd f~ as dnci<strong>of</strong>luvid dt)-<br />

down mom o r less cant4?1n~mrm1musly a11d i11 close<br />

~xlsih. ttwticlca siiz rrrkci tht~ degs(~9 <strong>of</strong> .sort<strong>in</strong>g <strong>of</strong><br />

mxw<strong>in</strong>tion, <strong>the</strong>y me <strong>of</strong>ten refed ta as a nlorphogJ;.tci<strong>of</strong>li~v<strong>in</strong>l<br />

depqit-s are Iargely a fUnd,iorl d<br />

logical s~q~x?r~cc (Koteff 1974). Several such sets:u~s-<br />

~xjrt ciistilncc. nxkrl c%rlergy lcvcls irl <strong>the</strong> dcpit iond<br />

qt.lenc*.s IXL~~Y 1x3 laid down dw<strong>in</strong>g deglaciation <strong>in</strong> a<br />

c~rvirrm~~rit~xd Izlrtvrnl cfcposits laid dowrl t~~~itt*r sortrbcl ;~nd lx~xxnc. fitlcr 'I%c silt, sanci, and gravel deposited by modern<br />

~,rp~il?(~d with II~CJY~RN~I~~ dishxl(v~ ~K)IZ~ gl~~iili streams, ei<strong>the</strong>r <strong>in</strong> <strong>the</strong> channels or on <strong>the</strong>ir floodfrtatt.<br />

1 k r . r ~ <strong>of</strong> ~ . tii~~ir xjn-tirlg and cu>;lrma tr.xturc., pla<strong>in</strong>s dur<strong>in</strong>g ovc~rbiurk flood<strong>in</strong>g, are collectively<br />

miairy gllt~i~fitl~id dc~~x>sits I~AVP high p~rnlt>i.it>~lity, rcfrrrcd to as alluvium. On surficial geology maps,<br />

zxaztl wlki*~t st~fi~i~t~f fFiickli~c~s,q(~s wclxr, as <strong>in</strong> d ~ y thrse dcpsits typically appear orlly along large,<br />

pmeglilci~li vd;llclys, tlrtt ric~~x~sits c~.u,l?,.;titllt~> *i\c~uifm-s law-gradient yerenriial streams; along small<br />

capfible <strong>of</strong> a.npj,E~irx rrniilicipal wells (Mrzt'is md streams, alluvium is commonly discontjlluous or<br />

f)%Pien 1981).<br />

too th<strong>in</strong> or x l m ) tct ~ be mapped.<br />

k%dirne~~ta3 depositcad <strong>in</strong> <strong>the</strong> standiilg water <strong>of</strong> glacial<br />

I&- ge11e~'dly irre mierred b as glaciolactxat rirrt.<br />

depcrsits. These depits <strong>in</strong>clude fie sand, silt, md<br />

clay that settle out <strong>of</strong> <strong>the</strong> water ~IWIII, as well as<br />

coarser materid that is deposited by currents flawbg<br />

down <strong>the</strong> face <strong>of</strong> lake deitiiu. Till hp+fsomrnelt&<br />

bhrb <strong>of</strong> glacial ice may dso be <strong>in</strong>co~por~kt ixr <strong>the</strong>w<br />

I-Iydrogeslogic Sett<strong>in</strong>gs; <strong>of</strong> <strong>Red</strong><br />

fk2apf.e <strong>Swamps</strong><br />

<strong>Red</strong> s~lapl~ swamps wur <strong>in</strong> many different locations<br />

an <strong>the</strong> Iax~ciscape, from small, isolated bas<strong>in</strong>s<br />

it1 till or gInci<strong>of</strong>lrsvial deposits to extensive wetland<br />

complexes on glaciolacustr<strong>in</strong>e deposits, and from


~<br />

-<br />

....<br />

. -<br />

1. Wetlmh<br />

A. Wetlm& fed by hgrorandwater discharg<strong>in</strong>g from fracture porosity (jo<strong>in</strong>ts, fractures sheet<strong>in</strong>g) <strong>in</strong> bedrock<br />

B. Wetlands fed by pua~dwater &scharg<strong>in</strong>g &.om faults<br />

C. Wetlands created by perched water tables on bedmck created by glacial erosion or differential wea<strong>the</strong>r<strong>in</strong>g<br />

D. Wetlands border<strong>in</strong>g arrd <strong>in</strong> streaxm flow<strong>in</strong>g through predom<strong>in</strong>antly bebck valleys<br />

11. Wetlads associated with thick till depositsR<br />

A. Wetlands created by perched water tables <strong>in</strong> till bas<strong>in</strong>s<br />

B. Wetlrmds mated by perched water tables on till slopes<br />

C. Wetlands associated with streams flow<strong>in</strong>g <strong>in</strong> predonr<strong>in</strong>antly till valleys<br />

D. Wetlands associated with Iwal or regional water tables discharg<strong>in</strong>g <strong>in</strong> till areas<br />

111. Wetlands associated with glacial stratified deposits<br />

A. Glaci<strong>of</strong>lu~al wetlands<br />

1. Kettles<br />

2. Wetlands associated with groundwater dischmg<strong>in</strong>g at <strong>the</strong> ice-contact slope <strong>of</strong> a head <strong>of</strong> outwash<br />

3. Wetlarlds associated with meltwater cham~els on <strong>the</strong> surface <strong>of</strong> <strong>the</strong> rnorphologi~al sequence<br />

4. Wetlands associated with streams flow<strong>in</strong>g on <strong>the</strong> morphological sequence<br />

5. Wetlands associated with <strong>the</strong> <strong>in</strong>tersection <strong>of</strong> <strong>the</strong> water table and <strong>the</strong> morphological sequence surface<br />

B. Glaciolacustr<strong>in</strong>e wetlands<br />

1. Kettles<br />

2. Wetlands associated with groundwater discharg<strong>in</strong>g from ice-contact slopes<br />

3. Wetlands associated with streams flow<strong>in</strong>g on a delta surface<br />

4. Wetlands associated with meltwater channels on a delta surface<br />

5. Wetlands associated with groundwater discharge at <strong>the</strong> distal edge <strong>of</strong> deltaic deposits<br />

6. Wetlands associated with groundwater discharg<strong>in</strong>g from bottomset beds<br />

7. Wetlands associated with perched water tables on bothrnset beds<br />

8. Wetlands associated with streams flow<strong>in</strong>g over bottomset beds<br />

9. Wetlands associated with <strong>the</strong> <strong>in</strong>tersection <strong>of</strong> <strong>the</strong> water table and <strong>the</strong> delta surface<br />

I\/T Wetlands associated with glacial or postglacial. &ream terrace deposits<br />

A. Wetlands perched on stream terrace deposits<br />

B. Wetlands associated with abandoned stream channels on streanl terrace deposit surface<br />

C. Wetlands created by <strong>the</strong> <strong>in</strong>tersection <strong>of</strong> <strong>the</strong> water table with <strong>the</strong> streanl terrace deposit surface<br />

V Wetlands associated with recent alluvial deposits and floodpla<strong>in</strong>s<br />

A. Wetlands associated with perched water tables<br />

B. Areas subject to flood<strong>in</strong>g (I- to %year storm frequency)<br />

C. Wetlands created by <strong>the</strong> <strong>in</strong>tersection <strong>of</strong> <strong>the</strong> water table with alluvial or floodpla<strong>in</strong> sdaces<br />

D. Wetlands associated with abandoned stream channels, oxbows, and po<strong>in</strong>t bar deposits<br />

E. Wetlands consisti to 2-year floodpis<strong>in</strong><br />

"~he transition fron~ betirock-<br />

- ~~<br />

.~<br />

hillside seeps at <strong>the</strong> headwaters <strong>of</strong> streams to<br />

stream floodpla<strong>in</strong>s and lake edges. Sorne swamps<br />

are fed primarily by groundwater, some ma<strong>in</strong>ly by<br />

surface run<strong>of</strong>f, and some by stream or lake overblow.<br />

Taken toge<strong>the</strong>r, <strong>the</strong> geologic and hydrologic features<br />

<strong>of</strong> a particular site may be referred to as its<br />

hydrogeologic sett<strong>in</strong>g. While <strong>the</strong>re has hen relatively<br />

little research on this aspect <strong>of</strong> red maple<br />

svsramps, it is clear that hydrogeo'togic sett<strong>in</strong>g is a<br />

primary determ<strong>in</strong>ant <strong>of</strong> water regimes, water<br />

chemistry, plant community structure and floris-<br />

tics, and groundwater recharge and discharge relationships.<br />

Table 2. f details <strong>the</strong> great variety <strong>of</strong> situations<br />

<strong>in</strong> which nor<strong>the</strong>astern <strong>in</strong>laad wetlands mew <strong>in</strong><br />

association with bedrock, till, glaei<strong>of</strong>luvial deposits,<br />

glaciolacustr<strong>in</strong>e deposits, stream terrace deposits,<br />

and recent alltrviwn or flmdplnh deposits.<br />

With<strong>in</strong> each <strong>of</strong> <strong>the</strong>se geologic sett<strong>in</strong>gs, wetlands<br />

may differ i1.n <strong>the</strong> nature <strong>of</strong> <strong>the</strong> Erydrologic system.<br />

For example, vtreLIands located over be&cxk or till<br />

may be hydrologically isolated from <strong>the</strong> local or


egional groundwakr table by <strong>the</strong> rock or by lowpermeability<br />

layere with<strong>in</strong> <strong>the</strong> till; <strong>the</strong>y may be fed<br />

directly by groundwakr discharg<strong>in</strong>g from bedrock<br />

or till; or <strong>the</strong>y may be associated with streams<br />

flow<strong>in</strong>g over <strong>the</strong> surface <strong>of</strong> <strong>the</strong>se materials. Wet-<br />

Imds nmay occur <strong>in</strong> my <strong>of</strong> a wide variety <strong>of</strong> sett<strong>in</strong>gs<br />

on stratified drift as well, rang<strong>in</strong>g from fluvial<br />

ice-contact sites to proglacial lacus tr<strong>in</strong>e situations.<br />

<strong>Red</strong> maple swamps we found <strong>in</strong> virtually all <strong>of</strong> <strong>the</strong><br />

hydrogeoIogic sett<strong>in</strong>gs listed <strong>in</strong> Table 2.1.<br />

Novitzki (1979a, 1982) created a hydrologic<br />

classification for wetlands <strong>in</strong> Wiscons<strong>in</strong> that is<br />

applicable throughout <strong>the</strong> glaciated Nor<strong>the</strong>ast and<br />

is particularly useful for a functional analysis <strong>of</strong><br />

wetland hydrology. His approach emphasizes <strong>the</strong><br />

source <strong>of</strong> <strong>the</strong> water feed<strong>in</strong>g each wetland and <strong>the</strong><br />

result<strong>in</strong>g hydrologic processes. Depend<strong>in</strong>g upon<br />

whe<strong>the</strong>r <strong>the</strong> wetland is fed primarily by surface<br />

wwfntr or groundwater, ax~d whe<strong>the</strong>r it is located <strong>in</strong><br />

rr. depression or on a slope, it is placed <strong>in</strong>to one <strong>of</strong><br />

tdllcb follow<strong>in</strong>g four classes: surface-water depressI0~1,<br />

~~diiC'e-~ftkr slope, groundwater depresston,<br />

or groundwat~x slope. While some wetlands<br />

arcA i~~fx~m~ediate <strong>in</strong> chrtrnckhristics bet,wt.en two or<br />

rrlore <strong>of</strong> thc~se chsse~, most fit reaso11ably well <strong>in</strong>to<br />

oiw <strong>of</strong> tlle four crrtsgories. 1Zed rnaple swm~lps occur<br />

<strong>in</strong> all <strong>of</strong> <strong>the</strong>sc hytlrologic situations; however, most<br />

are cit;llor groundwatar depression wetlands or<br />

pc~\~rrdwak:r slope wt*tlands. The basic charactoristics<br />

<strong>of</strong> cttc.11 hydrologic class, t,akell fro111<br />

Nrrvltzki (1982), are outl<strong>in</strong>ed below.<br />

In <strong>the</strong>se wetla~lds, jwcxipitation and overland flow<br />

~susfrtcz. rurl<strong>of</strong>f<strong>in</strong>) cd1cu.t ill a dc~prcsslorr where tlxere is<br />

littit. or ncs groundwater discharge (Pig. 2.2). Water<br />

lr~vt7b' W J wetl~nd<br />

~ p~-hcipally by evapotranspiration<br />

anti Xflt's~ftiorl (w>~exdwat~r recharge). lllle wetland<br />

Eiy~hlogic sysf~olies almve <strong>the</strong> local or mgional<br />

m>uaxdwittcr syetern imd is isolatrd from it; by an<br />

xxz~9itt~1rilkd ZOII~; thits, it is said tn 'tx. "perched." 111<br />

<strong>the</strong>. gi~crntfxd Nop<strong>the</strong>ast,, sudac~-wakr depression<br />

wtatlan& rn nla>st Jikely to form over twdrock or till<br />

cleposits <strong>in</strong> tur>ograpkGcally elevated areits <strong>of</strong> time landscape;<br />

however, <strong>the</strong>y may develop <strong>in</strong> lowland kettles<br />

or iceblack bmb~g that formed <strong>in</strong> glaciolaci~s(s<strong>in</strong>e or<br />

fie-tern glaci<strong>of</strong>luvid deposits. Because surface-<br />

WR~P~ depwrp~ion wetlands are rharaC"feri~i.icnl1~ 11nderlai<strong>in</strong><br />

by a low-permeability layer that caws water<br />

to accumulate above it, groundwater recharge<br />

kbugh that layer may be limited. The relative wetness<br />

<strong>of</strong> <strong>the</strong>b<strong>in</strong> depends upon <strong>the</strong> volume <strong>of</strong> overland<br />

flow enter<strong>in</strong>g it, <strong>the</strong> degree <strong>of</strong> permeability <strong>of</strong> under-<br />

ly<strong>in</strong>s strata, and bas<strong>in</strong> depth. Wahr leve1 flu--<br />

tion may be great <strong>in</strong> small sd~a~e-~ahr<br />

wetlands that mive much surf- run<strong>of</strong>f.<br />

Surface-water Slope WethncEs<br />

These wetlands are located along <strong>the</strong> edge <strong>of</strong> a<br />

stream or lake or on <strong>the</strong> slop<strong>in</strong>g surface <strong>of</strong> a floodpla<strong>in</strong>.<br />

They may occur on till or stratified drift but<br />

are commonly found on alluvium. While <strong>the</strong>se wetlands<br />

are also fed by precipitation and overland<br />

flow, <strong>the</strong> pr<strong>in</strong>cipal source <strong>of</strong> water is <strong>the</strong> overflow<br />

<strong>of</strong> <strong>the</strong> adjacent water body (Fig. 2.2). The slop<strong>in</strong>g<br />

surfac~ <strong>of</strong> <strong>the</strong> wetland permits water to dra<strong>in</strong><br />

readily back ta <strong>the</strong> lake or river as its stage falls.<br />

As was <strong>the</strong> case with <strong>the</strong> previous class, <strong>the</strong> wetland<br />

surface usually lies well above <strong>the</strong> local water<br />

table, so groundwater discharge to <strong>the</strong> wetland is<br />

negligible or nonexistent. Grourldwater recharge<br />

from <strong>the</strong> wetland is possible, depend<strong>in</strong>g on <strong>the</strong><br />

permeability <strong>of</strong> underly<strong>in</strong>g surficial deposits, but<br />

because much <strong>of</strong> <strong>the</strong> <strong>in</strong>filtrat<strong>in</strong>g water may rema<strong>in</strong><br />

<strong>in</strong> <strong>the</strong> soil ordy briefly before discharg<strong>in</strong>g back <strong>in</strong>to<br />

<strong>the</strong> lake or river, it is commonly considered "bank<br />

st~rage" ra<strong>the</strong>r than recharge. Water levels tend to<br />

fluctuate more rapidly <strong>in</strong> streamside wetlands<br />

than <strong>in</strong> lakeside wetlands.<br />

Ground water Depression Wet lands<br />

These wetlands occur where a bas<strong>in</strong> <strong>in</strong>tercepts<br />

<strong>the</strong> local groundwater table, so that <strong>the</strong> wetland is<br />

fed by groundwater discharge as well as precipitation<br />

and overland flow (Fig. 2.2). Classic groundwakr<br />

depression wetlands have no surface dra<strong>in</strong>age<br />

leav<strong>in</strong>g <strong>the</strong> site; however, occasional streamflow out<br />

may occur from bas<strong>in</strong> overflow. Groundwater <strong>in</strong>flow<br />

may be cont<strong>in</strong>uous or seasonal, deepend<strong>in</strong>g upon <strong>the</strong><br />

depth <strong>of</strong> <strong>the</strong> bas<strong>in</strong> and <strong>the</strong> degree <strong>of</strong> fluctuation <strong>of</strong><br />

<strong>the</strong> local water table. Dur<strong>in</strong>g those periods when<br />

<strong>the</strong> wetland water level is higher than <strong>the</strong> local<br />

groundwater table (e.g., aker major precipitation<br />

events <strong>in</strong> dry seasons), groundwater recharge may<br />

occur. Groundwater may enter <strong>the</strong> wetland bas<strong>in</strong><br />

from all directions, or it may discharge <strong>in</strong> one area<br />

and recharge <strong>in</strong> ano<strong>the</strong>r. In <strong>the</strong> glaciated Nor<strong>the</strong>ast,,<br />

groundwater depression wetlands are most<br />

likely to occur <strong>in</strong> stratsed drift, particularly <strong>in</strong><br />

coarse-textured glaci<strong>of</strong>luvial deposits where relatively<br />

rapid movement between groundwater and<br />

surface water can occur. Water levels decl<strong>in</strong>e<br />

throughout <strong>the</strong> grow<strong>in</strong>g season, but at a slower rate<br />

than <strong>in</strong> surface-water depression wetlands because<br />

groundwakr <strong>in</strong>flow repIaces some <strong>of</strong> <strong>the</strong> water lost


Surface-water depression wetland<br />

Surface-water slope wetland<br />

Precip.<br />

I<br />

ET<br />

Precip.<br />

ET<br />

.<br />

.:.. -<br />

below wetland . ' . , . .'<br />

. . '<br />

Groundwater depression wetland<br />

Groundwater slope wetland<br />

Precip.<br />

ET<br />

Precip.<br />

Overland<br />

ET<br />

.. .<br />

' '.-:'- when water table drops<br />

below wetland<br />

Fig. 22 Inland wetland hydrologic classes (based on Novitzki 1979a, 1982). The shaded area is <strong>the</strong> groundwater<br />

zone; ita upper surface is <strong>the</strong> water table.


y e~rr~mtrtm~~,irzst ion. Cat~t,<strong>in</strong>ulrxg &yc>mlc.iwakr irr- events, lotst rur~ollnts are fikf31y to be negligible,<br />

Elrtw rrrtry cvrtlmb wci(ltxtlrt wdr*r ICTW~S to rim* <strong>in</strong> Uub frdl, eqewiitU y wlzem wetliuld saih have formed over<br />

w1.ic.n uvti~xitmtrwlt<strong>in</strong>tticrtilcit~lirlrn, <strong>of</strong>an <strong>in</strong> exm.w <strong>of</strong> clew idgexncexlt till depits. Where such deposits<br />

d<strong>in</strong>x* ~>nwipitrrt.i


Fig. 24. <strong>Red</strong> maple swamp <strong>in</strong> <strong>the</strong> groundwater slope hydrologic class. This swamp is located on a<br />

hillside over till deposits; <strong>the</strong> boulders are glacial erratics.<br />

most commonly found at <strong>the</strong> bases <strong>of</strong> hills where<br />

groundwater runn<strong>in</strong>g downslope over bedmck or<br />

dense till layers discharged at <strong>the</strong> surface dur<strong>in</strong>g<br />

early spr<strong>in</strong>g. By late August, water levels had<br />

dropped as much as 60 cm. Valley swamps appear<br />

to be <strong>in</strong>termediate between groundwater slope and<br />

groundwater depression wetlands. They occurred<br />

<strong>in</strong> level or gradually slop<strong>in</strong>g valley bottoms composed<br />

<strong>of</strong> till or, less mmmonl~ glaci<strong>of</strong>luvial deposits.<br />

They received large amounts <strong>of</strong> both surface<br />

run<strong>of</strong>f and groundwater from adjacent till slopes.<br />

As a result, some valley swamps held a meter or<br />

more <strong>of</strong> surface water dur<strong>in</strong>g early spr<strong>in</strong>g and still<br />

had water levels with<strong>in</strong> 10 cm <strong>of</strong> <strong>the</strong> surface <strong>in</strong> early<br />

July While water levels were blow <strong>the</strong> surface for<br />

more than half <strong>the</strong> grow<strong>in</strong>g season, <strong>the</strong>y did not<br />

drop as far as <strong>in</strong> <strong>the</strong> perched swamps. Valley<br />

swamps were commonly dra<strong>in</strong>ed by shxims.<br />

Hydrologic Budgets <strong>in</strong> <strong>Red</strong><br />

<strong>Maple</strong> <strong>Swamps</strong><br />

logic sett<strong>in</strong>g <strong>of</strong> each wetland determ<strong>in</strong>es how many<br />

<strong>of</strong> <strong>the</strong> possible components are <strong>in</strong> its water budget<br />

and how large each component is. Over one or more<br />

years, <strong>the</strong> <strong>in</strong>put-output equation can be expected<br />

to balance; dur<strong>in</strong>g any given year, <strong>in</strong>puts generally<br />

equal or exceed outputs dur<strong>in</strong>g <strong>the</strong> dormant season,<br />

while outputs (primarily evapotranspiration) predom<strong>in</strong>ate<br />

dur<strong>in</strong>g <strong>the</strong> grow<strong>in</strong>g season. Hence, <strong>in</strong><br />

nor<strong>the</strong>astern red maple swamps, water levels are<br />

normally highest dur<strong>in</strong>g <strong>the</strong> w<strong>in</strong>ter and spr<strong>in</strong>g, and<br />

lowest dur<strong>in</strong>g late summer or early fall.<br />

O'Brien (1977) developed <strong>the</strong> most detailed<br />

water budget analysis for red maple swamps <strong>in</strong> <strong>the</strong><br />

glaciated Nor<strong>the</strong>ast. Although his data were ga<strong>the</strong>red<br />

h m only two wetlands dur<strong>in</strong>g a s<strong>in</strong>gle relatively<br />

dry year (annual precipitation 20,! below normal),<br />

<strong>the</strong> study provides valuable <strong>in</strong>formation on relative<br />

<strong>in</strong>flows and OUMOWS <strong>in</strong> different geologic sett<strong>in</strong>gs,<br />

and it describes seasonal changes characteristic <strong>of</strong> a<br />

large pmprtion <strong>of</strong> &e red mp]e swamps <strong>in</strong> ~ i r<br />

region. The two red maple forested wetlands studied<br />

by CYBrien were located 1.6 km apart, about 22 Ian<br />

The possible avenues <strong>of</strong> water <strong>in</strong>flow and outflow northwest <strong>of</strong> Bosbn, Mass. Smd streams arose<br />

<strong>in</strong> a red maple swamp are summarized <strong>in</strong> Fig. 2.5. witb<strong>in</strong>, and dra<strong>in</strong>ed, each wetland, but nei<strong>the</strong>r site<br />

As shown <strong>in</strong> <strong>the</strong> previous paragraphs, <strong>the</strong> hydro- had streams enter<strong>in</strong>g (i.e., both were groundwater


<strong>in</strong>flow^<br />

Outflows<br />

OF<br />

SWQ<br />

SWI<br />

Fig. 25. Inflow-outflow components and<br />

water budget equation for a red maple<br />

swamp (based on Novitzki 1982).<br />

GWI<br />

R<br />

Water Budget Equation:<br />

whore*<br />

P + OF + SWI + GWI a ET + SWO + R<br />

P = praclp~tatron fall~ng on <strong>the</strong> wetland<br />

OF - overland flow Into tho wettand<br />

SWI - streamflow Into <strong>the</strong> wetland<br />

GWI = groundwater flow Into <strong>the</strong> wetland<br />

ET - svapotransp~rat~on out <strong>of</strong> <strong>the</strong> wetland<br />

SWO - stroe<strong>in</strong>flow out <strong>of</strong> tho wettand<br />

R ror:hargo from wotlnnci to groundwater<br />

slope wetlands). O<strong>the</strong>r pert<strong>in</strong>ent <strong>in</strong>formation on<br />

<strong>the</strong> two wetlands is given <strong>in</strong> Table 2.2.<br />

Total surface-water discharge from each wetimd<br />

mounted to approximately 48% <strong>of</strong> precipitation.<br />

The spr<strong>in</strong>g n~onths (March-May) accounted<br />

for 70-75% <strong>of</strong> tl~e total annual discharge at both<br />

sibs. By analyz<strong>in</strong>g well and stream hydrographs,<br />

UBrien determ<strong>in</strong>ed that nearly 93% <strong>of</strong> <strong>the</strong> total<br />

discharge from both wetlands orig<strong>in</strong>ated as<br />

~mdwater irdlow. The discharge <strong>of</strong> groundwater<br />

was relatively rapid, however, and OBrien swrnieed<br />

that <strong>the</strong>re was <strong>in</strong>sufficient storage to ma<strong>in</strong>b<strong>in</strong><br />

perennial streandlow, While both red maple<br />

swamps were primarily zones <strong>of</strong> groundwater discharge,<br />

<strong>the</strong> Conant had wetland recharged <strong>the</strong><br />

~undwater system for 6 weeks <strong>in</strong> <strong>the</strong> late surnmer<br />

and early fall. Dur<strong>in</strong>g this dry period <strong>of</strong> <strong>the</strong><br />

year, <strong>the</strong> volume <strong>of</strong> groundwater recharge from <strong>the</strong><br />

wetland was several orders <strong>of</strong> magnitude greater<br />

than surface-water discharge.<br />

Low vertical permeability <strong>in</strong> <strong>the</strong> well-decompcrsed<br />

organic ssil at <strong>the</strong> Route 2 wetland caused<br />

artesian conditions to exist at that site for most <strong>of</strong><br />

<strong>the</strong> year; groundwater was prevented from discharg<strong>in</strong>g<br />

at <strong>the</strong> surface <strong>of</strong> <strong>the</strong> wetlmd by <strong>the</strong><br />

organic soils. High horizontal permeability <strong>in</strong><br />

<strong>the</strong>se soils allowed groundwater to discharge lat-<br />

erally along <strong>the</strong> edges <strong>of</strong> stream channels. Where<br />

<strong>the</strong> channels had cut through <strong>the</strong> entire organic<br />

deposit, expos<strong>in</strong>g <strong>the</strong> underly<strong>in</strong>g sands, groundwater<br />

discharge was considerable. The artesian pressure<br />

beneath <strong>the</strong> organic material was relieved by<br />

discharge <strong>of</strong> groundwater <strong>in</strong>to <strong>the</strong> stream channels<br />

<strong>in</strong>stead <strong>of</strong> to <strong>the</strong> wetland surface; consequently, <strong>the</strong><br />

surface was relatively dry dur<strong>in</strong>g much <strong>of</strong> <strong>the</strong><br />

grow<strong>in</strong>g season.<br />

Woo and Vdverde (1981) reported similar fmd<strong>in</strong>gs<br />

from a study <strong>of</strong> a perched red maple swamp<br />

<strong>in</strong> sou<strong>the</strong>rn Ontario. Dur<strong>in</strong>g 1 year <strong>of</strong> detailed<br />

hydrologic measurements, <strong>the</strong>y found that water<br />

Table 2.2. Gerzeral characteristics <strong>of</strong> red maple<br />

forested wetlands studied by O'Brien (1977).<br />

Route 2 Conant Road<br />

Feature<br />

-<br />

wetland<br />

-<br />

wetland<br />

-<br />

Surficial geology Glaci<strong>of</strong>luvial Till<br />

Wetland size @la) 85 72<br />

Watershed size (ha) 319 290<br />

Soila 1 m sapric 3 m hernic-fibric<br />

a Sapric refers to well-decompcpsed organic soil, while hemic and<br />

fibrir refer to moderately well decomposed and poorly<br />

decomposed organic soils, respectively.


<strong>in</strong> <strong>the</strong> 1-m-thick organic soils was rapidly depleted<br />

by evapotranspiration. Dur<strong>in</strong>g <strong>the</strong> study period<br />

(April to November), total evapotranspiration from<br />

<strong>the</strong> wetland was roughly equal to ra<strong>in</strong>fall, and<br />

streamflow out <strong>of</strong> <strong>the</strong> swamp was ma<strong>in</strong>ta<strong>in</strong>ed by<br />

streamflow <strong>in</strong>. Water storage <strong>in</strong> <strong>the</strong> peat was <strong>in</strong>sufficient<br />

to susta<strong>in</strong> flows <strong>in</strong> tributary channels<br />

throughout <strong>the</strong> year, but <strong>the</strong> swamp soils absorbed<br />

much <strong>of</strong> <strong>the</strong> ra<strong>in</strong>fall from summer storms, <strong>the</strong>reby<br />

temporarily ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g flow <strong>in</strong> some <strong>of</strong> <strong>the</strong> wetland<br />

streams.<br />

In light <strong>of</strong> <strong>the</strong> great variety <strong>of</strong> hydrogeologic<br />

sett<strong>in</strong>gs <strong>in</strong> which red maple swamps occur, <strong>the</strong><br />

results reported by O wen (1977) and Woo and<br />

Vdverde (1981) probably represent only a fraction<br />

<strong>of</strong> <strong>the</strong> hydrologic variability to be encountered <strong>in</strong><br />

this wetland type. The magnitude <strong>of</strong> <strong>the</strong> various<br />

components <strong>in</strong> <strong>the</strong> water budget <strong>of</strong> <strong>in</strong>dividual wetlands<br />

can be expected to vary with topographic and<br />

hydrogeologic sett<strong>in</strong>g, watershed size, soil composition,<br />

relative development <strong>of</strong> surface-water<br />

dra<strong>in</strong>age systems, and o<strong>the</strong>r site factors. Until<br />

detailed water-balance studies are conducted <strong>in</strong><br />

red maple swamps <strong>in</strong> a wide variety <strong>of</strong> sett<strong>in</strong>gs,<br />

relationships between <strong>the</strong>se wetlands and associated<br />

groundwater and surface-water systems can<br />

be described only <strong>in</strong> general terms.<br />

Water Regimes<br />

Def<strong>in</strong>itions and Key Churacterist ics<br />

The net result <strong>of</strong> all <strong>in</strong>flow and outflow <strong>of</strong> water<br />

to and from a wetland at any po<strong>in</strong>t <strong>in</strong> time is<br />

<strong>in</strong>dicated by <strong>the</strong> position <strong>of</strong> <strong>the</strong> water level <strong>in</strong> <strong>the</strong><br />

wetland. The elevation and degree <strong>of</strong> fluctuation <strong>of</strong><br />

<strong>the</strong> water table with respect to <strong>the</strong> land surface<br />

over time is referred to as <strong>the</strong> wetland's water<br />

regime (Golet and Lowry 1987). Because <strong>of</strong> <strong>the</strong><br />

wide variation <strong>in</strong> water levels among years <strong>in</strong><br />

many wetlands, water-regime descriptions are<br />

most mean<strong>in</strong>gful, particularly from an ecological<br />

standpo<strong>in</strong>t, when expressed as <strong>the</strong> condition to be<br />

expected <strong>in</strong> most years.<br />

Coward<strong>in</strong> et d. (1979) recognized eight nontidal<br />

water regimes, two <strong>of</strong> which accurately depict <strong>the</strong><br />

hydrologic conditions found <strong>in</strong> nor<strong>the</strong>astern red<br />

maple swamps Cfable 2.3). Most red maple forested<br />

wetlands located <strong>in</strong> bas<strong>in</strong>s and fed by<br />

groundwater as well as overland flow (i.e., groundwater<br />

depression wetlands) are seasonally flooded<br />

(see Fig. 2.6). The temporarily flooded regime occurs<br />

primarily <strong>in</strong> surface-water depression wet-<br />

Table 2.3. Water regimes <strong>of</strong> nor<strong>the</strong>usten red maple<br />

swamps.<br />

Water regime<br />

Def<strong>in</strong>ition<br />

Seasonally floodeda Surface water is present for extended<br />

periods, especially<br />

early <strong>in</strong> <strong>the</strong> grow<strong>in</strong>g season,<br />

but is absent by <strong>the</strong> end <strong>of</strong><br />

<strong>the</strong> season <strong>in</strong> most years;<br />

when surface water is absent.<br />

<strong>the</strong> water table is <strong>of</strong>ten near<br />

<strong>the</strong> land surface<br />

Temporarily floodeda Surface water is present for brief<br />

periods dur<strong>in</strong>g <strong>the</strong> grow<strong>in</strong>g<br />

season, but <strong>the</strong> water table<br />

usually lies well below <strong>the</strong><br />

soil surface for most <strong>of</strong> <strong>the</strong><br />

season<br />

Seasonally saturatedb The soil is saturated to <strong>the</strong> surface,<br />

especially early <strong>in</strong> <strong>the</strong><br />

grow<strong>in</strong>g season, but unsaturated<br />

conditions prevail by<br />

<strong>the</strong> end <strong>of</strong> <strong>the</strong> season <strong>in</strong> most<br />

years; surface water is absent<br />

except for groundwater seepage<br />

and overland flow<br />

-<br />

alld<strong>in</strong>ition accord<strong>in</strong>g to Coward<strong>in</strong> et al. (1979).<br />

b~ef<strong>in</strong>ition by <strong>the</strong> authors <strong>of</strong> this community pr<strong>of</strong>ile.<br />

lands and surface-water slope wetlands, where<br />

groundwater <strong>in</strong>flow is m<strong>in</strong>imal and overland flow<br />

or overbank flood<strong>in</strong>g by streams and lakes provides<br />

<strong>the</strong> pr<strong>in</strong>cipal source <strong>of</strong> water for <strong>the</strong> wetland.<br />

<strong>Red</strong> maple is found <strong>in</strong> temporarily flooded situations,<br />

but frequently <strong>the</strong> duration <strong>of</strong> flood<strong>in</strong>g and<br />

soil saturation at such sites dur<strong>in</strong>g <strong>the</strong> grow<strong>in</strong>g<br />

season is so brief that species better adapted to<br />

those conditions predom<strong>in</strong>ate. In sou<strong>the</strong>rn Rhode<br />

Island, for example, p<strong>in</strong> oak and swamp white oak<br />

commonly dom<strong>in</strong>ate <strong>the</strong> temporarily flooded zone<br />

<strong>of</strong> surface-water depression wetlands located <strong>in</strong><br />

till. On nor<strong>the</strong>astern stream floodpla<strong>in</strong>s, a variety<br />

<strong>of</strong> tree species, <strong>in</strong>clud<strong>in</strong>g silver maple, ashes, cottonwood,<br />

black willow, boxelder (Acer negundo),<br />

American elm, and sycamore, usually dom<strong>in</strong>ates<br />

<strong>the</strong> temporarily flooded zone, while red maple is<br />

found ma<strong>in</strong>ly <strong>in</strong> seasonally flooded depressions,<br />

where soils are saturated for longer periods. In<br />

rare <strong>in</strong>stances, red maple swamps located along<br />

tidal fresh rivers may be tidally <strong>in</strong>fluenced (e.g.,<br />

McVaugh 1958).<br />

<strong>Red</strong> maple swamps on hillsides fed by groundwater<br />

discharge (i.e., groundwater slope wetlands)<br />

are not flooded, <strong>in</strong> <strong>the</strong> strict sense, but are best


Fig, 23.6,Soasonally flmded red maple tlwamp. SurfRce w ~tr is present dur<strong>in</strong>g <strong>the</strong> dormant season and<br />

for <strong>the</strong> exrrly part af thc grow<strong>in</strong>g Reasoil <strong>in</strong> most years.<br />

dowrikad as rpre13~xxt<strong>in</strong>g <strong>the</strong> "saturated" water<br />

mgirrre <strong>of</strong> (lowardirx et ;ti. (1979), fiowcver,<br />

wabar-~>girnc> x~nr~tlifirr ww cievc'ioyx?cj primarily tx,<br />

ktddrerss ~pc;'rnxar~r?ntty sakurabd, r~o~iflcmded wet -<br />

lax~ds such RN bogs; fl~c:r~for~, it8 applicaLioll Lo<br />

hilleide suul>a sirid o<strong>the</strong>r ~xoxtflooclc-d w~tlntlds,<br />

wkprt3 tho mil is sattlrakd rnaillfy durixlg <strong>the</strong> emiy<br />

part <strong>of</strong> <strong>the</strong> vow<strong>in</strong>g Reason, is rxot t.rh,irc>ly satisfacbrye<br />

For this reaeon, WC? prefer to UT)C~ <strong>the</strong> kml<br />

"scasondly saturat~~c1" (Trltrlc 2.3) to dcscriba tho<br />

wnkr regime <strong>of</strong> tll~t*t.st* swamps (Fig. 2.4).<br />

Rltilough Ule t)rc)nd wnler regi1nc.s listed <strong>in</strong><br />

'rt~blo 2.3 are UBG~LI~<br />

for wetland c1ar;sific;ttioa and<br />

mappimrg, nlorr* precise, t ~~~~ltitativ~ 1~1e;tstlres <strong>of</strong><br />

water level activity arc xlt*~ded for cxnzllir~at~iorl <strong>of</strong><br />

<strong>the</strong> <strong>in</strong>fluences <strong>of</strong> hydroloo on <strong>the</strong> structure axrd<br />

funcliox~ri <strong>of</strong> red maple swm~ps. Some pert<strong>in</strong>ent.<br />

watxr level nleasures, whidl may be expressed on<br />

a grow<strong>in</strong>g sectson, sirumua1, or nlultiyear basis, <strong>in</strong>clude<br />

<strong>the</strong> follow<strong>in</strong>g: average wakr levels, water<br />

level fluctuation (i.e., range), frequency <strong>of</strong> flood<strong>in</strong>g,<br />

hydroperiod (Lo., duration <strong>of</strong> surfnee flooct<strong>in</strong>g),<br />

and flood-free period (i.e., duration <strong>of</strong> surface<br />

&awdomf. hecarate portrayal <strong>of</strong> a w~etlctnd"~<br />

wahr reghe requires measuremen& <strong>of</strong> such by-<br />

clrologic feat,ures dur<strong>in</strong>g a period <strong>of</strong> several years.<br />

Illnfortur~ntely, <strong>the</strong>se data are scarce for most wetland<br />

types <strong>in</strong> <strong>the</strong> United States, red maple<br />

swamps irrrluded.<br />

Water Levels ir-t Rho& Island <strong>Swamps</strong><br />

'I%e nrost extensive data on water regimes <strong>in</strong> red<br />

rnaple swamps come from two studies conducted<br />

<strong>in</strong> south en^ Rhode Island. In <strong>the</strong> first study, reported<br />

by Lowry (1984), water levels were monitux-od<br />

for 7 years <strong>in</strong> six relatively wet swamps<br />


$able 2+4. Soil dnz<strong>in</strong>uge classes jafier Wright and Sautter 2 979).<br />

-- -- --.- - - ----<br />

bmage class<br />

Characteristics<br />

--- -- - - -------- --<br />

Excessively dra<strong>in</strong>ed<br />

BrightIy colored; usually coarse-textured; rapid permeability; very low<br />

water-hold<strong>in</strong>g capacity; subsoil free <strong>of</strong> mottlesa<br />

Somewhat excessively dra<strong>in</strong>ed Brightly colored; ra<strong>the</strong>r sandy; rapid permeability; low water-hold<strong>in</strong>g<br />

capacity; subsoil free <strong>of</strong> mottles<br />

Well dra<strong>in</strong>ed<br />

Color usually bright yellow, red, or brown; dra<strong>in</strong> excess water readily,<br />

but conta<strong>in</strong> sufficient f<strong>in</strong>e material to provide adequate moisture for<br />

plant growth; subsoil free <strong>of</strong> mottles to a depth <strong>of</strong> at least 91 cm<br />

Moderately well dra<strong>in</strong>ed<br />

Generally any texture, but <strong>in</strong>ternal dra<strong>in</strong>age is restricted to some degree;<br />

mottles common <strong>in</strong> <strong>the</strong> lower part <strong>of</strong> <strong>the</strong> subsoil, generally at a depth <strong>of</strong><br />

46-91 cm; may rema<strong>in</strong> wet and cold later <strong>in</strong> spr<strong>in</strong>g; generally suited for<br />

agricultural use<br />

Somewhat poorly dra<strong>in</strong>ed Rema<strong>in</strong> wet for long periods <strong>of</strong> time due to slow removal <strong>of</strong> water;<br />

generally have a slowly permeable layer with<strong>in</strong> <strong>the</strong> pr<strong>of</strong>ile or a high<br />

water table; mottles common <strong>in</strong> <strong>the</strong> subsoil at a depth <strong>of</strong> 20-46 cm<br />

brly dra<strong>in</strong>ed<br />

Dark, thick surface horizons commonly; gray colors usuilly dom<strong>in</strong>ate<br />

subsoil; water table at or near <strong>the</strong> surface dur<strong>in</strong>g a considerable part <strong>of</strong><br />

<strong>the</strong> year; mottles frequently found with<strong>in</strong> 20 cm <strong>of</strong> <strong>the</strong> soil surface<br />

Very poorly dra<strong>in</strong>ed<br />

Generally thick black surface horizons and gray subsoil; saturated by<br />

high water table most <strong>of</strong> <strong>the</strong> year; usually occur <strong>in</strong> level or depressed<br />

sites and are frequently ponded with water<br />

"See <strong>the</strong> section on soils <strong>in</strong> this chapter for a discussion <strong>of</strong> <strong>the</strong> significance <strong>of</strong> mottlcs.<br />

detailed account <strong>of</strong> water level activity <strong>in</strong> seasonally<br />

flooded and seasonally saturated red maple<br />

swamps. The follow<strong>in</strong>g discussion <strong>of</strong> water levels<br />

is based on <strong>the</strong>ir f<strong>in</strong>d<strong>in</strong>gs.<br />

General Patterns<br />

Water levels <strong>in</strong> red maple swamps are highly<br />

dynamic; marked variations among seasons,<br />

years, and swamps are typical. Figure 2.7 shows<br />

<strong>the</strong> general pattern <strong>of</strong> water level activity <strong>in</strong> seasonally<br />

flooded red maple swamps, based on<br />

Lowry's (1984) study. From an annual high <strong>in</strong> <strong>the</strong><br />

spr<strong>in</strong>g (April-May), water levels at all six sites<br />

decl<strong>in</strong>ed to <strong>the</strong>ir lowest po<strong>in</strong>ts <strong>in</strong> late summer or<br />

early fall. The low po<strong>in</strong>t commonly occurred <strong>in</strong><br />

September, but ranged from July to October, depend<strong>in</strong>g<br />

on <strong>the</strong> amount and distribution <strong>of</strong> precipitation<br />

<strong>in</strong> <strong>the</strong> particular year. High water levels<br />

ranged from 20 cm above <strong>the</strong> surface to 20 cm<br />

below <strong>in</strong> most years, but low water levels were far<br />

more variable. In <strong>the</strong> wettest year <strong>of</strong> <strong>the</strong> study<br />

(1979), three <strong>of</strong> <strong>the</strong> swamps had water at or above<br />

<strong>the</strong> surface dur<strong>in</strong>g <strong>the</strong> entire measurement period<br />

(mid-April to mid-December); water levels at <strong>the</strong><br />

o<strong>the</strong>r sites rema<strong>in</strong>ed with<strong>in</strong> 30 cm below <strong>the</strong> surface<br />

<strong>in</strong> that year. In <strong>the</strong> driest years <strong>of</strong> <strong>the</strong> study<br />

(1980,1981), water levels at all sites dropped more<br />

than 50 cm below <strong>the</strong> surface, and at some sites a<br />

subsurface depth <strong>of</strong> 1 m was exceeded.<br />

Differences <strong>in</strong> water levels among sites were<br />

greatest at <strong>the</strong> end <strong>of</strong> <strong>the</strong> summer, when water<br />

levels were lowest (Fig. 2.7). The greatest differences<br />

were observed <strong>in</strong> <strong>the</strong> driest years. Lowry<br />

(1984) concluded that <strong>the</strong>se differences <strong>in</strong> low<br />

water levels resulted from differ<strong>in</strong>g amounts <strong>of</strong><br />

groundwater <strong>in</strong>flow at <strong>the</strong> various sites, a factor<br />

determ<strong>in</strong>ed by hydrogeologic sett<strong>in</strong>g and soil type<br />

(Bay 1967; OBrien 1977). In nearly every year,<br />

water levels were clearly <strong>in</strong>fluenced not only by<br />

total precipitation, but also by dist<strong>in</strong>ct wea<strong>the</strong>r<br />

patterns or unusual events (e.g., heavy ra<strong>in</strong>s associated<br />

with Hurricane Belle <strong>in</strong> August <strong>of</strong> 1976;<br />

exceptionally high ra<strong>in</strong>fall <strong>in</strong> May <strong>of</strong> 1978 and<br />

June <strong>of</strong> 1982; abnormally high, well-distributed<br />

ra<strong>in</strong>fall <strong>in</strong> 1979; and consistently low ra<strong>in</strong>fall<br />

throughout 1980 and 1981).<br />

Inspection <strong>of</strong> <strong>the</strong> water level hydrographs<br />

(Fig. 2.7) revealed that most <strong>of</strong> <strong>the</strong> sites studied by<br />

Lowry (1984) met <strong>the</strong> def<strong>in</strong>ition <strong>of</strong> seasonally<br />

flooded (Table 2.3), while <strong>the</strong> o<strong>the</strong>rs were seasonally<br />

saturated. The soils at all <strong>of</strong> those sites were<br />

very poorly dra<strong>in</strong>ed. In <strong>the</strong> transition-zone stud%<br />

all <strong>of</strong> <strong>the</strong> wetland stations-poorly dra<strong>in</strong>ed and<br />

very poorly dra<strong>in</strong>ed-were seasonally saturated;<br />

except for brief ra<strong>in</strong>fall events, surface water was<br />

absent dur<strong>in</strong>g <strong>the</strong> grow<strong>in</strong>g season <strong>in</strong> most years.<br />

Figure 2.8 provides a 3-year record <strong>of</strong> water<br />

levels at 2 <strong>of</strong> <strong>the</strong> 54 wetland stations monitored


Fig. 27. Water levels <strong>in</strong> six mode Island red maple swamps dur<strong>in</strong>g a ?-year perid. Annual precipitation values<br />

are shown <strong>in</strong> paren<strong>the</strong>ses. Mean annual precipitation for 1951-80 was 123.2 cm (data from Lowry 1W).<br />

i<br />

I ( I > < [ I l 9fJii l ~ cr<br />

i<br />

(~rowi:iij ' ; id ii)wir~ij I j C;row~ng j<br />

:(( ) I :,,~l-26b~~r~ ' seasor; , I season 1<br />

p'<br />

tll<br />

i !<br />

(1 J<br />

1 I<br />

(10 5 1') , (:[


dw<strong>in</strong>g <strong>the</strong> transition-zone study. The stations are<br />

<strong>of</strong> average water level activity <strong>in</strong> a<br />

very poorly dra<strong>in</strong>ed m<strong>in</strong>eral soil (Scarboro series,<br />

a Histic Wumaquept) and a poorly dra<strong>in</strong>ed m<strong>in</strong>eral<br />

soil (Walpole series, an Aeric Haplaquept). Although<br />

water levels at <strong>the</strong> two stations differed by<br />

30-60 cm, seasonal and annual patterns were<br />

similar. At both stations, <strong>the</strong>re were large variations<br />

between years <strong>in</strong> grow<strong>in</strong>g-season water levels;<br />

however, dormant-season water levels at each<br />

station were similar <strong>in</strong> <strong>the</strong> 3 years <strong>of</strong> observations.<br />

Mean monthly precipitation <strong>in</strong> sou<strong>the</strong>rn Rhode<br />

Island ranges from about 7.5 cm <strong>in</strong> June and July<br />

to 11.8 cm <strong>in</strong> March and November, while evapotranspiration<br />

ranges from 16.5 cm <strong>in</strong> July to<br />

essentially zero dur<strong>in</strong>g <strong>the</strong> dormant season Wniversity<br />

<strong>of</strong> Rhode Island Wea<strong>the</strong>r Station, K<strong>in</strong>gston).<br />

Monthly evapotranspiration is relatively<br />

constant from year to year. Thus, water level<br />

fluctuation with<strong>in</strong> each year is due primarily to<br />

seasonal variations <strong>in</strong> evapotranspiration rates,<br />

whereas yearly differences <strong>in</strong> water levels are<br />

caused by annual variations <strong>in</strong> precipitation. The<br />

response <strong>of</strong> water levels to annual variations <strong>in</strong><br />

precipitation <strong>in</strong> seasonally saturated swamps<br />

(Fig. 2.8) closely mirrored <strong>the</strong> response <strong>of</strong> water<br />

levels <strong>in</strong> <strong>the</strong> seasonally flooded swamps (Fig. 2.7).<br />

Grow<strong>in</strong>g-season precipitation was 41% above <strong>the</strong><br />

30-year mean <strong>in</strong> 1985, roughly equal to <strong>the</strong> mean<br />

<strong>in</strong> 1986, and 20% below <strong>the</strong> mean <strong>in</strong> 1987.<br />

S pecificc IFydrologic At tributes<br />

A comparison <strong>of</strong> data ga<strong>the</strong>red by Lowry (1984)<br />

and values generated by <strong>the</strong> Rhode Island transition-zone<br />

project (Table 2.5) <strong>in</strong>dicates that, dur<strong>in</strong>g<br />

a period <strong>of</strong> several years, grow<strong>in</strong>g-season water<br />

levels <strong>in</strong> Rhode Island red maple swamps averaged<br />

about 15-25 cm below <strong>the</strong> surface for very poorly<br />

dra<strong>in</strong>ed soils and 60 cm below <strong>the</strong> surface for<br />

poorly dra<strong>in</strong>ed soils. The extent <strong>of</strong> annual water<br />

level fluctuation varied widely among years, but<br />

was remarkably similar from one swamp to ano<strong>the</strong>r,<br />

particularly at Lowry's sites (Fig. 2.7). In<br />

both studies, water level fluctuation at <strong>in</strong>dividual<br />

sites ranged from less than 10 cm <strong>in</strong> wet years to<br />

more than 1.2 m <strong>in</strong> dry years. On <strong>the</strong> average,<br />

water levels fluctuated 35-50 cm each year <strong>in</strong> very<br />

poorly dra<strong>in</strong>ed soils and about 70 cm <strong>in</strong> poorly<br />

dra<strong>in</strong>ed soils. Water levels dropped more than<br />

80 cm below <strong>the</strong> surface at <strong>the</strong> majority <strong>of</strong> <strong>the</strong><br />

poorly dra<strong>in</strong>ed stations at some time each year.<br />

The duration <strong>of</strong> surface flood<strong>in</strong>g varied widely as<br />

well. At <strong>the</strong> seasonally flooded sites, surface water<br />

was present from late November or December <strong>in</strong>to<br />

June <strong>in</strong> most years. The ?-year mean hydroperiod<br />

at <strong>the</strong>se sites ranged from less than 1P/o to about<br />

50% <strong>of</strong> <strong>the</strong> grow<strong>in</strong>g season (Lowry 1984). At <strong>the</strong><br />

transition-zone sites, very poorly dra<strong>in</strong>ed soils had<br />

surface water less than 2% <strong>of</strong> <strong>the</strong> grow<strong>in</strong>g season,<br />

on <strong>the</strong> average, while poorly dra<strong>in</strong>ed soils were<br />

never flooded dur<strong>in</strong>g <strong>the</strong> 3-year study (Table 2.5).<br />

Table 2.5. Hydrologic characteristics <strong>of</strong> seasonally saturated soils from Rhode Isktnd red maple swamps<br />

dur<strong>in</strong>g <strong>the</strong> grow<strong>in</strong>g season (15 April-30 November) (data from Allen et al. 1989 and Department <strong>of</strong><br />

Natural Resources Science, University <strong>of</strong> Rhode Island, K<strong>in</strong>gston, unpublished data).<br />

POOL"!Y__~~.~~E~L~O~~<br />

Organic<br />

M<strong>in</strong>eral<br />

(n = 6)b (n = 19)~<br />

Poorly<br />

dra<strong>in</strong>ed soil<br />

(n = 141b<br />

Mean water level (em)<br />

(Range)<br />

Water level fluctuation (cm)<br />

(Range)<br />

Hydroperiod (To <strong>of</strong> grow<strong>in</strong>g season)<br />

Otange)<br />

Water level duration with<strong>in</strong><br />

30 cm <strong>of</strong> surface (To <strong>of</strong><br />

grow<strong>in</strong>g season)<br />

(Range)<br />

-22.4<br />

(-4.6 to -45.6)<br />

47.5<br />

(9 to 98)<br />

1.4<br />

(Oto 11.1)<br />

'~nsed on weekly measurements at three swa<strong>in</strong>ps dur<strong>in</strong>g 3 years.<br />

bn = total number <strong>of</strong> monitor<strong>in</strong>g stations st three study sites.


The duration <strong>of</strong> soil saturation has been shown<br />

to <strong>in</strong>fluence plant species distribution (Huffman<br />

and Forsy<strong>the</strong> 1981; Paratley and Fahey 19%) and<br />

soil morphology (Zobeck and Ritchie 1984; Evans<br />

and Franzmeier 1986). Because most <strong>of</strong> <strong>the</strong> tree,<br />

shrub, and herb mts <strong>in</strong> red maple swamps are<br />

located with<strong>in</strong> 30 cm <strong>of</strong> <strong>the</strong> ground surface, <strong>the</strong><br />

percentage <strong>of</strong> <strong>the</strong> grow<strong>in</strong>g season dur<strong>in</strong>g which <strong>the</strong><br />

water table is with<strong>in</strong> that zone may be <strong>of</strong> considerable<br />

significance. In <strong>the</strong> transition-zone study,<br />

water levels at <strong>the</strong> very poorly dra<strong>in</strong>ed stations<br />

were with<strong>in</strong> 30 cm <strong>of</strong> <strong>the</strong> surface for more than 7@/0<br />

<strong>of</strong> <strong>the</strong> grow<strong>in</strong>g season, on <strong>the</strong> average; at <strong>the</strong> poorly<br />

dra<strong>in</strong>ed stations, however, water levels were with<strong>in</strong><br />

that zone less than 1@/o <strong>of</strong> <strong>the</strong> time (Table 2.5).<br />

These figures might suggest that poorly dra<strong>in</strong>ed<br />

soils are too dry to support wetland vegetation;<br />

however, anaerobiosis (depleted oxygen conditions),<br />

not soil saturation, def<strong>in</strong>es <strong>the</strong> wetland soil<br />

environment. Arraerobiosis occurs when oxygen<br />

consumption by plants, soil microbes, and chemical<br />

rcactiona <strong>in</strong> <strong>the</strong> root zone exceeds oxygen diffusion<br />

f m <strong>the</strong> surface. Meeks and Stolay (1978) suggestod<br />

that when air-filled pores constitute less<br />

th~n 10-2096 <strong>of</strong> <strong>the</strong> total soil volume, many <strong>of</strong> <strong>the</strong><br />

rxarrow soil pore spaces become blocked by water,<br />

axld direct gas axchange with <strong>the</strong> atmosphere is<br />

elim<strong>in</strong>ated.<br />

In <strong>the</strong> %ode island transition-zone study, airfilled<br />

porosity at various soil depths was determ<strong>in</strong>ed<br />

through <strong>the</strong> use <strong>of</strong> field tensiorneters and<br />

cotnplementary laboratory studies (Allen 1989). Altxhough<br />

<strong>the</strong> water table at <strong>the</strong> poorly dra<strong>in</strong>ed statiom<br />

was with<strong>in</strong> 30 cm <strong>of</strong> <strong>the</strong> soil surface for only<br />

brief periods dur<strong>in</strong>g <strong>the</strong> grow<strong>in</strong>g season, air-filled<br />

prasities at EI depth <strong>of</strong> 30 cm were at or below 15%<br />

for 4% <strong>of</strong> <strong>the</strong> season (Table 2.6). As might be<br />

expct~d, average periods <strong>of</strong> restricted aeration <strong>in</strong><br />

<strong>the</strong> mot zone were longer at <strong>the</strong> very poorly dra<strong>in</strong>ed<br />

stntiorw (91.-TOe)D/o <strong>of</strong> <strong>the</strong> grow<strong>in</strong>g season). By cornparison,<br />

restricted aeration was evident at <strong>the</strong> 30-<br />

cxn depth for less than 15% <strong>of</strong> <strong>the</strong> grow<strong>in</strong>g season<br />

at %he somcwhat prly dra<strong>in</strong>ed and moderately<br />

well dra<strong>in</strong>ed (~xonwetland) stations adjacent to <strong>the</strong><br />

swamps.<br />

Soils<br />

Data compiled by <strong>the</strong> U.S. Soil Conservation<br />

Service (US. Soil Consewation Service National<br />

Hydric Soils and SQI-5 Data Bases, Iowa Stab<br />

Universit;y, Ames) <strong>in</strong>dicate that red maple oecws on<br />

over 200 hydlric (wetland) soil series or phases <strong>in</strong><br />

Table 2.6. Percentage <strong>of</strong> <strong>the</strong>grow<strong>in</strong>g season &r<strong>in</strong>g<br />

which air-filled porosity at a 30-crn depth was<br />

15% or less <strong>in</strong> soils fmm Rhode Island red maple<br />

swamps and adjacent upland forests, based on<br />

weekly measurements at three sites &lur<strong>in</strong>g 3<br />

years, 1985-1987 (data from Allen 1989).<br />

-- - - - - - - --- - -<br />

Brcentage <strong>of</strong><br />

-_~?-~-?%=on~-_<br />

Soil dra<strong>in</strong>age classb nL Mean Ranged<br />

<strong>Red</strong> maple swamps<br />

Very poorly dra<strong>in</strong>ed<br />

Organic soil 6 99.6 97.8-100.0<br />

M<strong>in</strong>eral soil 18 91.4 69.6-100.0<br />

Poorly dra<strong>in</strong>ed 14 49.4 17.4-88.0<br />

Upland forests<br />

Somewhat poorly<br />

dra<strong>in</strong>ed 7 13.0 7.5-24.7<br />

Moderately well<br />

dra<strong>in</strong>ed 9 3.8 2.2-6.5<br />

" 15 April t,t~rougtr 30 Novemhor.<br />

"~ct: 'l'ahlt: 2.4 for dra<strong>in</strong>age class def<strong>in</strong>itions.<br />

' n = ntrmbcr <strong>of</strong> snrnpl<strong>in</strong>g stnt,ions per soil category.<br />

Incl1idcs t,tlc! lowcst rirld highest %yefir percenbgns recorded<br />

at any str~t,ions <strong>in</strong> a particular soil category.<br />

<strong>the</strong> glaciated Nor<strong>the</strong>ast. The number <strong>of</strong> hydric soils<br />

on which red maple is <strong>the</strong> dom<strong>in</strong>ant tree is unknown.<br />

A few studies have described soil properties<br />

<strong>in</strong> red maple swamps specifically (Laundre 1980;<br />

Messier 1980; Huenneke 1982; Lowry 1984; Paratley<br />

and Fahey 1986; Sokoloski 1989), but <strong>in</strong> light<br />

<strong>of</strong> <strong>the</strong> great diversity <strong>of</strong> soils found <strong>in</strong> this wetland<br />

type, discussion <strong>of</strong> data from isolated studies would<br />

be <strong>in</strong>appropriate. This section outl<strong>in</strong>es <strong>the</strong> more<br />

general features <strong>of</strong> red maple swamp soils.<br />

Basic npes: Organic and M<strong>in</strong>eral<br />

Two basic categories <strong>of</strong> soils are found <strong>in</strong> red<br />

maple swamps: organic soils and m<strong>in</strong>eral soils.<br />

Organic soils, also known as Histosols, are readily<br />

identified by an organic surface layer at least 40 cm<br />

thick. M<strong>in</strong>eral soils have less than 40 ern <strong>of</strong> organic<br />

material on <strong>the</strong> surface. Organic material is soil<br />

material that is composed <strong>of</strong> at least 12-20% organic<br />

carbon (20-3590 organic matter) by weight<br />

(Soil Swey Staff 1990). Organic material is di-<br />

vided <strong>in</strong>to three categories-fibrie, hemic, and<br />

sapric-based on <strong>the</strong> degree <strong>of</strong> decomposition <strong>of</strong> <strong>the</strong><br />

plant tissues. In fibric material, three-fourths or<br />

more <strong>of</strong> <strong>the</strong> soil volume after rubb<strong>in</strong>g consists <strong>of</strong>


fibers. The diber content <strong>of</strong> sapric material<br />

&r mbbh is less than one-sixth <strong>of</strong> <strong>the</strong> soil volume.<br />

Hemic mahrial is <strong>in</strong>termediate <strong>in</strong> fiber content<br />

between fibric and sapric materials.<br />

Generally, <strong>the</strong> proportion <strong>of</strong> organic material <strong>in</strong><br />

a wetland soil is debrm<strong>in</strong>ed by soil temperature<br />

and <strong>the</strong> duration <strong>of</strong> anaerobic conditions, both <strong>of</strong><br />

which regulate microbial decomposition rates<br />

(Bowden 1987). In red maple swamps, where soil<br />

saturation is seasonal, anaerobic conditions wcur<br />

near <strong>the</strong> soil surface dur<strong>in</strong>g only a portion <strong>of</strong> <strong>the</strong><br />

grow<strong>in</strong>g season; organic matter is more readily<br />

decomposed dur<strong>in</strong>g aerobic periods. As a result, <strong>the</strong><br />

organic material <strong>in</strong> <strong>the</strong> soils <strong>of</strong> red maple swamps<br />

is predom<strong>in</strong>antly sapric (well decomposed) or, less<br />

commonly, hemic (moderately well decomposed).<br />

Often, sapric and hemic horizons alternate <strong>in</strong> <strong>the</strong><br />

same soil pr<strong>of</strong>ile (Lowry 19&1), suggest<strong>in</strong>g that a<br />

swamp's water regime may shift over time.<br />

Hydric Soil Dra<strong>in</strong>age Classes<br />

As noted previously, swamp soils also can be dist<strong>in</strong>guished<br />

by dra<strong>in</strong>age class. Descriptions <strong>of</strong> <strong>the</strong> basic<br />

soil draCnage classes appear <strong>in</strong> Table 2.4. In <strong>the</strong> glaciated<br />

Nor<strong>the</strong>ast, hydric soils <strong>in</strong>clude (1) very poorly<br />

dra<strong>in</strong>ed and p rly dra<strong>in</strong>ed soils where <strong>the</strong> water<br />

table lies with<strong>in</strong> 15-45 cm <strong>of</strong> <strong>the</strong> surface for more<br />

than 2 weeks dur<strong>in</strong>g <strong>the</strong> grow<strong>in</strong>g season, <strong>the</strong> m<strong>in</strong>imum<br />

depend<strong>in</strong>g on soil texture and permeability; ((2)<br />

somewhat p rly dra<strong>in</strong>ed soils that have a water table<br />

with<strong>in</strong> 15 cm <strong>of</strong> <strong>the</strong> surface for more than 2 weeks<br />

dur<strong>in</strong>g <strong>the</strong> grow<strong>in</strong>g season; and (3) soils that are<br />

hquently ponded or flooded for at least 7 consecutive<br />

days dur<strong>in</strong>g <strong>the</strong> grow<strong>in</strong>g season W.S. Soil Conservation<br />

Service 1991). As <strong>in</strong>dicated earlier, nor<strong>the</strong>astern<br />

red maple swamps have primarily very<br />

poorly dra<strong>in</strong>ed or poorly dra<strong>in</strong>ed soils. Very poorly<br />

dra<strong>in</strong>ed soils typically mur <strong>in</strong> seasonally flooded<br />

bas<strong>in</strong>s, although <strong>the</strong>y are sometimes found on slopes<br />

where groundwater <strong>in</strong>flow keeps <strong>the</strong> soil wet for<br />

extended periods dur<strong>in</strong>g <strong>the</strong> grow<strong>in</strong>g season. Pborly<br />

dra<strong>in</strong>ed soils are saturated seasonally, but seldom<br />

have stand<strong>in</strong>g surface water. A red maple swamp<br />

with both <strong>of</strong> <strong>the</strong>se soil dra<strong>in</strong>age classes is shown <strong>in</strong><br />

Fig. 2.9.<br />

Soil Type and Wetland Sett<strong>in</strong>g<br />

Unless <strong>the</strong> natural hydrology <strong>of</strong> a swamp has<br />

been altered, its soil type (organic or m<strong>in</strong>eral) is<br />

usually a direct <strong>in</strong>dication <strong>of</strong> relative site wetness.<br />

Fig. 29. Seasonally saturated red maple swamp conta<strong>in</strong><strong>in</strong>g poorly dra<strong>in</strong>ed Cforeground) and very poorly<br />

dra<strong>in</strong>ed (midgmuncl) soils. These wetlands are common along upland dra<strong>in</strong>ageways throughout <strong>the</strong><br />

glaciated Nor<strong>the</strong>ast.


Organic soils are always very poorly dra<strong>in</strong>ed, Hutton 1972). Mottl<strong>in</strong>g and gley<strong>in</strong>ig are most ob-<br />

V~OW<br />

while m<strong>in</strong>eral soils may occur <strong>in</strong> any dra<strong>in</strong>age <strong>in</strong> silty or clayey soils such as tho- that<br />

elass. As is <strong>the</strong> case with plant community compo- develop from till, glaci01acust;r<strong>in</strong>e deposits, or d-<br />

sition, <strong>the</strong> organic matter content <strong>of</strong> a soil changes luvium. M<strong>in</strong>eral horizons that develop from<br />

~~t<strong>in</strong>uo~rsly dong a moisture gradient. The wet- glaci<strong>of</strong>luvial material are usually relatively<br />

bat red maple swamps frequently have peat coarse. While mottl<strong>in</strong>g is not <strong>of</strong>ten apparent <strong>in</strong><br />

depths exceed<strong>in</strong>g 1 m; depths <strong>of</strong> more than 6 m smdy soils, organic matter may accumulate imhave<br />

been recorded m. A. Nier<strong>in</strong>g, Connecticut mediately below low-chroma horizons from which<br />

allege, New London, personal communication). it has been leached by water table fluctuation,<br />

Carlisle muck, a Typic Modisaprist with at least mark<strong>in</strong>g <strong>the</strong> position <strong>of</strong> <strong>the</strong> low-water table.<br />

1.3 m <strong>of</strong> organic material, is one <strong>of</strong> <strong>the</strong> most com- In Rhode Island, Sokoloski (1989) found that <strong>the</strong><br />

mon soil series <strong>in</strong> red maple swamps throughout presence <strong>of</strong> pale brown mottles (chroma 53) with<strong>in</strong><br />

<strong>the</strong> Nor<strong>the</strong>ast. <strong>Swamps</strong> with organic soils most 30-40 cm <strong>of</strong> <strong>the</strong> m<strong>in</strong>eral soil surface was a useful<br />

<strong>of</strong>ten occupy well-def<strong>in</strong>ed bas<strong>in</strong>s <strong>in</strong> <strong>the</strong> lowest <strong>in</strong>dicator <strong>of</strong> <strong>the</strong> upland limit <strong>of</strong> red maple swamps<br />

areas <strong>of</strong> <strong>the</strong> landscape, where <strong>the</strong>y are fed by <strong>the</strong> <strong>in</strong> sandy soils. Comprehensive field criteria for<br />

regional graundwabr system, as well as by sur- dist<strong>in</strong>guish<strong>in</strong>g wetland soils from upland soils are<br />

face run<strong>of</strong>f and streaxnflow <strong>in</strong> some cases. Cold air described <strong>in</strong> <strong>the</strong> Federul Manual for Identifi<strong>in</strong>g<br />

Bra<strong>in</strong>age <strong>in</strong>ta suck wetlands from surround<strong>in</strong>g and Del<strong>in</strong>eat<strong>in</strong>g Jurisdictional Wetlands (Federal<br />

upEarxd areas also contributes to reduced organic Interagency Committee for Wetland Del<strong>in</strong>eation<br />

matter decompositior~ rates. <strong>Swamps</strong> with m<strong>in</strong>- 1989).<br />

era1 soila generally occur at <strong>the</strong> edge <strong>of</strong> organic<br />

~wamps, on stream floodpla<strong>in</strong>s, or on hillsides<br />

Base Status and pH<br />

wtlero soil moisture is depleted earlier <strong>in</strong> <strong>the</strong> sum-<br />

Throughout most <strong>of</strong> <strong>the</strong> glaciated Nor<strong>the</strong>ast, <strong>the</strong><br />

mer by evijlpcltr&rrlspiration. Poorly dra<strong>in</strong>ed rn<strong>in</strong>soils<br />

<strong>of</strong> red maple swamps are acidic and low <strong>in</strong><br />

aral soil8 ustmijllly have surface organic matter<br />

available plant nutrients. Anaerobic decomposition<br />

acewnulnt.ionra <strong>of</strong> les~ than 20 cm; very poorly<br />

<strong>of</strong> organic material creates organic acids that may<br />

draixrt;d n~heral soils may have up tx, 40 cm.<br />

lower soil pH. The pH <strong>of</strong> wetland soils may be<br />

PFtysica 1 and Morpholagic Properties<br />

neutral or alkal<strong>in</strong>e <strong>in</strong> areas with high base saturation,<br />

where groundwater carries calcium and mag-<br />

Below <strong>the</strong> organic Itlyer <strong>in</strong> swamp soils <strong>the</strong>re nesium from <strong>the</strong> surround<strong>in</strong>g landscape to <strong>the</strong> wetis<br />

<strong>of</strong>bxr a dark gray or black highly organic m<strong>in</strong>- land. (Base saturation is <strong>the</strong> percentage <strong>of</strong> a soil's<br />

era1 horizon, followcd by <strong>in</strong>creas<strong>in</strong>gly lighter cation exchange capacity that is saturated with<br />

"I~w-~hron~~" ilorizo~ls, sorne <strong>of</strong> which also may exchangeable bases such as calcium and magnec~ntaiutr<br />

oranp or yellow "high-chroma" mottles sium.) Most <strong>of</strong> <strong>the</strong> glaciated Nor<strong>the</strong>ast is charac-<br />

(Tirmer and Venoman 19871. Mottles are streaks, terized by bedrock and surficial deposits with low<br />

sph, or bXstcEles differelit <strong>in</strong> color from <strong>the</strong> pre- baae content. These materials do not provide sufdamitlant<br />

color <strong>of</strong> <strong>the</strong> aaiI matrix. Pernlttnoxlt or ficient quantities <strong>of</strong> calcium and magnesium to<br />

saturation <strong>of</strong>ten produces bright-gray groundwater to neutralize or markedly raise <strong>the</strong><br />

a>r blue-p~ly. "gIsyod" horizons, whereas alternat- base content <strong>of</strong> <strong>the</strong> soils <strong>in</strong> red maple swamps.<br />

imlg saturation and aeration, caused by water Figure 2.10 identifies <strong>the</strong> major areas <strong>in</strong> <strong>the</strong><br />

table fluctuation, produces mottles. The depth to Nor<strong>the</strong>ast with high base saturation; <strong>the</strong>se are<br />

gley<strong>in</strong>~ or mottlixxg is one <strong>of</strong> <strong>the</strong> pr<strong>in</strong>lary criteria <strong>the</strong> areas most likely to have alkal<strong>in</strong>e wetland<br />

for tahe identificatiotl <strong>of</strong> bokh soil dra<strong>in</strong>age classes soils. Occasionally, even where wetland soils<br />

(Table 2.4) and hydpic soils @ederal Interagency form directly over calcareous materials such as<br />

Committee for Wetland Del<strong>in</strong>eation 1989). limestone or marl, <strong>the</strong> organic surface horizons<br />

The texture <strong>of</strong> m<strong>in</strong>eral horizons may vary may be acidic (hlalecki et al. 1983; Paratley and<br />

widely, from clay to coarse sand, depnd<strong>in</strong>g 011 <strong>the</strong> Fahey 1986). In such cases, m<strong>in</strong>eral-poor layers<br />

<strong>of</strong> <strong>the</strong> surficial deposit; from which <strong>the</strong> soil become functionally isolated from m<strong>in</strong>eral-rich<br />

formed. In some swamps, organic deposits are layers below, <strong>the</strong>reby affect<strong>in</strong>g nutrient avail-<br />

~rt.derla<strong>in</strong> by marl (calcium carbonat&) layers that ability and <strong>the</strong> floristic composition <strong>of</strong> <strong>the</strong> plant<br />

weere ori(g<strong>in</strong>ally deposited <strong>in</strong> freshwater. lakes (see community.


High soil base saturation<br />

Fig. 210. Major areas <strong>of</strong> <strong>the</strong> glaciated Nor<strong>the</strong>ast with high soil base saturation. These areas are depicted on <strong>the</strong><br />

Geneml Soil Map <strong>of</strong> <strong>the</strong> <strong>Glaciated</strong> Nor<strong>the</strong>astern United States (Smith 1984) as Alfisols or as Inceptisols with<br />

Eutrochrepts as <strong>the</strong> dom<strong>in</strong>ant soil map component. Soils with high base saturation occur <strong>in</strong> o<strong>the</strong>r parts <strong>of</strong> <strong>the</strong><br />

region as well, but are too limited <strong>in</strong> area t~ map at this scale.


Chapter 3. The Plant Community<br />

The two most fundamental aspects <strong>of</strong> <strong>the</strong> plarlt<br />

C~xnnlurrity <strong>in</strong> red maple swamps are community<br />

~LrucLure md floristic composition. Community<br />

sk;ructurc refers (x, <strong>the</strong> composition <strong>of</strong> <strong>the</strong><br />

plant cornnxunity <strong>in</strong> terms <strong>of</strong> vegetation height,<br />

density, percent cover, and similar characteristics,<br />

and *,he relative development <strong>of</strong> various life-form<br />

layers. Structure is <strong>of</strong> special importance beeatme<br />

<strong>of</strong> lts relation to certa<strong>in</strong> wetland functions<br />

and valaxea, such as wildlife habitat, flood flow<br />

ralteratioxr, and forcst biomass production. The<br />

floristic corrxposition <strong>of</strong> a swamp, like its structure,<br />

xrmy ba a valuable <strong>in</strong>dicator <strong>of</strong> <strong>the</strong> prevailirag<br />

water rugi~rrl;, nutrient ~t~t,us, microclimate,<br />

or land-use hletory. Changcs <strong>in</strong> ei<strong>the</strong>r species<br />

conlposition or structure over t,irne may reflect<br />

signifiearrt changos <strong>in</strong> <strong>the</strong>se or o<strong>the</strong>r enviranrrxcfrxtal<br />

conditions,<br />

B:scriyi,ioris <strong>of</strong> thc plant cornmwnity <strong>of</strong> northtaptst,arrx<br />

red tnaplo swm1q)s oomcb pritnarily from<br />

surveys <strong>of</strong> ~lakurrtl iwcsgs and preserves (C2oodw<strong>in</strong><br />

f 9/13; Nle~rixxg 1953; Nitx-<strong>in</strong>g rzr~d Goodw<strong>in</strong> 1962,<br />

151CiC.i; E:glcar and Nirtr<strong>in</strong>g 1'367, 1971; Kcrshner<br />

1915; Pr<strong>of</strong>ow and Imb 1984), st~t(~widt> wetla~xd<br />

survey8 (Metzirr 1982; T<strong>in</strong>er 1985, 1989b;<br />

MetzXer and T<strong>in</strong>i~r 291)2), research on green-tim-<br />

ber impoundments (Reed 1968; Golet 1969;<br />

Malecki et al. 1983), and studies <strong>of</strong> <strong>in</strong>dividual and<br />

<strong>of</strong>ten unusual swamps (Wright 1941; Baldw<strong>in</strong><br />

1961; Eaton 1969; Fosberg and Blunt 1970; Vogelmann<br />

1976). The most detailed floristic <strong>in</strong>formation<br />

has been ga<strong>the</strong>red <strong>in</strong> plant community surveysconducted<br />

asabasisforwetlandclassification<br />

or for purely descriptive purposes (Nichols 1915,<br />

1916; Conard 1935; Spurr 1956; Damman and<br />

Kershner 1977; Greller 1977; Messier 1980;Huenneke<br />

1982). The majority <strong>of</strong> <strong>the</strong>se surveys were<br />

carried out <strong>in</strong> Connecticut or on Long Island, New<br />

York. Only a few studies (Ca<strong>in</strong> and Penfound 1938;<br />

Vosburgh 1979; Laundre 1980; Braiewa 1983;<br />

Lowry 1984; Swift et al. 1984) have been designed<br />

specifically to exam<strong>in</strong>e some aspect <strong>of</strong> red maple<br />

swamp ecology Quantitative studies have been<br />

limited primarily to sou<strong>the</strong>rn New England (Anderson<br />

et al. 1980; Messier 1980; Braiewa 1983;<br />

Lowry 1984) and New York (Stewart and Merrell<br />

1937; Goodw<strong>in</strong> 1942; Huenneke 1982; Malecki<br />

et al. 1983; Paratley and Fahey 1986).<br />

Figures 3.1-3.5 illustrate some <strong>of</strong> <strong>the</strong> more cornnron<br />

members <strong>of</strong> <strong>the</strong> red maple swamp plant community.


Fig. 3.1. Common broad-leaved deciduous trees <strong>of</strong> nor<strong>the</strong>astern red maple swamps. See text and Table 3.3 for <strong>the</strong><br />

relative importance and occurrence <strong>of</strong> <strong>the</strong>se and o<strong>the</strong>r species <strong>in</strong> various sections <strong>of</strong> <strong>the</strong> glaciated Nor<strong>the</strong>ast.<br />

Draw<strong>in</strong>gs by A. Rorer.


.dar02f 'B Xi?<br />

s%u?mma -?sway+xqq p"1vpqB ayq JO 6~0!?3as snoImA u! salaads xayp puw asay? jo aaumam pua wuwpdvql<br />

a~!ppx aq? so$ g.g alqle& puw pq aaS ' sdm~s a ~ d pax ~ w rtra)maq1;[0u ja saaq pa~sal-apaaxx uot-q~ 7s "%!d


Fig. 3.3. Gammon shrubs <strong>of</strong> nor<strong>the</strong>astern red maple swamps. See text and Table 3.3 for <strong>the</strong> relative importance and<br />

occurrence <strong>of</strong> <strong>the</strong>se and o<strong>the</strong>r species <strong>in</strong> various sections <strong>of</strong> <strong>the</strong> glaciated Nor<strong>the</strong>ast. Draw<strong>in</strong>gs by A. Rorer.


Community S tructare<br />

<strong>Red</strong> maple swamps conta<strong>in</strong> as many as five<br />

dist<strong>in</strong>ct vegetation life-form layers: trees, sapl<strong>in</strong>gs,<br />

shrubs, herbs, and ground cover (Fig. 3.6). In this<br />

report,, trees axe considered to be woody plants at<br />

least 6 m tall (after Coward<strong>in</strong> et al. 1979), while<br />

sapl<strong>in</strong>gs are woody plants <strong>of</strong> tree form that are<br />

shorter than 6 m. In mature red mapIe swamps<br />

(i.e., those at least 40-50 years <strong>of</strong> age), <strong>the</strong> tree<br />

canopy typically forms a layer about 8 to 15 m<br />

above <strong>the</strong> forest floor. Sapl<strong>in</strong>g crow~ls axe most<br />

evident at a height <strong>of</strong> 3 to 6 m above <strong>the</strong> ground;<br />

however, at most sites, <strong>the</strong> sapl<strong>in</strong>g layer is <strong>the</strong> most<br />

paorly developed. The shrub layer <strong>in</strong>cludes woody<br />

plants that are us\lally less than 3 m tall. Shrub<br />

foliage is commonly dense and <strong>of</strong>ten extends to<br />

with<strong>in</strong> a mebr <strong>of</strong> <strong>the</strong> ground. The herb layer consists<br />

<strong>of</strong> nonwaody erect plants such as ferns,<br />

grasses, sedges, and broad-leaved herbs that are<br />

nomalIy less than 1.5 In tall. Bryophytes, clubnlusses<br />

(Ly@opOd<strong>in</strong>ceae), trail<strong>in</strong>g shrubs (e.g.,<br />

IZub~s hispidus, GiultFzria pmurntwns), and<br />

o<strong>the</strong>r law-grow<strong>in</strong>g plants fornr <strong>the</strong> ground cover<br />

layer. V<strong>in</strong>ee such as penbriers (Smiht spp.),<br />

Virg<strong>in</strong>ia creeper (Pnrth~noeissus quirzquefolia),<br />

and poisox~ ivy CbxWdro~z<br />

mdimns) also are<br />

a eonspicuou~ component <strong>of</strong> many red maple<br />

swanxps. he,<br />

shrub, and herb strata predom<strong>in</strong>ate<br />

<strong>in</strong> nm~t red maplo ewmlps, arid we will emphasize<br />

<strong>the</strong>se life forms <strong>in</strong> this report.<br />

'I'hc followixlg pamgraptls prrsent a description<br />

<strong>of</strong> pltnit community struct,\irc. <strong>in</strong> nor<strong>the</strong>astern red<br />

maple swamps. Studies on this topic have been few;<br />

most have been wnducted <strong>in</strong> sou<strong>the</strong>rn New England,<br />

New York, or New Jersey. While some <strong>of</strong> <strong>the</strong><br />

New Jersey sites lie outside <strong>the</strong> glaciated Nor<strong>the</strong>ast,<br />

Uley are <strong>in</strong>cluded hem because <strong>of</strong> <strong>the</strong>ir obvious<br />

similarity, both structurally and floristically, to<br />

swamps far<strong>the</strong>r north. Quantitative data from <strong>the</strong><br />

studies cited <strong>in</strong> this section <strong>of</strong>ten cannot be compared<br />

directIy because <strong>of</strong> differ<strong>in</strong>g def<strong>in</strong>itions <strong>of</strong> <strong>the</strong><br />

life forms sampled. Variations among sites <strong>in</strong> stand<br />

age, orig<strong>in</strong> (sprout vs. seedl<strong>in</strong>g), and environmental<br />

conditions such as water regime also confound comparisons<br />

among studies. Never<strong>the</strong>less, <strong>the</strong> follow<strong>in</strong>g<br />

data provide a general picture <strong>of</strong> community<br />

structure <strong>in</strong> severai areas <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>ast.<br />

Tree Layer<br />

Forested wetlands <strong>in</strong> <strong>the</strong> United States are generally<br />

characterized by high stem density, high<br />

basal area, and tree heights <strong>in</strong> excess <strong>of</strong> 10 m<br />

(Brown et d. 1979). Trees <strong>in</strong> nor<strong>the</strong>rn swarrlps<br />

(235' N latitude) tend to be shorter and to have<br />

lower basal areas than trees <strong>in</strong> sou<strong>the</strong>rn swamps,<br />

A review <strong>of</strong> structural data from mature nor<strong>the</strong>astern<br />

red maple swamps Fable 3.1) suggests<br />

that tree heights are comparable to those from<br />

o<strong>the</strong>r temperate, nonfloodpla<strong>in</strong> wetland forests<br />

(Brown et d. 1979), but tree density and basal area<br />

are co1*111lonly below average.<br />

Eieighta <strong>of</strong> red maple stands 30-100 years <strong>of</strong> age<br />

span a relatively narrow range. Stand heights reported<br />

from sou<strong>the</strong>rn New England and nor<strong>the</strong>ni<br />

I<br />

Fig. 3.6. Structural pr<strong>of</strong>ile <strong>of</strong> a seasonally flooded red maple swamp. Illustrated are tree (>6 m), sapl<strong>in</strong>g (3-6 m),<br />

(


New Jersey averaged 13-15 m (Table 3.1). This<br />

narrow range suggests that height growth <strong>in</strong> red<br />

maple is rapid dur<strong>in</strong>g <strong>the</strong> frrst 30-40 years and<br />

<strong>the</strong>n slows considerably Individual red maple trees<br />

may atta<strong>in</strong> heights exceed<strong>in</strong>g 25 m (Anderson et al.<br />

1980), but such specimens are not common.<br />

Stand density values reported for red maple<br />

swamps vary widely, depend<strong>in</strong>g upon <strong>the</strong> m<strong>in</strong>imum<br />

size <strong>of</strong> stems tallied @able 3.1). Stems at<br />

least 10 cm <strong>in</strong> diameter or at least 6 m tall number<br />

200-1,Cb00/ha (average usually 450-75Wa). Highest<br />

densities generally occur <strong>in</strong> young, sprout-orig<strong>in</strong><br />

stands (Braiewa 1983). Basal area values for<br />

nor<strong>the</strong>astern red maple swamps range from less<br />

than 12 m2/ha to more than 40 m2/ha. Lowest average<br />

values have been reported from Rhode Island,<br />

and highest values from New Hampshire and<br />

nor<strong>the</strong>rn New Jersey. Close <strong>in</strong>spection <strong>of</strong> Table 3.1<br />

Table 3.1. Structural characteristics <strong>of</strong> <strong>the</strong> tree layer <strong>in</strong> nor<strong>the</strong>astern red maple swamps.<br />

- --. - .- . - .<br />

No.<br />

Characteristic stands Meana 13angeb Conunent Source State<br />

Stand height<br />

(4<br />

Stand density<br />

(stems/ha)<br />

Basal area<br />

(m2/ha)<br />

Unpublished dataC<br />

Stand ages 32-55 years Braiewa (1983)<br />

Stand ages 55-105 years Lowry (1984)<br />

Merrow (1990)<br />

Swift et al. (1984)<br />

Taylor (1984)<br />

Meyers et d. (1981)<br />

DBH~ 2 10 cm<br />

Height 2 6 m<br />

Height 2 6 m<br />

DBH 2 4.1 cm<br />

DBH 2 2.5 cm<br />

DBH 2 10 cm<br />

DBH > 7.6 cm<br />

DBH > 2.5 cm; stand<br />

ages 46-104 years<br />

DBH > 2.5 cm; stand<br />

ages 50-100 years<br />

Lowry (1W)<br />

Memw (1990)<br />

Unpublished da&<br />

Braiewa (1983)<br />

Reed (1968)<br />

Taylor (1984)<br />

Meyers et al. (1981)<br />

Ehrenfeld and<br />

Gulick (1981)<br />

Ehrenfeld (1986)<br />

DBH 2 10 cm LO- (1984)<br />

Height 2 6 m<br />

Unpublished da&<br />

Height 2 6 m Memw (1990)<br />

<strong>Red</strong> maple portion <strong>of</strong> Paratley and<br />

conifer-hardwood swamp Fahey (1986)<br />

DBH > 10 cm<br />

DeGraaf and Rudis<br />

(lM)<br />

DBH 2 10 cm Taylor (1984)<br />

DBH 2 7.6 cm Meyers et al. (1981)<br />

DBH 2 2.5 crn<br />

EhrenfeId and<br />

DBH > 2.5 cm<br />

Gulick (1981)<br />

Ehrenfeld (1986)<br />

aAverage <strong>of</strong> stand means, except where n = 1.<br />

Range <strong>of</strong> stand means.<br />

Data from Rhode Island transition-zone study (see <strong>the</strong> section on hydrology <strong>in</strong> chapter 4).<br />

d~iarneter at breast height (1.4 m).<br />

Study conducted outside <strong>the</strong> glaciated Nor<strong>the</strong>ast.


suggesta a strong correlation between basal area<br />

and stand density.<br />

In mature red maple forested wetlands, canopy<br />

cover t:ommonly exceeds 80% (Miller and Getz<br />

1977a; Lowry 1984; Merrow 1990). Lower values<br />

are most likely <strong>in</strong> old stands where gaps have been<br />

created by tree mortality, <strong>in</strong> stands that have been<br />

logged or subjected to mnt hurricanes or o<strong>the</strong>r<br />

extreme wea<strong>the</strong>r evenb, and at sites too wet to<br />

support cont<strong>in</strong>uous forest cover.<br />

Shrub Layer<br />

Most red maple swrunps <strong>in</strong> <strong>the</strong> Nor<strong>the</strong>ast are<br />

characterized by a dense, well-developed shrub<br />

layer (Ehrenfeld and Gulick 1981; Lowry 1984;<br />

Ehrexdeld 1986). This stratum is typically dom<strong>in</strong>ated<br />

by broad-leaved deciduous shrubs 2-3 nx<br />

tall Figs. 2.3 and 2.6), but lower shrubs, v<strong>in</strong>es,<br />

sapl<strong>in</strong>gs, and tree seedl<strong>in</strong>gs may be preserit as<br />

well. Broad-leaved evergreexz shrubs, such its<br />

mounta<strong>in</strong> laurel (Kn t m<strong>in</strong> Iat ifolict), sheep lnurc4<br />

(X. a~mstifilia), and <strong>in</strong>kberry (Iler ghbm), com-<br />

pose a small percentage <strong>of</strong> <strong>the</strong> cover at soxne sit~s,<br />

axzd needlo-leaved evergreens, <strong>in</strong>ciud<strong>in</strong>g balsam<br />

fir and herican yew (nxus wrm&nsis), may be<br />

an important component <strong>of</strong> <strong>the</strong> understory <strong>in</strong><br />

some red maple swamps <strong>in</strong> nor<strong>the</strong>m New England.<br />

A unique, <strong>of</strong>ten monotypic, shrub stratum<br />

found <strong>in</strong> some sou<strong>the</strong>rn New England swamps is<br />

formed by great rhododendron (Rhododendron<br />

maximum), a broad-leaved evergreen that may<br />

reach heights <strong>of</strong> 5-6 m (Fig. 3.7). Where this species<br />

predom<strong>in</strong>atea, o<strong>the</strong>r shrubs and herbs usudly<br />

are scarce (Lowry 1984). While <strong>the</strong> shrub layer is<br />

well developed <strong>in</strong> most undisturbed red maple<br />

swamps, it may be practically nonexistent <strong>in</strong><br />

young forests that have developed directly from<br />

wet meadows without an <strong>in</strong>terven<strong>in</strong>g shrub stage<br />

(Fig. 3.8)) or <strong>in</strong> forests that are grazed by cattle.<br />

Shrub abundance may vary widely with<strong>in</strong> a<br />

swamp as well.<br />

Total shrub cover exceeds 50% <strong>in</strong> most red<br />

maple swamps, but reported values range from as<br />

low as 21°/0 to as high as W/o (Table 3.2). The<br />

extent <strong>of</strong> cover varies not only among swamps, but<br />

also among shrub height classes. Nearly all <strong>of</strong> <strong>the</strong><br />

dom<strong>in</strong>ant shrub species <strong>in</strong> red maple swamps<br />

range fro111 2 to 4 m <strong>in</strong> height at maturity; as a<br />

result, this height class constitutes <strong>the</strong> bulk <strong>of</strong> <strong>the</strong><br />

cover at most sites. In six mature Rhode Island<br />

swamps, for example, cover values for sapl<strong>in</strong>gs<br />

Fig. 3.7. <strong>Red</strong> maple swamp with understory dom<strong>in</strong>ated by mat rhodoc3eendron (R<br />

maximum).<br />

dran


growth form <strong>of</strong> <strong>the</strong> dom<strong>in</strong>ant shrub species. Species<br />

such as highbush blueberry (Vacc<strong>in</strong>ium coryntbosum),<br />

speckled alder (Alnus rugosa), and<br />

spicebush (L<strong>in</strong>dera benzo<strong>in</strong>) commonly grow <strong>in</strong><br />

. -<br />

clumps, produc<strong>in</strong>g stems that are large <strong>in</strong> diameter<br />

(<strong>of</strong>ten exceed<strong>in</strong>g 4 cm) but few <strong>in</strong> number,<br />

especially <strong>in</strong> old stands. Rhizomatous shrubs such<br />

as sweet pepperbush (Clethra alnifoZia), on <strong>the</strong><br />

o<strong>the</strong>r hand, generally have smaller stems but<br />

occur <strong>in</strong> very dense stands.<br />

The important contribution <strong>of</strong> <strong>the</strong> shrub stratum<br />

to <strong>the</strong> overall structure <strong>of</strong> <strong>the</strong> red maple<br />

swamp community can be seen by compar<strong>in</strong>g <strong>the</strong><br />

relative basal areas <strong>of</strong> shrubs and trees. In six<br />

Rhode Island swamps, shrubs composed from 32<br />

to 68% <strong>of</strong> <strong>the</strong> total basal area <strong>of</strong> woody stems;<br />

values averaged about 7 m2/ha for stems at least<br />

2.5 cm <strong>in</strong> diameter, and 8 m2/ha for smaller stems<br />

(Lowry 1984).<br />

Fig. 3.8. Young red maple forested wetland with a poorly<br />

developed shrub layer. This swamp was formerly a<br />

wet meadow dom<strong>in</strong>ated by tussock sedge (Carex<br />

stricta).<br />

(4-6 m), tall shrubs (1-4 m), and short shrubs<br />

(


Table 3.2. Stmtuml chumcteristics <strong>of</strong> <strong>the</strong> shrub and herb layers <strong>in</strong> nor<strong>the</strong>astern red maple swamps.<br />

No.<br />

Characteristic stands Meana b e b Source<br />

Shrub<br />

Cover (%) 6 6 3-16 Height 4-6 m bwr~ ( f RI<br />

73 53-93 Height 1-4 m ]LOW (1%) RI<br />

44 28-90 Height


<strong>Red</strong> maple swamp with an herb layer dom<strong>in</strong>ated<br />

by c<strong>in</strong>namon fern (Osmunda c<strong>in</strong>nammaa). This is <strong>the</strong><br />

most common species <strong>of</strong> fern <strong>in</strong> nor<strong>the</strong>astern<br />

swamps.<br />

(Table 3.3). At any s<strong>in</strong>gle site, however, a few species<br />

usually predom<strong>in</strong>ate. In <strong>the</strong> tree layer, <strong>the</strong><br />

average number <strong>of</strong> species recorded per swamp<br />

(sources <strong>in</strong> Appendix A) is about four (range 1-9).<br />

In sou<strong>the</strong>astern New England swamps, red maple<br />

alone may compose as much as 90% <strong>of</strong> <strong>the</strong> relative<br />

density and relative basal area (Lowry 1984). In<br />

o<strong>the</strong>r parks <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>ast, o<strong>the</strong>r tree species<br />

frequently are better represented.<br />

The shrub stratum <strong>in</strong> most red maple swamps<br />

consists <strong>of</strong> a small number <strong>of</strong> common species<br />

whose relative importance may vary widely from<br />

site to site (Little 1951; Ehrenfeld and Gulick<br />

1981; Braiewa 1983; Lowry 1984). The number <strong>of</strong><br />

species per site reported <strong>in</strong> <strong>the</strong> literature ranges<br />

from 1 to 15 (sources <strong>in</strong> Appendix A). Up to 28 species<br />

<strong>of</strong> shrubs and v<strong>in</strong>es have been found <strong>in</strong> <strong>in</strong>dividual<br />

red maple swamps fed by calcareous seepage<br />

(The Nature Conservancy, Boston, Mass.,<br />

unpublished data).<br />

As few as one to three species commonly make<br />

up <strong>the</strong> majority <strong>of</strong> <strong>the</strong> shrub stems <strong>in</strong> an <strong>in</strong>dividual<br />

swamp. In Rhode Island, for example, <strong>the</strong> relative<br />

density <strong>of</strong> sweet pepperbush averaged 53% (range<br />

3-91%) at n<strong>in</strong>e sites studied by Braiewa (1983) and<br />

Lowry (1984). This species dom<strong>in</strong>ates <strong>the</strong> shrub<br />

layer <strong>in</strong> many New Jersey red maple swamps as<br />

well (Ehrenfeld and Gulick 1981; Ehrenfeld 1986).<br />

Common w<strong>in</strong>terberry (Ikx verticillata) composed<br />

nearly 50% <strong>of</strong> <strong>the</strong> shrub stems sampled <strong>in</strong> two red<br />

maple swamps In central New York (Eleed 1968).<br />

At o<strong>the</strong>r sites, species such as highbush blueberry,<br />

Table 3.3. Flora <strong>of</strong> red maple swamps <strong>in</strong> <strong>the</strong> glaciated Nor<strong>the</strong>ast. Zone locations are shown <strong>in</strong> Ftg. 3.10.<br />

Species listed <strong>in</strong> <strong>the</strong> zone columns were reported from acidic swamps or swamps <strong>of</strong> unknown base<br />

status;plants listed <strong>in</strong> <strong>the</strong> calcareous column (C) were reported from swamps fed by calcareous seepage.<br />

Sources for this list are cited <strong>in</strong> Appendix A. Data for Zone Vare too few to be listed.<br />

- -- ----- -- - - --- - - - - --<br />

Zone<br />

- - ---- Zone<br />

Speciesa I I1 I11 IV C" SpeciesR I I1 I11 IV @"<br />

n888<br />

Abh balsrarnea ealsam fr)<br />

Aaer mgundo (boxelder)<br />

Acer mbrum (red maple)<br />

Acer sacchar<strong>in</strong>urn (silver maple)<br />

Aaer saccharum (sugar maple)<br />

Amelanchier arbom<br />

(downy serviceberry)<br />

Amlumhier aznodert9k<br />

(oblong-leaf serviceberry)<br />

Arnelanchier X <strong>in</strong>termedia<br />

(swamp shadbush)<br />

Betula alleghaniensis bellow<br />

birch)<br />

Betulu lenta (black birch)<br />

X X X X Betula papyrifem (paper birch)<br />

X X Betula populifolia (gray birch)<br />

X X X X X Carp<strong>in</strong>uscarol<strong>in</strong>iana(b1ue<br />

X X X beech)<br />

X X X X Carya cordiformis (bitternut<br />

hickory)<br />

X X Carya lac<strong>in</strong>iosa (big shellbark<br />

hickory)<br />

X X Calya ovata (shagbark hickory)<br />

Carya tomentosa (mockerraut<br />

X hickory)<br />

Chamaeqpnris thyodes<br />

X X X X X (Atlantic white cedar)<br />

X X X<br />

X X X X<br />

X X X X X


Table 3.3. Cont<strong>in</strong>ued.<br />

"- -- -<br />

Speciese<br />

Fagus gmndifoliu (American<br />

beech) X X X<br />

Fmx<strong>in</strong>w arnericana ( whi ash) X X X X X<br />

W<strong>in</strong>us nigm (black ash) X X X X<br />

Fmr<strong>in</strong>us pnnsylvank<br />

(green ash) X X X X<br />

Warnamelis uirg<strong>in</strong>ianu<br />

(American witch-hazel) X<br />

Juglam c<strong>in</strong>ema (buttornut) X<br />

Juglam n4gra (black walnut) X<br />

Juniperus uirg<strong>in</strong>iana (eastern<br />

red cedar) X X<br />

La& larich (tamarack) X X X X X<br />

Liquidambar stymifirm<br />

(sweet gum)<br />

X<br />

Lirimkndron tulipifcm<br />

Cyallow-poplar)<br />

X<br />

Magnolia virlp<strong>in</strong>iann (swr?et;t,tty) X<br />

NYSWZ sylvaticrz (black :kiturn) X X X<br />

Picees glam (white spruce) X<br />

PiCEYl nlar<strong>in</strong>ncr: @lack spruce) X X X X<br />

Pim rubcna (red spruce) X X X X<br />

P<strong>in</strong>m rigis2a (pitch p<strong>in</strong>e) X<br />

Firm.s strobus (white p<strong>in</strong>c) X X X X X<br />

Platanus omidc.nfaik (American<br />

eycamo~) X X<br />

hpufws &I~Q&.P (earatern<br />

cottonwood) X X X<br />

&pub gmndidFnt~tu<br />

(big-tooth aspen)<br />

X<br />

hpulus trnmtuloide~ (quak<strong>in</strong>g<br />

aspen) X X X X X<br />

Prunus seror<strong>in</strong>a (black cherry) X X X X<br />

Qtmxm.~ ulk (white oak) X X X<br />

Quem bhhr (awamp<br />

white oak) X X X X<br />

QURm CBCC~~W (scarlet oak) X<br />

C&errms irnbhrics (sh<strong>in</strong>gle oak) X<br />

Quew nemmrpa (moseycup<br />

oak) X S<br />

$$mms plwtris (p<strong>in</strong> oak) X X<br />

Qum-etu mbm (nort.hem red oak) X X<br />

Salzx nntyg&loidc.g (peach-leaf<br />

willow)<br />

X<br />

Salk n&m @lack willow) X X X<br />

Smaafms albi$um (sassafras) X<br />

Thuja midentalis (nor<strong>the</strong>rn<br />

white cedm) X X X X<br />

Tilia americam {herican<br />

basswood) X X X X<br />

TS;uga d .wk (-sash<br />

hemlock) X X X X<br />

Wmus ame- fhtericanelm) X X X X X<br />

Utmw mbnt (slippew elm) X X<br />

Erect ebb and wscldy v<strong>in</strong>es<br />

Ac~r ~mylvnnlcurr~ (strigxd<br />

maple) ?E<br />

Acer spicnrum (mount~<strong>in</strong> maple)<br />

A<strong>in</strong>us irmna (whit alder)<br />

Alnus ~ ~ W Z C I fspxkled . alder)<br />

X<br />

Alrtus sernrlnta &roobide alder) X<br />

Arnelanchier spp. (senicx&mics) X<br />

Amnk arbutifolia (red choke.<br />

hny)<br />

X<br />

Amnk m e h m m @lark<br />

chokebany)<br />

X<br />

Amnia pnrnifslta (purple<br />

choke^^)<br />

X<br />

Amnia spp. (ct1okeE~bmn~8)<br />

fkrkris th~~rafX?ai~ t$J11parie:'8~<br />

barberry)<br />

X<br />

U.1.rbm-ia. oulgaris (R21~~jl3~8481<br />

bmhll"~')<br />

X<br />

&tuh yunlzh (bog bwch) X<br />

Carp<strong>in</strong>us oc~rolrrr<strong>in</strong>nir (bltrt*<br />

keh)<br />

X<br />

Cclastn~s orbictrkrtrr (hum! ne<br />

bitterswetht)<br />

X<br />

Cclmtrars scnn&r~* (Arnrrlcan<br />

bitfemwe~bt) )i<br />

Celt& arichn<strong>in</strong>lts (Amoncan<br />

hacktmny)<br />

Cephalarztlrus olu.rtk-.ritafts<br />

(buttanbush)<br />

X<br />

Ckthrrz alnxfilm {swer*t<br />

pepprbuah)<br />

X<br />

Cornus oltr.rrxifoiacr (alt~rrlnt4.-<br />

leaf dogww>d 1<br />

C~omus anlornun? (silky do~mi)<br />

X<br />

Carrrw fwnx<strong>in</strong>a (at iff tiopcwd)<br />

tlonats stoloriifcm (mc3-osier<br />

dowd)<br />

x<br />

Corrius app. (dopmdsI<br />

Cc>ylus mrnt~fu {&.*caked<br />

Irazelnut)<br />

X<br />

Cmtm>p.e flahlhtrr (Ilcrwt!sorn) X<br />

Cnrttxgus qrp. (hrawtklurrzr j<br />

Plxv-tdla krrtlirna ( ~~urtl~cn~<br />

t>ush-txon~~.r~uckIt>) S<br />

(kyl~tssrrciu Er*nnta (b<strong>in</strong>&<br />

itticMebrry)<br />

X<br />

&yllrssac:<strong>in</strong> fmrrclawz (dnrqgt~-<br />

beny)<br />

X<br />

IIanzanelL vtrg<strong>in</strong>wna<br />

(Amerrcan witch-hazel 1 X<br />

I&x gta bn2 (<strong>in</strong>kbemy)<br />

X<br />

Ik;.x 1nt.t.wtn (smwth w<strong>in</strong>tertww)<br />

X<br />

1lg-x up~tcillatn (mmnaon<br />

w<strong>in</strong>tr?rbrhm)<br />

X<br />

Juniw~ mrn rntirzis (corasixaon<br />

juniper1<br />

X<br />

X X X X<br />

X X X X


Table 3.3. Cont<strong>in</strong>ued<br />

-- --- - -<br />

Kalmk wgmtijblicr (sheep laurel) X<br />

Kalmia latifilia (mounta<strong>in</strong> laurel) X<br />

W m gmenlandicum (Labrador<br />

tea)<br />

X<br />

Leucothoe mmosa (fetterbush) X<br />

L<strong>in</strong>dem benzo<strong>in</strong> (spicebush) X<br />

Lonicera diok (mounta<strong>in</strong><br />

honeysuckle)<br />

Lonioem tatarim (tartarian<br />

honeysuckle)<br />

Lyonia ligustr<strong>in</strong>a (maleberry) X<br />

Menispermum nrnadense<br />

(Canada moonseed)<br />

My& gale (sweet gale) X<br />

Myrica pensyluanim (nor<strong>the</strong>rn<br />

bayberry)<br />

X<br />

Nemopanthus mucroruzta<br />

(mounta<strong>in</strong> holIy)<br />

X<br />

Ostrya uirg<strong>in</strong>iarut (eastern hophornbeam)<br />

X<br />

Par<strong>the</strong>n~~issus qu<strong>in</strong>quefoliu<br />

(Virg<strong>in</strong>ia creeper)<br />

X<br />

Physomrpus opulifolius (eastern<br />

n<strong>in</strong>ebark)<br />

htentilla frutioosa (shrubby<br />

c<strong>in</strong>quefoil)<br />

Pnuuls uirg<strong>in</strong>iana (chokecherry) X<br />

Rhamnus alnifolia (alder-leaf<br />

buckthorn)<br />

Rhamnus nrthartica (common<br />

buckthorn)<br />

X<br />

Rhamnus fmngula @mopean<br />

buckthorn)<br />

X<br />

Rhamnus sp. (buckthorn)<br />

Rhododendron d m (rhodora) X<br />

Rhcddendron maximum (great<br />

rhododendron)<br />

X<br />

Rhodmkndmn periclymenoides<br />

(p<strong>in</strong>k azdea)<br />

X<br />

R-ndron uiscosum (swamp<br />

azalea)<br />

X<br />

Ribes americQnum (wild black<br />

cuppant)<br />

Ribes hirtellum (smooth<br />

gooseberry)<br />

Rib h t r e (bristly black<br />

currant)<br />

X<br />

Ribes triste (swamp red currant)<br />

Ribes spp. (currants)<br />

Rosa palwtris (swamp rose) X<br />

Rosa vig<strong>in</strong>iana (Virg<strong>in</strong>ia rose) X<br />

Rubus allegheniensis (sow-teat<br />

blackberry)<br />

X<br />

Rubus idaeus (red raspberry)<br />

Salk disoolor (pussy willow)<br />

Salk sericaa (silky willow)<br />

Salix spp. (willows)<br />

X<br />

-- Zone -<br />

X I III w cb<br />

SpeciesR<br />

Zone<br />

I - 11 111 IV cb<br />

- -- -- - - -<br />

Sambucus anadensis (conunon<br />

elderberry) X X X X X<br />

Smilax glam (cat greenbrier) X<br />

SmiIax hispida (bristly greenbrier) X<br />

Srn ilax mtundifoliu (common<br />

greenbrier)<br />

X<br />

Smilar tarnnoidcs (halberd-leaf<br />

greenbrier)<br />

X<br />

Spiraea latifolia (meadowsweet) X X X X<br />

Sp<strong>in</strong>rerr tomentosa (steeplebush) X X<br />

Staphyk trifolia (American<br />

biaddernut)<br />

X<br />

~dmis(American yew) X X X<br />

lbxicodendron radicans<br />

(poison ivy) X X X X<br />

?bricockndron rydbergii<br />

(Rydberg's poison ivy) X<br />

i'bx*ndmn uenzix (poison<br />

sumac) X X X<br />

Vi<strong>in</strong>ium coryrnbosunz (highbush<br />

blueberry) X X X X<br />

Vacc<strong>in</strong>iurn myrtilbides (velvetleaf<br />

blueberry)<br />

X<br />

Viburnum acerifolium (mapleleaved<br />

viburnum) X X<br />

Viburnum cass<strong>in</strong>oides (wi<strong>the</strong>rod) X X X X X<br />

Viburnum dentatum (sou<strong>the</strong>rn<br />

arrow-wood) X X<br />

Viburnum lantanaides (hobblebush)<br />

X<br />

Viburnum lentago (nannyberry) X X X X<br />

Viburnum opulus (guelder-rose)<br />

X<br />

Viburnum mgnitum (nor<strong>the</strong>rn<br />

arrow-wood) X X X X<br />

Viburnum triloburn (highbush<br />

cranberry)<br />

X<br />

Vitis lubrusca (fox grape) X<br />

Vitis ripria (riverbank grape) X<br />

Vitis uulp<strong>in</strong>a (frost grape)<br />

X<br />

Vitis spp. (grapes)<br />

X<br />

Zanthoxylum americunum<br />

(nor<strong>the</strong>rn prickly-ash)<br />

X<br />

Ferns, ciubmossee, and horsetails<br />

Adiantunz pedatun (nor<strong>the</strong>rn<br />

maidenhair fern) X X<br />

Athyrium filix-fern<strong>in</strong>a (lady fern) X X X X<br />

Cystopteris fmgilk (brittle fern) X<br />

Dennstaedtia punctilobula<br />

(hay-scented fern)<br />

X<br />

Dryopteris cristata (crested fern) X X X X<br />

Dlycpteris spirzu bsa fspi~ulose<br />

woodfern) X X X X X<br />

Dryopteris spp. (woodfern)<br />

X<br />

Equisetum arvense (field<br />

horsetail) X X<br />

Equiseturn fluviatile (water<br />

horsetail) X X X


Table<br />

__<br />

3.3.<br />

_<br />

Cont<strong>in</strong>ued<br />

._.lll.__ _<br />

._ -- - -----A.<br />

... Zone --<br />

Zone .-<br />

Speciesa I 11 I11 IV cb Speciesa I 11 1x1 W eb<br />

-<br />

-, .- . - -. - - - -. .- .. . .-"-"-,-.-p<br />

Epuisetum sylvaticum<br />

(woodland horsetail)<br />

X<br />

Lycopodium clavatun (runn<strong>in</strong>g<br />

p<strong>in</strong>e) X X<br />

Lyopodium complanatum<br />

(trail<strong>in</strong>g clubmoss) X X<br />

Lycopodiurn Eucidulum (sh<strong>in</strong><strong>in</strong>g<br />

clubmoss) X X<br />

Lycopodium obscurum (tree<br />

clubmoss) X X<br />

Lygodiurn palmaturn (climb<strong>in</strong>g<br />

fern)<br />

X<br />

Mattwia stmthwpteris (ostrich<br />

fern) X X X<br />

Onoclea sertsibilis (sensitive fern) X X X X X<br />

Osnzunda c<strong>in</strong>nanomea (c<strong>in</strong>naman<br />

fern) X X X X X<br />

Osmunda claytonir~rta (<strong>in</strong>terrupkd<br />

fern) X X X<br />

Osrnunrlaregulis(roya1fern) X X X X X<br />

Ptediurn aquil<strong>in</strong>um (bracken<br />

fern) X X<br />

Thcrlypteris novetmmnsis (New<br />

York fern) X X<br />

Thcr1ypteri.a simulata (Massachusetta<br />

fern)<br />

X<br />

m1ypteri.s <strong>the</strong>~yptero&s<br />

(marsh fen$ X X X X<br />

Woadwanlia arcolata (netbd<br />

cha<strong>in</strong>-fern)<br />

X<br />

Woodutardia virgirzia~(Virg<strong>in</strong>ia<br />

cha<strong>in</strong>-fen$ X X<br />

Cram<strong>in</strong>oids<br />

Agrapyron n?perzs (quackgrass) X<br />

Antjmmnthum odomtum (sweet<br />

vernal grass)<br />

X<br />

Bmmw cil<strong>in</strong>tua (fr<strong>in</strong>ged brome)<br />

X<br />

Bmchplytmm emtuna (grass) X<br />

Calant~rostis mna&nsis (bluejo<strong>in</strong>t<br />

grass) X X X<br />

Carex blunda (woodland sedge) X<br />

C~WX<br />

sedge)<br />

bmmoi&s firome-like<br />

X X<br />

Cam brunnescens (brownish<br />

sedge)<br />

X<br />

Cawx canescens (hoary sedge) X<br />

Cam cornosct (bearded sedge) X X<br />

Camx cr<strong>in</strong>ita (fr<strong>in</strong>ged sedge) X<br />

Carex disperma (s<strong>of</strong>t-leaf sedge) X<br />

X X<br />

X<br />

Carex flava ('yellow sedge)<br />

X<br />

Carer gmcillim {graceful dge) X X<br />

Carex gmyi (Gray's sedge)<br />

Carex hwei (Howek sedge) X<br />

X X<br />

Ca~x hysteric<strong>in</strong>a (porcup<strong>in</strong>e<br />

sedge)<br />

X<br />

Car= <strong>in</strong>terbr (<strong>in</strong>land sedge) X X X<br />

Cam <strong>in</strong>&mm@laddersed~) X X X<br />

Camx Iaczlstris (lakebank sedge) X X X<br />

Carex laxiculrnis (loose-culmed<br />

sedge)<br />

X<br />

Cam laxiflora (loose-flowered<br />

sedge)<br />

X<br />

Canex kptalea (bristly-stalked<br />

sedge) X X<br />

Cam lomhocar;pa (long-seeded<br />

sedge) X X<br />

Carex lupul<strong>in</strong>a (hop sedge)<br />

X<br />

Canex lurida (sallow sedge) X X<br />

Carex pensylvanka (Pennsylvania<br />

sedge)<br />

X<br />

Carex psetdoqperus (cyperuslike<br />

sedge)<br />

X<br />

Cam tvstmfa (beaked sedge) X<br />

Camx scoparia (po<strong>in</strong>ted broom<br />

sedge)<br />

X<br />

Carex seorsa (weak stellate<br />

sedge)<br />

X<br />

Carex stipb (crowded sedge) X X X<br />

Carex stricta (tussock sedge) X X X X<br />

Carex tenuifbm (spameflowered<br />

sedge) X X<br />

Camx tetank (rigid sedge)<br />

X<br />

Carex tribuloides (blunt broom<br />

sedge)<br />

X<br />

Cam trisprrna (three-seeded<br />

sedge) X X<br />

C<strong>in</strong>na arundilzcrcea (stout wood<br />

reedgrass) X X X<br />

C<strong>in</strong>na latifolia (slender wood<br />

reedgrass)<br />

X<br />

Ctadium marisaides (twig-rush) X<br />

Elo~charis pulustrk (creep<strong>in</strong>g<br />

spikerush)<br />

X<br />

Elyrnus virg<strong>in</strong>icus (wild rye)<br />

X<br />

Glyceria canadensis (rattlesnake<br />

manna grass)<br />

X<br />

Glyceria mairna (reed<br />

meadowgrass)<br />

X<br />

Glywria rntllicar<strong>in</strong> (melic<br />

nltlnna grass)<br />

X<br />

Glyeria obtusu (Atlantic manna<br />

grass)<br />

X<br />

Glpria steta (fowl manna grass) X X X<br />

Glyceria spp. (manna grasses)<br />

X<br />

Juncus emus (s<strong>of</strong>t rush) X X X X<br />

Leersia oryzoides (rice cutgrass) X X X<br />

Muhlenbergia glomemta (marsh<br />

muhfy)<br />

X<br />

.Panicurn capillare (witchgrass) X<br />

Phularis arund<strong>in</strong>- (reed<br />

canary grass) X X X<br />

Phragmites austmlis (common<br />

reed) X X<br />

Pea palustris (fowl bluegrass) X


Table 3.3. Cont<strong>in</strong>ued<br />

-- -- --p --<br />

Scirpus cyper<strong>in</strong>us (woolly bulrush)<br />

Scirpus micrc~nrpus (smallfruited<br />

bulrush)<br />

Forbe and trail<strong>in</strong>g shrubs<br />

Actaea rubm (red banebeny)<br />

Awrus alumus (sweet flag)<br />

Agemt<strong>in</strong>a altissima (white<br />

snakeroot)<br />

Alisma sp. (water pla<strong>in</strong>ta<strong>in</strong>) X<br />

Alliaria ptiolata (garlic mustard) X<br />

Amphicarpaw bmctata (hogpeanut)<br />

Anemone o a ~ m i(Canada<br />

s<br />

anemone)<br />

Anemone qu<strong>in</strong>quefolia (wood<br />

anemone)<br />

X<br />

Angelica atmpurpum (purplestemmed<br />

angelica)<br />

Apws amerimna (groundnut) X<br />

Amlia hispida (bristly<br />

sarsaparilla)<br />

Amliu nudicaulis (wild<br />

sarsaparilla)<br />

X<br />

Arisaemu triphyllum (swamp<br />

jack-<strong>in</strong>-<strong>the</strong>-pulpit)<br />

X<br />

Asckpias imrnata (swamp<br />

milkweed)<br />

Aster ncum<strong>in</strong>utus (whorled<br />

wood aster)<br />

X<br />

Aster divarieutus (white wood<br />

aster)<br />

X<br />

Aster lateriflorus (calico aster) X<br />

Aster rnacrvphyllus (largeleaved<br />

aster)<br />

X<br />

Aster novae-angliae mew<br />

England aster)<br />

Aster novi-belgii (New York aster) X<br />

Aster p~nanthoides (crookedstemmed<br />

aster)<br />

Aster punkus (swamp aster)<br />

Aster urnbellatus (flat-topped<br />

white aster)<br />

X<br />

Aster vim<strong>in</strong>aLs (small white aster)<br />

Aster spp. (asters)<br />

Baptisia australis (blue false<br />

<strong>in</strong>digo)<br />

Bartonia uirg<strong>in</strong>b (yellow<br />

screwstem)<br />

Bidena cem<br />

(nodd<strong>in</strong>g beggarticks)<br />

Bidem fmndosa (stick-tight<br />

beggar-ticks)<br />

Bidens spp. (beggar-ticks)<br />

Boehmeria cyl<strong>in</strong>drioz (false nettle)<br />

Calk pbtris (water arum)<br />

Caltha pnlustris (marsh marigold)<br />

Campanula apar<strong>in</strong>oides (marah<br />

belltlower)<br />

X<br />

Zone<br />

I1 111<br />

-- --<br />

Carriam<strong>in</strong>e bulbosa (bulbous<br />

bittercress)<br />

Cardam <strong>in</strong>e pemylvanica (Bmsylvania<br />

bittercress) X<br />

Carriam<strong>in</strong>e prutensis (meadow<br />

bittercress)<br />

Chelone glubm (turtlehead) X<br />

Chimaphikz macuhta (spotted<br />

w<strong>in</strong>tergreen)<br />

X<br />

Chrysosplenium americanum<br />

(golden saxifrage)<br />

X<br />

Cicuta bulbifem (bulb-bear<strong>in</strong>g<br />

water hemlock)<br />

X<br />

Cicuta macuhta (spotted water<br />

hemlock)<br />

C i m alp<strong>in</strong>a (small enchanter's<br />

nightshade)<br />

X<br />

Cirmz~.a lutetium (enchanter's<br />

nightshade)<br />

X<br />

Cirsium muticum (swamp thistle) X<br />

Cluytonia Virg<strong>in</strong>ia (spr<strong>in</strong>g beauty) X<br />

Clematis virg<strong>in</strong>ianu (virg<strong>in</strong>'sbower)<br />

X<br />

Clemati sp. (clematis)<br />

Cl<strong>in</strong>tonia bonrrlis (blue bead-lily) X<br />

Cl<strong>in</strong>tonia umbellulata (white<br />

cl<strong>in</strong>tonia)<br />

Conwsel<strong>in</strong>um ch<strong>in</strong>ense (hemlock<br />

parsley)<br />

Convolvulus spp. (b<strong>in</strong>dweeds) X<br />

Coptis trifolla (goldthread) X<br />

Comllorhiut tri* (nor<strong>the</strong>rn<br />

coralroot)<br />

Cornus anadensis (bunchberry) X<br />

Cuscuta compacta (compact<br />

dodder)<br />

X<br />

Cypripedium mule (p<strong>in</strong>k lady's<br />

slipper)<br />

X<br />

Cypripedium calceolus kellow<br />

lady's slipper)<br />

Cypripedium regime (showy<br />

lady's slipper)<br />

Decodon uerticillatus (swamp<br />

loosestrife)<br />

X<br />

Dwscom uillosa (wild yam) X<br />

Drvsem <strong>in</strong>termedia (spoon-leaf<br />

sundew)<br />

Epigaea repens (trail<strong>in</strong>g arbutus) X<br />

Epilobium hirsutum (great hairy<br />

willow-herb)<br />

Epibbium Eeptnphyllvrn (l<strong>in</strong>earleaf<br />

willow-herb)<br />

Epilobium palustre (mmh<br />

willow-herb)<br />

X<br />

Epilobium sp. (willow-herb)<br />

Erythmniurn umbilicatum<br />

(trout lily)<br />

-- Zone<br />

11 111


Table 3.3. Cont<strong>in</strong>ued.<br />

. * - __.. ^.~-_<br />

Zone - -- kne -.<br />

Speciesa I 11 I11 IV cb SpeciesR I I1 111 IV cb<br />

Eupatoriadelphus dubiw<br />

(joe-pye weed) X X<br />

Eupatortadelphus maeulatu<br />

(spotted joe-pye weed) X X X<br />

Eupatoriadelphus sp. Cjoe-pye<br />

weed)<br />

X<br />

Eupatorium perfoliutum<br />

(common boneset) X X X X<br />

Fmgaria vaca (woodland<br />

strawberry)<br />

X<br />

Fmgaria virg<strong>in</strong>iana (common<br />

strawberry) X X X<br />

Calium apar<strong>in</strong>e (cleavers) X<br />

Galiurn asprellurn (rough<br />

bedstraw)<br />

X<br />

Galiurn triflorurn (fragrant<br />

bedstsaw) X X<br />

Caliurn spp. (bedstxaws) X X<br />

Gnul<strong>the</strong>riapnxumbens (teabeny) X X<br />

Gentiaruz sp. (gentian)<br />

X<br />

@mnium maculaturn (wild<br />

geranium) X X<br />

Gum canaderne c whit^ avens) X X X<br />

Geum rival& (water avem) X X X<br />

Geum sp. (avens)<br />

X<br />

Hydmtyle arnericana (water<br />

pennywort)<br />

Hydmphylhm d r m &road-<br />

X X<br />

leaved waterleaf)<br />

X<br />

Nydmphyllurn ui&nianum<br />

(Virg<strong>in</strong>ia wahrleaf)<br />

x<br />

IIypricum dmtieulatum<br />

(coppery St. John's-wort)<br />

X<br />

Zmpatiem capmis (spotted<br />

touch-me-not) X X X X X<br />

lmpaticns pall& (pale touchme-not)<br />

X X<br />

Iris versicolor (blue flag) X X X<br />

LrtCtlua canademk (tall wild<br />

lettuce)<br />

X<br />

Laporttirz &mi.. (wood nettle) X X<br />

kthyrus: palustris (vetchl<strong>in</strong>g) X<br />

Lilium a d m e (Canada lily)<br />

X<br />

Lilium philadelphicum (wood lily) X<br />

Lilium superburn (Turk's-cap Lily) X<br />

Liyaris loeselii (fen orchid)<br />

X<br />

hhlia az*lis (card<strong>in</strong>al flower) X X<br />

hbelkz siphilitica (great blue<br />

lohlia)<br />

X<br />

Ludwigtez plustris (water<br />

purslane)<br />

X<br />

Lycopus amrimnus (?Lxericaa<br />

bugleweed)<br />

X<br />

Lycopus ntkllus (gypsywort) X<br />

Lycopus uniflorus (nodhem<br />

bugleweed) X X )E<br />

Lyoopus viig<strong>in</strong><strong>in</strong>w: (Virg<strong>in</strong>is<br />

bugleweed) X X<br />

Lyqw sp. (buglerweed)<br />

X<br />

Lysimachia ciliuta (fk<strong>in</strong>ged<br />

loosestrife) X X X<br />

Lysirnachia nurn~nularia<br />

(moneywort)<br />

X<br />

Lysimachia quadrifolia (whorled<br />

loosestrife)<br />

X<br />

Lysimachia terrestris (swamp<br />

candles) X X X<br />

Lysimachia thyrsiflora (tufted<br />

loosestrife) X X X<br />

Lythrurn salioaria (purple<br />

loosestrife) X X<br />

Maian<strong>the</strong>rnum canaderne (wild<br />

lily-<strong>of</strong>-<strong>the</strong>-valley) X X X X X<br />

Maluxis rnonophyllus (white<br />

adder'a-mouth)<br />

X<br />

Medmln uirg?niana (Indian<br />

cucumber root) X X X<br />

Mentha aivcnsis (field m<strong>in</strong>t) X<br />

Mtntha spicazta (spearm<strong>in</strong>t)<br />

X<br />

Mikankz smndens (climb<strong>in</strong>g<br />

hempweed) X X X<br />

Mitchclla mpns (partridgeberry) X X X<br />

Mitella diphyllu (two-leaved<br />

rnihrwort) X X<br />

Mitella nudu (naked miterwort) X X<br />

Moehr<strong>in</strong>gia lateriflorn (grove<br />

sandwort) X X X<br />

Mom& didyrna (bee-balm) X<br />

Morzotropcr unifim (Indian pipe) X<br />

Myosotis scorpwidcs (true<br />

forget-me-not)<br />

X<br />

Oxulis sp. (wood sorrel)<br />

X<br />

Panax trifotius (dwarf g<strong>in</strong>seng)<br />

X<br />

Pcdicularis canadensis (early<br />

wood lousewort)<br />

X<br />

Pedicularis lanmlata (swamp<br />

lousewort) X x<br />

&ltardra virg<strong>in</strong>im (arrow arum) X X<br />

Penthorum sedo&?s (ditch<br />

stonecrop)<br />

Petmites palmatus (sweet<br />

coltsfoot)<br />

Pilea punzila (cleanweed) X X<br />

Platant1zt.m clauellata (small<br />

woodland orchid)<br />

X<br />

Platan<strong>the</strong>m gmndifIara (large<br />

purple-fr<strong>in</strong>ged orchid) X<br />

Platan<strong>the</strong>m psycodes (small<br />

p~.rrple-fr<strong>in</strong>g~d<br />

Podaphyllum peltaturn wayapple)<br />

Polyganatum biflorum<br />

X<br />

(Solomon's seal)<br />

X<br />

Polygonaturn pubescens (hairy<br />

Solomon's seal)<br />

X<br />

orchid) X X<br />

X<br />

X


Table 3.3. Cont<strong>in</strong>ued<br />

-___- --- --- -- -- -- - - ----- -<br />

-- - &?E% Zone<br />

~~ecies" I I1 111 IV 6" SpeciesR<br />

I<br />

-- - -- - -<br />

-- ----<br />

hlygonum arifolium (halberd-<br />

Solhgo gigantea (giant<br />

leaved tearlhumb) X X goldenrod)<br />

X<br />

fblygonurn punctatum (dotted<br />

Solidago patula (rough-leaved<br />

amartweed) X X<br />

goldenrod) X X<br />

fblygonurn sagittatum (arrow-<br />

Solidago mgosa (wr<strong>in</strong>kled<br />

leaved tearthumb) X X X goldenrod) X X<br />

hlygonum vi,rg<strong>in</strong>ianurn<br />

Soldago uligimsa (bog<br />

(Virg<strong>in</strong>ia knot-weed)<br />

X<br />

goldenrod) X X<br />

fbtentillu canad<strong>in</strong>sis (dwarf<br />

Solidago spp. (goldenrods) X X<br />

c<strong>in</strong>quefoil)<br />

X<br />

Spuganiurn spp. (bur-reeds) X X X<br />

fitentilla simpler (common<br />

Sphenopholis pensylvanica<br />

c<strong>in</strong>quefoil)<br />

X<br />

(swamp oats)<br />

X<br />

Pwnun<strong>the</strong>s trifoliata (gall-<strong>of</strong>-<br />

Streptopus amplexifolius<br />

<strong>the</strong>-earth)<br />

X<br />

(twisted-stalk)<br />

'X<br />

h m t h sp. (rattlesnake root) X X Streptopus roseus (rosy<br />

Prunellu vulgaris (heal-all)<br />

X<br />

Pymla asarifolia (p<strong>in</strong>k w<strong>in</strong>ter-<br />

@-en)<br />

Ranunculus abortivus (hdney-<br />

X<br />

leaf buttercup)<br />

X<br />

Ranunculus acris (common<br />

buttercup)<br />

X<br />

Ranunculus recumatus (hooked<br />

buttercup)<br />

X<br />

Ranunculus septentrionalk<br />

(swamp buttercup) X X X<br />

Ru&u.s flagellark is(pridkly de-) X<br />

&bus hispidus (bristly dewberry) X X X X<br />

Ru bus pubescens (dwarf<br />

blackberry) X X X<br />

Rudkkia lac<strong>in</strong>iata (green-<br />

headed coneflower)<br />

X<br />

Rumex verticilhtus (swamp<br />

dock)<br />

X<br />

Sangu<strong>in</strong>ariu oanadensis (bloodroot) X<br />

Sarmenia pupurea (nor<strong>the</strong>rn<br />

pitcher plant)<br />

X<br />

Saurunts aemuus (lizard$ tail) X<br />

Scucifmga pensylvanica (swamp<br />

saxifrage) X X X<br />

Scutellariu galericLLluta (hooded<br />

skullcap) X X<br />

Scutellaria lateriflorn (mad-dog<br />

skullcap) X X X<br />

Scutellaria sp. (skullcap)<br />

X<br />

Senecw WEUS (golden ragwort) X X X<br />

Sisyr<strong>in</strong>chium sp. (blue-eyed grass) X<br />

Sium suave (water parsnip)<br />

X<br />

Smilac<strong>in</strong>u memosa (false<br />

Solomon's seal) X X X X<br />

Smilac<strong>in</strong>u stellata (starry false<br />

Solomon's seal)<br />

X<br />

Smilax herbacea (carrion-flower) X X<br />

Solanun duEazmm (bittersweet<br />

nightshade) X X X X<br />

Solidago altissima (tall<br />

goldenrod)<br />

Solidago cunadensis (Canada<br />

goldenrod)<br />

X<br />

X<br />

XI I11 lv cb<br />

twisted-stalk)<br />

X<br />

Symplocarpus foetidus<br />

(skunk cabbage) X X X<br />

Thalictmm dwicum (early<br />

meadow-rue) X X<br />

Thulictmm pubescens (tall<br />

meadow-rue) X X X X<br />

Thalictmm sp. (meadow-rue)<br />

X<br />

Tiurella cvrdifolia (foamflower) X<br />

Triadenum virg<strong>in</strong>icum (marsh<br />

St. John's-wort) X X<br />

Trientalis borealis (starflower) X X X X<br />

Trillium cernuum (nodd<strong>in</strong>g<br />

trillium) X X<br />

Trillium emtum (purple<br />

trillium)<br />

X<br />

Trillium gmndifloru m (largeflowered<br />

trillium)<br />

X<br />

Trillium undulutum (pa<strong>in</strong>ted<br />

trillium)<br />

X<br />

Trillium spp. (trilliums)<br />

X<br />

Trollius larus (globeflower)<br />

X<br />

Typha lutifolia (broad-leaved<br />

cattail) X X X X X<br />

UrtiGa dioim (st<strong>in</strong>g<strong>in</strong>g nettle) X X<br />

Uvularia sessilifolia (sessile-<br />

leaved bellwort)<br />

X<br />

Vacc<strong>in</strong>ium macrocarpon (large<br />

cranberry)<br />

X<br />

Vemtrum vi* (false hellebore) X X X X<br />

Verrwniu sp. (ironweed)<br />

X<br />

Vwia blanda (sweet white violet) X<br />

Vwla brlttoniana @rit"conts violet) X<br />

Vwh conspersa (dog violet) X<br />

Vwla cucullata (marsh blue violet) X X<br />

Vwh <strong>in</strong>cognita (large-leaved<br />

violet)<br />

X<br />

Vwh pallens (nor<strong>the</strong>rn white<br />

violet)<br />

X X<br />

Vwla pupilionacea (common<br />

blue violet) X X<br />

Zizia aurea (golden alexanders) X X


Zone<br />

I II III TV C"<br />

Drppnmriad* sp.<br />

Eiypnum spp.<br />

1,eurnbryunz gluuarn<br />

Mrttunt rrff<strong>in</strong>e<br />

Mnrurn c<strong>in</strong>cllclmt&s<br />

Mnkum hc~nrurn<br />

Mniurtt ~~urtctutum<br />

Phibnotw fortturn<br />

Pfcumriunz sdzmhn<br />

Potystkhum mrwtiChO&?s<br />

hlytrichum sp.<br />

Sphagnum wpidntunz<br />

Sphgnurn firnbr<strong>in</strong>turrz<br />

Sphymum fusmnz<br />

Sphagnunr pulustn~<br />

Sphugrzum terns<br />

Termphis pllucidu<br />

Thuicliurn deliccttulum<br />

Livesvro~<br />

Antkern h v b<br />

hzzanik En'lobta<br />

Cepl~acrlsr<strong>in</strong> clonrxivens<br />

Conocepimlum mimm<br />

Mw~kia hibemica<br />

&ltM epiphyllu<br />

Lichens<br />

Cludim epp.<br />

"'~t~xu~rnrrrr~<br />

Phrlf rVtrrnr,ti ([I<br />

<strong>of</strong> vr~nctrlar pl:trxt?i ricrordr11~ to t l i r b h'rrl~orrtrl f,r.qE rrf Sc~rantrfi


Key:<br />

Zone I:<br />

Zone II:<br />

Zone ill:<br />

Zone IV:<br />

Zone V:<br />

Sou<strong>the</strong>rn New England Upland, Seaboard Lowland, and Coastal Pla<strong>in</strong><br />

P?<br />

Great Lakes and <strong>Glaciated</strong> Allegheny Plateau<br />

i v l<br />

Fig. 3.10. Zones depict<strong>in</strong>g variation <strong>in</strong> floristic composition and relative abundance <strong>of</strong> red maple swamps <strong>in</strong> <strong>the</strong><br />

glaciated Nor<strong>the</strong>ast.<br />

<strong>the</strong> species' geographic range. Characteristic species<br />

for each zone are described below.<br />

Two special types <strong>of</strong> swamps that may be found<br />

<strong>in</strong> more than one floristic zone are calcareous<br />

swamps and transitional swamps. These are<br />

briefly described follow<strong>in</strong>g <strong>the</strong> descriptions <strong>of</strong><br />

zones.<br />

Zone I. Sou<strong>the</strong>rn New England Upland,<br />

Seabuard Lowland, and Coastal Pla<strong>in</strong><br />

<strong>Red</strong> maple swamps are most abundant <strong>in</strong> zone<br />

I, which <strong>in</strong>cludes Rhode Island, Connecticut, all <strong>of</strong><br />

Massachusetts except for <strong>the</strong> Berkshire Wills,<br />

sou<strong>the</strong>rn New Hampshire, sou<strong>the</strong>astern Vermont,<br />

sou<strong>the</strong>rn Ma<strong>in</strong>e, Long Island and a small part <strong>of</strong><br />

<strong>the</strong> sou<strong>the</strong>astern section <strong>of</strong> New York State, and<br />

nor<strong>the</strong>rn New Jersey (Fig. 3.10). The abundance<br />

<strong>of</strong> <strong>the</strong>se wetlands peaks <strong>in</strong> sou<strong>the</strong>rn New England<br />

east <strong>of</strong> <strong>the</strong> Connecticut River valley and <strong>in</strong> New<br />

Jersey; <strong>the</strong>y are somewhat less abundant to <strong>the</strong><br />

north and west. GIaci<strong>of</strong>luvial and glaciolacustr<strong>in</strong>e<br />

deposits underlie <strong>the</strong> most extensive red maple<br />

swamps <strong>in</strong> this zone. Hillside seeps and swamps<br />

<strong>in</strong> isolated kettles and along dra<strong>in</strong>ageways <strong>in</strong> till<br />

landscapes are usually smaller than swamps <strong>in</strong><br />

stratified drift, but <strong>the</strong>y are far more numerous.<br />

The white p<strong>in</strong>e-hemlock-hardwood forest predom<strong>in</strong>ates<br />

<strong>in</strong> upland habitats throughout zone 1,<br />

except for sou<strong>the</strong>rn areas Fig. 1.3).<br />

<strong>Red</strong> maple o&n occurs <strong>in</strong> nearly pure stands<br />

<strong>in</strong> zone I. Common associates throughout this<br />

zone <strong>in</strong>clude yellow birch (Betula alleghanknsis),<br />

black gum, white ash, eastern white p<strong>in</strong>e, American<br />

elm, and eastern hemlock (Table 3.3). In<br />

sou<strong>the</strong>rn New England, nor<strong>the</strong>rn New Jersey, and


on Long Island, p<strong>in</strong> oak, swamp white a&, white<br />

oak (Quercus alba), and nor<strong>the</strong>rn red oak (Q.<br />

rubra) occur locally <strong>in</strong> red maple swaps. Less<br />

comrnon hardwood associates <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn section<br />

<strong>of</strong> zone I <strong>in</strong>clude serviceberry (Amektnchkr<br />

spp.), black cherry (Pmnus serottna), blue-beech<br />

(Calp<strong>in</strong>us cnrol<strong>in</strong>iam), yellow-popltur (Liridndron<br />

tulipifera), and basswood (Tilia americana).<br />

Atlantic white cedar is a common associate <strong>of</strong><br />

red maple <strong>in</strong> coastal areas from New Jersey to<br />

sou<strong>the</strong>rn Ma<strong>in</strong>e (Lademan 1989). This species<br />

typically occurs <strong>in</strong> pure stands on sites that are<br />

slightly wetter than most <strong>of</strong> those support<strong>in</strong>g red<br />

maple (Reynolds et al. 1982; Lowry 1984). However,<br />

cedar logg<strong>in</strong>g and water level changes have<br />

made mixed stands <strong>of</strong> red maple and Atlantic<br />

white cedar common <strong>in</strong> zone I. White p<strong>in</strong>e is a<br />

comrnon associate <strong>of</strong> red maple <strong>in</strong> many zone I<br />

swamps; <strong>in</strong> parts <strong>of</strong> sou<strong>the</strong>astern New England<br />

<strong>the</strong>se species may be codom<strong>in</strong>ant wirier 1989b).<br />

Black spruce is common irz <strong>the</strong> ~ior<strong>the</strong>rn portion <strong>of</strong><br />

zone I, but, ;also associrttes with red maple <strong>in</strong> sou<strong>the</strong>rn<br />

areas, typIc~ilIy along <strong>the</strong> xllarg<strong>in</strong>s <strong>of</strong> bogs<br />

(Danxman and French 1987).<br />

Gray birch (EJtttula populifolicr), black ash, bal-<br />

sam fir, and ~mr<strong>the</strong>nl white cedar cornnlonly occur<br />

<strong>in</strong> red maple swcunps <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn parts <strong>of</strong> New<br />

ZIampshire, Vcbnxiont., and Ma<strong>in</strong>e. The Vermont<br />

Natural. EIeritage Progr:~rn (Thompson 1988) has<br />

described <strong>the</strong> black gunk swamp, corriposed <strong>of</strong><br />

black gum, hemlock, rmd red maple, as a rare<br />

association r~stricted to thc soti<strong>the</strong>astern part <strong>of</strong><br />

that state. Vlis associatio~l has also been de-<br />

@cribed In Vermont by Fouberg and Blunt (1970),<br />

and ixl &w Ehnpsliire by Baldw<strong>in</strong> (]%I). Oaks<br />

less common <strong>in</strong> red rlxaple swamps from <strong>the</strong><br />

nor<strong>the</strong>rn section <strong>of</strong> zone I; nor<strong>the</strong>rn red oak is <strong>the</strong><br />

rnost eomlon spcies <strong>in</strong> that area.<br />

Fewer tharx a dozen species dom<strong>in</strong>ate <strong>the</strong> shrub<br />

layer <strong>of</strong> red mapie swnnlps <strong>in</strong> zone 1. I-Iighbush<br />

blueberry, con<strong>in</strong>lon w<strong>in</strong>terberry, sweet pepperbush,<br />

spicebush, swaxnp azalea (Rhodo$Fndron<br />

~ILSCOSUI~~), nortJzern arrow-wood, sou<strong>the</strong>rn arrowwood<br />

(Viburnum d~?ntntu~r?), speckled alder, nannyberv<br />

(V kentaga), and poison sumac (Toxicdndron<br />

uernix) are <strong>the</strong> most common shrubs;<br />

greenbriers also are common, especially <strong>in</strong> sou<strong>the</strong>rn<br />

New England (Table 3.3). O<strong>the</strong>r common species<br />

<strong>in</strong>clude fetterbush (Leucothoe racemosa),<br />

maleberry (Lpriia l@str<strong>in</strong>a), chokeberries<br />

(Aronia spp.), swamp rose (Rosa pnlustris), mounta<strong>in</strong><br />

holly (Nernomnthus mucronczta), wi<strong>the</strong>rad<br />

(%burnun wss<strong>in</strong>oides), poison ivy, European<br />

buckthorn (Rhamnus franguh), mounta<strong>in</strong> laurel,<br />

sheep laurel, and American witch-hazel (Hamamelis<br />

virg<strong>in</strong>iana). Sweet pepperbush and swamp<br />

azalea are most common east <strong>of</strong> <strong>the</strong> Connecticut<br />

River, <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn section <strong>of</strong> zone I. Great<br />

rhododendron occurs locally from sou<strong>the</strong>rn New<br />

England southward. Mounta<strong>in</strong> holly, speckled alder,<br />

hobblebush (Viburnum lantanoides), American<br />

yew, and striped maple (Acer pensylvanicum)<br />

are more important <strong>in</strong> red maple swamps <strong>in</strong> <strong>the</strong><br />

nor<strong>the</strong>rn section <strong>of</strong> zone I.<br />

Species composition <strong>in</strong> <strong>the</strong> herb layer is more<br />

variable than <strong>in</strong> <strong>the</strong> tree or shrub layers <strong>of</strong> red<br />

maple swamps. Some common constituents are<br />

listed below, but <strong>the</strong>se species do not necessarily<br />

associate with each o<strong>the</strong>r, nor do <strong>the</strong>y all occur<br />

throughout zone I.<br />

C<strong>in</strong>namon fern is <strong>the</strong> most common fern <strong>in</strong><br />

zone I red maple swamps (see Fig. 3.9). Sensitive<br />

fern (Onoclea sensibilis), royal fern (Osmundu<br />

regalis), marsh fern (Thelypteris thlypteroides),<br />

and sp<strong>in</strong>ulose woodfern (Dryopteris sp<strong>in</strong>ubsa) are<br />

o<strong>the</strong>r species that are commonly found throughout<br />

this zone (Table 3.3). Locally common species<br />

<strong>in</strong>clude Virg<strong>in</strong>ia cha<strong>in</strong>-fern (Woodwardia virg<strong>in</strong>ica),<br />

netted cha<strong>in</strong>-fern (W. areohta), <strong>in</strong>terrupted<br />

fern (Osmundu claytoniana), Massachusetts<br />

fern (Thelypteris simulata), New York fern<br />

(T. noveboracensis), and ostrich fern (Matteuccia<br />

struthiopteris).<br />

Gram<strong>in</strong>oid plants from zone I red maple<br />

swamps commonly <strong>in</strong>clude sedges (e.g., Carex<br />

stricta, C. lacustris, C. bnchocarpa, C. cr<strong>in</strong>ita)<br />

and grasses such as bluejo<strong>in</strong>t grass (Cahmagrostis<br />

canadensis) and manna grass (Glyceria<br />

spp.). Skunk cabbage (SympEautrpus foetidus),<br />

false hellebore (Veratrum viride), marsh marigold<br />

(Caltha palustris), spotted touch-me-not (Impatiens<br />

capensis), wild lily-<strong>of</strong>-<strong>the</strong>-valley (Maian<strong>the</strong>mum<br />

canad.en.se), violets (Viola spp.), wild sarsaparilla<br />

(Aralia nudicaulis), blue flag (Iris<br />

uersicolor), bugleweeds (Lycopus spp.), starflower<br />

(Trierztalis borealis), and goldthread (Coptk trifolia)<br />

are common forbs. Because <strong>of</strong> <strong>the</strong>ir low stature,<br />

trail<strong>in</strong>g shrubs are listed with <strong>the</strong> forbs <strong>in</strong><br />

Table 3.3; swamp dewberry (Rubus hkpidus), teaberry<br />

(Gaul<strong>the</strong>ria procumbens), and partridgeberry<br />

(Mtchella repens) are three <strong>of</strong> <strong>the</strong> most<br />

comrnon species <strong>in</strong> zone I red maple swamps.<br />

Mosses represent an important component <strong>of</strong><br />

<strong>the</strong> flora <strong>in</strong> many red maple swamps. S<strong>in</strong>ce few<br />

studies describe any but <strong>the</strong> most common genera<br />

and species, however, a comprehensive list<strong>in</strong>g <strong>of</strong>


this taxonomic group by zone is not possible. Table<br />

3*3 lists mosses, as well as liverworts and<br />

lichens, that are known to occur <strong>in</strong> nor<strong>the</strong>astern<br />

red maple swamps.<br />

The floristic cornpositiorl <strong>of</strong> <strong>the</strong> great majority<br />

<strong>of</strong> red maple swanips <strong>in</strong> zone I can be broadly<br />

described through various comb<strong>in</strong>ations <strong>of</strong> <strong>the</strong><br />

plant species listed above. As already <strong>in</strong>dicated,<br />

<strong>the</strong> community composition <strong>of</strong> a particular swamp<br />

is <strong>of</strong>ten strongly related t~ its hydrogeologic sett<strong>in</strong>g.<br />

Three basic types <strong>of</strong> red maple swamps,<br />

differentiated by landscape position and flora, are<br />

outl<strong>in</strong>ed below. These types were first recognized<br />

<strong>in</strong> Connecticut by Metzler and T<strong>in</strong>er (1992), but<br />

<strong>the</strong>y are clearly applicable throughout sou<strong>the</strong>rn<br />

New England and much <strong>of</strong> <strong>the</strong> rema<strong>in</strong>der <strong>of</strong> zone<br />

I. Floristic descriptions are based heavily on<br />

Metzler and T<strong>in</strong>er.<br />

Hillside Seeps and Upland Dra<strong>in</strong>ageways<br />

These swamps occur most commonly on slopes<br />

or <strong>in</strong> shallow depressions along <strong>in</strong>termitt,ent or<br />

upper perennial streams where till predom<strong>in</strong>ates<br />

(see Figs. 2.4 and 2.9). They are fed primarily by<br />

groundwater seepage and overland flow. Shallow<br />

flood<strong>in</strong>g may occur along watercourses dur<strong>in</strong>g <strong>the</strong><br />

early spr<strong>in</strong>g and after heavy ra<strong>in</strong>s, but surface<br />

water seldom persists. Most <strong>of</strong> <strong>the</strong>se sites have a<br />

seasonally saturated water regime (Table 2.3).<br />

M<strong>in</strong>eral soils predom<strong>in</strong>ak, and surface microrelief<br />

is limited except where <strong>the</strong> ground is strewn<br />

with glacial erratics. Dom<strong>in</strong>ant trees <strong>in</strong>clude red<br />

maple, yellow birch, American elm, swamp white<br />

oak, and p<strong>in</strong> oak; black gum and white ash (Fntx<strong>in</strong>us<br />

americana) also are common. A moderately<br />

dense understory dom<strong>in</strong>ated by spicebush, but<br />

with few o<strong>the</strong>r important species, is a characteristic<br />

feature <strong>of</strong> this type <strong>of</strong> swamp (Fig. 3.11).<br />

Skunk cabbage, false hellebore, and marsh marigold<br />

are dom<strong>in</strong>ant herbs. O<strong>the</strong>r common species<br />

<strong>in</strong>clude c<strong>in</strong>namon fern, sensitive fern, sp<strong>in</strong>ulose<br />

woodfern, swamp jack-<strong>in</strong>-<strong>the</strong>-pulpit (Arisaerna<br />

triphyllum), sh<strong>in</strong><strong>in</strong>g clubmoss (Lycopodiurn luciclulum),<br />

marsh blue violet (Viola cucullata), and<br />

nor<strong>the</strong>rn white violet (V. pallens).<br />

Seasonally l%oded b<strong>in</strong> <strong>Swamps</strong><br />

This type <strong>of</strong> swamp occurs primarily <strong>in</strong> undra<strong>in</strong>ed<br />

bas<strong>in</strong>s <strong>in</strong> ei<strong>the</strong>r tiU or stratified drift. Typically,<br />

surface water is present throughout <strong>the</strong> dormant<br />

season and for <strong>the</strong> early part <strong>of</strong> <strong>the</strong> grow<strong>in</strong>g<br />

season <strong>in</strong> most years. Because <strong>of</strong> <strong>the</strong> extended p-<br />

rid <strong>of</strong> soil saturation, organic soils are common and<br />

nlicromlief is pronounced. Trees and shrubs are<br />

mted prhlarily <strong>in</strong> mounds, which are elevated<br />

slightly above t.he seasonal high-water level<br />

(Fig. 2.6). <strong>Red</strong> maple, yellow birch, hemlock, black<br />

gt1113, and white p<strong>in</strong>e a.re <strong>the</strong> pr<strong>in</strong>cipal tree species<br />

<strong>in</strong> <strong>the</strong>w swamps. The shrub layer, which is oh1<br />

exceed<strong>in</strong>gly dense, is dom<strong>in</strong>ated by species such<br />

as highbush blueberry, swamp azalea, common<br />

vv<strong>in</strong>terbc?ly, sweet pepperbush, nor<strong>the</strong>rn arrowwood,<br />

and wi<strong>the</strong>rod. C<strong>in</strong>namon fern, sensitive<br />

fern, mars11 fern, skunk cabbage, manna grass,<br />

ruld sedges ( Ca~x spp.) are among <strong>the</strong> most comnion<br />

herbs. Rllosses, <strong>in</strong>cludmg peat moss (Sphgrturn<br />

spp.), bmn mosses (Dicrurzurn spp.), delicate-<br />

Fig, 3.11. <strong>Red</strong> maple swamp along an upland<br />

dra<strong>in</strong>ageway <strong>in</strong> sou<strong>the</strong>rn New England. Spicebush<br />


fern moea (?ki.c&<strong>in</strong>z &limfulum), and hfnium<br />

spp., rare abtmdant, <strong>in</strong> depresaioalu and at <strong>the</strong> bmes<br />

<strong>of</strong> mounds.<br />

Alluvial Sw~mgs<br />

ficd maple swmn~)s Also occur on river terrace8<br />

and <strong>in</strong> oxbows (Nichols 1915; IioXIand axid Burk<br />

19%) or M<strong>in</strong>d nattird Icvees, on <strong>the</strong> low-ly<strong>in</strong>g,<br />

<strong>in</strong>ner floadpiairt <strong>of</strong> rivers (Uuell and Wistctndethl<br />

1955; T<strong>in</strong>er 19&3; Mcstzler and 'F<strong>in</strong>er 1992). Tliese<br />

swampa may be &*xnlmrarily floodod or seasonally<br />

flooded, but most rema<strong>in</strong> wet thrt>tlgIl <strong>the</strong> grow<strong>in</strong>g<br />

B ~ R B Q ~O~RUS~<br />

~ ~ ~ J I F m~jve<br />

~ poilndwabr <strong>in</strong>flow<br />

axkc1 surface run<strong>of</strong>f HB wall RB overbank flood<strong>in</strong>g<br />

(Fig. 3.12). AIluviwi swnntps. me commutrly more<br />

nutrient-rich thrtn r~oriflmdplairl swampa, and<br />

<strong>the</strong>y <strong>of</strong>ten support u mom divcrse plant, rorxtmtixrit;.y.<br />

'l%u varieQ <strong>of</strong> zuicrc~ll~tLilattl provided t)y ulrdra<strong>in</strong>ed<br />

slougli~j atrd ritlgttx, arlci tile proxirriit y to<br />

more lypicaf fiuuclplriizl co~nrriuxlitirs (e.g., silver<br />

ZXIRISI~ CQ~~OE~WOO~I -~al\ -bir%ck willow), also itelp to<br />

t~xpta<strong>in</strong> <strong>the</strong> greattar RJ~c~~


drica), bugleweeds, violets, and bedstraws<br />

(Galium spp.).<br />

Zone 11.Great Lakes and <strong>Glaciated</strong><br />

Allegheny Plateau<br />

Zone I1 <strong>in</strong>cludes <strong>the</strong> greater part <strong>of</strong> New York<br />

State, as well as nor<strong>the</strong>astern and northwestern<br />

Pennsylvania (Fig. 3.10). The white p<strong>in</strong>e-hemlockhardwood<br />

forest dom<strong>in</strong>ates upland habitats <strong>in</strong><br />

those sections where red maple swamps are most<br />

abundant. The Lake Erie coastl<strong>in</strong>e falls with<strong>in</strong> <strong>the</strong><br />

oak-yellow-poplar forest region, while <strong>the</strong> beechbirch-maple<br />

forest predom<strong>in</strong>ates <strong>in</strong> eastern New<br />

York and nor<strong>the</strong>rn Pennsylvania (Fig. 1.3).<br />

<strong>Red</strong> maple swamps <strong>in</strong> zone I1 commonly occur<br />

over extensive glaciolacustr<strong>in</strong>e and glaci<strong>of</strong>luvial<br />

deposits (Van Dersal 1933; Stewart and Merrell<br />

1937; Goodw<strong>in</strong> 1942; Shanks 1966; Huenneke<br />

1982; Malecki et al. 1983). Bedrock <strong>in</strong> most <strong>of</strong> this<br />

zone is shale, sandstone, or limestone (Fenneman<br />

1938). Where limestone occurs, calcareous<br />

swamps are common. Often, however, <strong>the</strong> <strong>in</strong>fluence<br />

<strong>of</strong> underly<strong>in</strong>g marl layers on soil pH and<br />

nutrient status is dim<strong>in</strong>ished by overly<strong>in</strong>g organic<br />

deposits; hence, <strong>the</strong> flora <strong>of</strong> many swamps <strong>in</strong> Iirnestone<br />

areas do not exhibit an enriched status<br />

(Huenneke 1982; Malecki et al. 1983). <strong>Swamps</strong><br />

that developed over alluvial deposits or former bog<br />

soils also are common <strong>in</strong> this region (Bray 1915;<br />

Van Dersal1933; Goodw<strong>in</strong> 1942).<br />

Early <strong>in</strong> this century, Bray (1915) identified two<br />

major swamp forest associations <strong>in</strong> New York:<br />

mixed conifer-hardwood swamp and hardwood<br />

swamp. These two types, which have been recognized<br />

<strong>in</strong> more recent literature as well, are described<br />

briefly below<br />

Mixed Conifer-Hardwood <strong>Swamps</strong><br />

These wetlands are distributed primarily from<br />

<strong>the</strong> eastern Ontario Bas<strong>in</strong> to <strong>the</strong> Adirondacks,<br />

along <strong>the</strong> dra<strong>in</strong>age divides <strong>of</strong> north-south valleys<br />

<strong>of</strong> <strong>the</strong> Allegheny Plateau, and from <strong>the</strong> Syracuse<br />

region east through <strong>the</strong> Mohawk River valley. <strong>Red</strong><br />

maple swamps described by Huenneke (1982) <strong>in</strong><br />

<strong>the</strong> sou<strong>the</strong>rn F<strong>in</strong>ger M es region and by Paratley<br />

and Fahey (1986) <strong>in</strong> <strong>the</strong> Oneida Lake region are<br />

examples <strong>of</strong> this community. Tree species that are<br />

common <strong>in</strong> <strong>the</strong> mixed coder-hardwd swamps <strong>of</strong><br />

zone 11, namely, hemlock, white p<strong>in</strong>e, yellow birch,<br />

red maple, and elms, are also found <strong>in</strong> zone I<br />

swamps. However, red maple assumes a less irnportant<br />

role <strong>in</strong> many <strong>of</strong> <strong>the</strong> swamps <strong>in</strong> zone 11; frequently<br />

it is codom<strong>in</strong>ant with evergreen species<br />

(Van Dersal 1933). Although such mixed associations<br />

occur <strong>in</strong> zone I, <strong>the</strong>y are not as common as <strong>in</strong><br />

zone 11. Black and green ash frequently occur <strong>in</strong><br />

swamps near <strong>the</strong> Great Lakes. Black spruce, balsam<br />

frr, and tamarack are found <strong>in</strong> mixed coniferhardwood<br />

swamps <strong>of</strong> New York, both at higher<br />

elevations and <strong>in</strong> cool lowlands. In northwestern<br />

Pennsylvania, hemlock is <strong>the</strong> pr<strong>in</strong>cipal conifer <strong>in</strong><br />

this wetland type (Brooks and T<strong>in</strong>er 1989); red<br />

spruce (Picea rubens), tamarack, black spruce, and<br />

white p<strong>in</strong>e all occur <strong>in</strong> <strong>the</strong> mixed conifer-hardwood<br />

swamps <strong>of</strong> nor<strong>the</strong>astern Pennsylvania (Brooks<br />

et al. 1987).<br />

Hardwood <strong>Swamps</strong><br />

These forested wetlands, referred to as red maple-hardwood<br />

swamps by <strong>the</strong> New York Natural<br />

Heritage Program (Reschke 1990), are most abundant<br />

<strong>in</strong> <strong>the</strong> western portion <strong>of</strong> <strong>the</strong> Ontario Bas<strong>in</strong><br />

and <strong>in</strong> <strong>the</strong> Hudson River valley <strong>of</strong> New York (Bray<br />

1915), but <strong>the</strong>y occur throughout zone 11. Historically,<br />

<strong>the</strong>y were dom<strong>in</strong>ated by American elm, but<br />

with <strong>the</strong> decl<strong>in</strong>e <strong>of</strong> this species because <strong>of</strong> Dutch<br />

elm disease, <strong>the</strong> relative importance <strong>of</strong> o<strong>the</strong>r tree<br />

species has <strong>in</strong>creased (Huenneke 1982; Malecki<br />

et al. 1983). Some <strong>of</strong> <strong>the</strong> most common trees besides<br />

red maple are green ash, black ash, swamp<br />

white oak, basswood, and butternut (Jugktns c<strong>in</strong>erea).<br />

White p<strong>in</strong>e and hemlock are rare components,<br />

while nor<strong>the</strong>rn white cedar, tamarack, and<br />

balsam fir are absent (Stewart and Merrell 1937;<br />

Goodw<strong>in</strong> 1942; Malecki et al. 1983). P<strong>in</strong> oak, sh<strong>in</strong>gle<br />

oak (Quercus imbricaria), red oak, bitternut<br />

hickory, and shagbark hickory (Carya ovata) are<br />

common <strong>in</strong> hardwood swamps <strong>in</strong> <strong>the</strong> Ontario Bas<strong>in</strong><br />

west <strong>of</strong> Rochester, N.Y. (Stewart and Merrell1937,<br />

Goodw<strong>in</strong> 1942), and at <strong>the</strong> glacial limit <strong>in</strong> western<br />

Pennsylvania (Phillips 1971).<br />

Brooks and T<strong>in</strong>er (1989) recognized two common<br />

hardwood swamp associations <strong>in</strong> northwestern<br />

Pennsylvania. The frrst <strong>in</strong>cludes red maple,<br />

American elm, green ash, black ash, and swamp<br />

white oak, while <strong>the</strong> second <strong>in</strong>cludes red maple,<br />

yellow birch, and black cherry. In <strong>the</strong> Pocono region<br />

<strong>of</strong> nor<strong>the</strong>astern Pennsylvania, red maple and yellow<br />

birch are <strong>the</strong> dom<strong>in</strong>ant broad-leaved deciduous<br />

wetland trees @rooks et al. 1987).<br />

The composition <strong>of</strong> <strong>the</strong> shrub straturn does not<br />

vary greatly among <strong>the</strong> various swamp associations<br />

<strong>in</strong> zone 11. Highbush blueberry, common w<strong>in</strong>terbeny,<br />

spicebush, vibmums, black chokebemy<br />

(Amnia nelamrpa), speckled alder, American<br />

witch-hazel, and poison sumac are cormnonly en-


countered (Table 3.3). The herb layer <strong>in</strong> zone I1 red<br />

maple swamps may be quite diverse. Common<br />

ferns <strong>in</strong>clude c<strong>in</strong>namon fern, sensitive fern, royal<br />

fern, marsh fern, ostrich fern, <strong>in</strong>terrupted fern,<br />

crested fern (Dryopteris clistata), and sp<strong>in</strong>ulose<br />

woodfern. Skunk cabbage, marsh marigold, false<br />

hellebore, spotted touch-me-not, wild sarsaparilla,<br />

swamp jack-<strong>in</strong>-<strong>the</strong>-pulpit, lizard's tail (Saururus<br />

cernuus), smartweeds (Polygonurn spp.), sedges<br />

(e.g., Citrex cr<strong>in</strong>ita, C. lurida, and C. stricta),<br />

goldthread, blue bead-lily (Cl<strong>in</strong>tonia borealis), and<br />

white cl<strong>in</strong>tonia (C. unbellulata) are common<br />

herbs. Species such as water avens (Geum rivale),<br />

maidenhair fern (Adiantum pedatun), and foamflower<br />

(Tiarella cordifolia) are <strong>in</strong>dicative <strong>of</strong> moderate-<br />

tr, high-base status.<br />

Zone 111. St. Lawrence Valley and Lake<br />

Champla<strong>in</strong> Bas<strong>in</strong><br />

Champla<strong>in</strong> (e.g., IVLissisquoi River delta and Sandbar<br />

Swamp), and red maple-black ash swamps,<br />

W e Floodpla<strong>in</strong> <strong>Swamps</strong><br />

Lake floodpla<strong>in</strong> swamps are characterized by a<br />

red maple-silver maple-swamp white oak association,<br />

which is dist<strong>in</strong>ctly different from floodpla<strong>in</strong><br />

forests found along major rivers <strong>in</strong> Vermont. River<br />

floodpla<strong>in</strong> forests are composed largely <strong>of</strong> silver<br />

maple, eastern cottonwood, sycamore, and butternut<br />

O[?lompson 1988). Silver maple dom<strong>in</strong>ates that<br />

part <strong>of</strong> <strong>the</strong> lake floodpla<strong>in</strong> forest nearest <strong>the</strong> edge<br />

<strong>of</strong> Lake Champla<strong>in</strong>, and red maple predom<strong>in</strong>ates<br />

toward <strong>the</strong> landward edge. In <strong>the</strong> middle, both<br />

species are present, and dom<strong>in</strong>ance alternates locally.<br />

A hybrid maple, known as Acer X freemanii,<br />

has been identified <strong>in</strong> this <strong>in</strong>termediate zone; it<br />

displays characteristics <strong>of</strong> both red maple and silver<br />

maple ON. Countryman, Northfield, Vt., - wrsonal<br />

communication). The open shrub layer <strong>of</strong> <strong>the</strong><br />

lake fkoodpla<strong>in</strong> swamps frequently <strong>in</strong>cludes mounta<strong>in</strong><br />

holly and buttonbush (Cephalanthus occidentalis).<br />

A fern-dom<strong>in</strong>ated herb layer <strong>in</strong>cludes such<br />

species as sensitive fern, <strong>in</strong>terrupted fern, and<br />

c<strong>in</strong>namon fern. About 30 species <strong>of</strong> trees and<br />

shrubs have been documented <strong>in</strong> <strong>the</strong>se swamps<br />

Zone 111, which co<strong>in</strong>cides with <strong>the</strong> St. Lawrence<br />

Wley physiographic region <strong>in</strong> New York and Vermont<br />

(Fig. 3.10), falls almost entirely with<strong>in</strong> <strong>the</strong><br />

white p<strong>in</strong>e-hemlock-hardwood forest region<br />

(Fig. 1.3). Both upland and wetland foresk <strong>in</strong> <strong>the</strong><br />

eastern portion <strong>of</strong> this zone are strongly <strong>in</strong>fluenced<br />

by <strong>the</strong> moderat<strong>in</strong>g effect <strong>of</strong> Lake Champla<strong>in</strong> on<br />

local climate (Bray 1915). Little published <strong>in</strong>forma- (Vogelmann, personal communication).<br />

tion on red maple swamp communities is available<br />

rZed <strong>Maple</strong>-Black Ash <strong>Swamps</strong><br />

for this area. Floristic data for <strong>the</strong> New York portion<br />

<strong>of</strong> this zone are derived primarily from Vosburgh This second major red maple swamp association<br />

(1979) and National Wetlands Inventory (NWI) is found <strong>in</strong> nonfldpla<strong>in</strong> areas throughout zone<br />

field notes (US. Fish and Wildlife Service, National 111. Bray (1915) described this comunit~ which<br />

Wetlands Inventory? Newton Corner, Mass,). Descriptions<br />

<strong>of</strong> Vemont forested wetlands <strong>in</strong> zone 111<br />

are derived ma<strong>in</strong>ly from Vosburgh (1979), <strong>the</strong> Vermont<br />

Natural Heritage Program (VNEB), NWI<br />

field notes, and personal communications.<br />

Along <strong>the</strong> shores <strong>of</strong> Lake Champla<strong>in</strong>, forested<br />

wetlands are found on poorly dra<strong>in</strong>ed deltas and <strong>in</strong><br />

drowned river valleys. <strong>Red</strong> maple swamp associatiorls<br />

also occur <strong>in</strong> poorly dra<strong>in</strong>ed depressions on<br />

<strong>the</strong> her<br />

floodpla<strong>in</strong> <strong>of</strong> creeks, beh<strong>in</strong>d natural levees<br />

(H.W. Vogelmann, University <strong>of</strong> Vermont,<br />

Burl<strong>in</strong>gton, personal communication). These<br />

swamps are com~only underla<strong>in</strong> by alluvium that<br />

overlies glaciolacustr<strong>in</strong>e and glaci<strong>of</strong>luvid deposits.<br />

Outside <strong>of</strong> <strong>the</strong> Lake Ci~ampla<strong>in</strong> bas<strong>in</strong>, red maple<br />

swamps are found along upland dra<strong>in</strong>ageways and<br />

<strong>in</strong> isolated bas<strong>in</strong>s <strong>in</strong> both till and stratified drift.<br />

Zone I11 supports two dist<strong>in</strong>ct red maple swamp<br />

communities: lake floodpla<strong>in</strong> swamps, which are<br />

commonly found on <strong>the</strong> eastern shore <strong>of</strong> Lake<br />

is designated by <strong>the</strong> Society <strong>of</strong> American Foresters<br />

as <strong>the</strong> black ash-elm-red maple forest cover type<br />

(SAF type no. 39; Eyre 1980), as a climax wetland<br />

forest rang<strong>in</strong>g from <strong>the</strong> lower Hudson River valley<br />

north to <strong>the</strong> Champla<strong>in</strong> valley. It predom<strong>in</strong>ates<br />

from <strong>the</strong> nor<strong>the</strong>rn edge <strong>of</strong> <strong>the</strong> Adirondack Mounta<strong>in</strong>s<br />

to <strong>the</strong> Canadian border as well. Part <strong>of</strong> <strong>the</strong><br />

Cornwall Swamp along Otter Creek <strong>in</strong> Addison<br />

County, Vt., has been considered a classic example<br />

<strong>of</strong> this forest cover type (Goodw<strong>in</strong> and Nier<strong>in</strong>g<br />

1975). The decl<strong>in</strong>e <strong>of</strong> American elm prompted <strong>the</strong><br />

Vermont Natural Heritage Program to classify<br />

<strong>the</strong>se forested wetlands as <strong>the</strong> red maple-black<br />

ash natural community (Thompson 1988). Dom<strong>in</strong>ated<br />

by red maple, black ash, and, to a lesser<br />

extent, American elm, <strong>the</strong>se swamps also support<br />

white p<strong>in</strong>e, gray birch, paper birch (Betulapapyrifera),<br />

green ash, yellow birch, hemlock, nor<strong>the</strong>rn<br />

white cedar, quak<strong>in</strong>g aspen (PopukLs tremuloides),<br />

tamarack, and balsam fir. Swamp white oak and


silver mtqgle occur locally <strong>in</strong> Vermont swamps (Vogelmann,<br />

prsonal communication).<br />

The shrub layer <strong>in</strong> <strong>the</strong> red maple-black ash<br />

community is typically derlse and <strong>in</strong>cludes common<br />

w<strong>in</strong>terberry, blue-beech, highbush blueberry,<br />

speckled alder, beaked hazelnut (Corylus cornuta),<br />

nannyberry, mounta<strong>in</strong> holly, red-osier dogwOOd<br />

(Cornus stolonifem), meadowsweet (Spiraea<br />

latifolk), and highbush cranberry (Viburnum<br />

trilobum) (Goodw<strong>in</strong> and Nier<strong>in</strong>g 1975; Vogelmann,<br />

personal communication). The herb stratum,<br />

which is well developed and generally characterized<br />

by herbs more than a meter tall,<br />

<strong>in</strong>cludes c<strong>in</strong>namon fern, ostrich fern, royal fern,<br />

sensitive fern, <strong>in</strong>terrupted fern, tall meadow-rue<br />

(Thalictrum pubescem), wild sarsaparilla, goldenrods<br />

(Solidago spp.), spotted touch-me-not,<br />

manna grass, swamp dock (Rumex verticillatus),<br />

and sedges (E. Thompson, Burl<strong>in</strong>gton, personal<br />

communication; Vogelmann, personal cornmunication).<br />

Sphagnum moss is also common.<br />

The red maple-black ash community is far more<br />

diverse floristically than <strong>the</strong> lake floodpla<strong>in</strong> red<br />

maple community.<br />

Deciduous trees dom<strong>in</strong>ate most <strong>of</strong> <strong>the</strong> forested<br />

wetlands <strong>in</strong> zone 111, and although evergreen forested<br />

wetlands <strong>in</strong>clud<strong>in</strong>g nor<strong>the</strong>rn white cedar<br />

swamps and spruce-fir-tamarack swamps occur,<br />

<strong>the</strong>y are less cornmon here than at higher elevations<br />

or far<strong>the</strong>r north. In <strong>the</strong> Otter Creek valley<br />

(sou<strong>the</strong>rn Champla<strong>in</strong> River valley) <strong>of</strong> Vermont,<br />

swamps consist<strong>in</strong>g <strong>of</strong> mixed stands <strong>of</strong> hardwoods<br />

and nor<strong>the</strong>rn white cedar cover thousands <strong>of</strong> acres<br />

(Thompson, personal communication). The hardwoods,<br />

which dom<strong>in</strong>ate <strong>the</strong>se swamps, <strong>in</strong>clude red<br />

maple, black ash, and silver maple.<br />

Zone Iti Nor<strong>the</strong>astern Mounta<strong>in</strong>s<br />

Zone IV; which <strong>in</strong>cludes <strong>the</strong> White Mounta<strong>in</strong>s,<br />

Green Mounta<strong>in</strong>s, Taconic Range, Berkshires,<br />

Adirondacks, and Catskills, falls largely with<strong>in</strong><br />

<strong>the</strong> beech-birch-maple and spruce-fir forest regions<br />

(Fig. 1.3). Deciduous forested wetlands<br />

dom<strong>in</strong>ated by red maple are restricted to streamside<br />

locations <strong>in</strong> narrow valleys and to isolated<br />

depressions. Floristic data for <strong>the</strong>se swamps are<br />

scarce; <strong>the</strong> zone IV species list <strong>in</strong> Table 3.3 is<br />

based on a s<strong>in</strong>gle study conducted <strong>in</strong> <strong>the</strong> White<br />

Mounta<strong>in</strong>s <strong>of</strong> New Hampshire (DeGraaf and<br />

Rudis 1990) and National Wetlands Inventory<br />

field notes (U.S. Fish and Wildlife Service, Newton<br />

Corner, Mass.) ga<strong>the</strong>red at 11 sites <strong>in</strong> Ma<strong>in</strong>e,<br />

New Hampshire, and Vermont.<br />

Tree species that commonly associate with red<br />

maple <strong>in</strong> mounta<strong>in</strong> swamps <strong>in</strong>clude balsam fir,<br />

gray birch, paper birch, yellow birch, American<br />

elm, quak<strong>in</strong>g aspen, and ashes. White p<strong>in</strong>e, black<br />

cherry, black spruce, red spruce, nor<strong>the</strong>rn whitecedar,<br />

hemlock, larch, and sugar maple also may<br />

be present. The shrub layer frequently <strong>in</strong>cludes<br />

speckled alder, viburnums (e.g., nannyberry,<br />

wi<strong>the</strong>rod), common w<strong>in</strong>terberry, willows (Salix<br />

spp.), balsam fir, and meadowsweet. C<strong>in</strong>namon<br />

fern and sensitive fern are <strong>the</strong> most common<br />

ferns. Manna grasses, sedges (Carex spp.), asters<br />

(Aster spp.), goldenrods (Solidago spp.), meadowrue<br />

(Thalictrum sp.), wild lily-<strong>of</strong>-<strong>the</strong>-valley, starflower,<br />

and wild sarsaparilla are representative<br />

herbs.<br />

Zone 'C! Nor<strong>the</strong>rn New England Upland<br />

The nor<strong>the</strong>rn New England upland <strong>in</strong>cludes<br />

most <strong>of</strong> nor<strong>the</strong>rn and eastern Ma<strong>in</strong>e, as well as <strong>the</strong><br />

nonmounta<strong>in</strong>ous parts <strong>of</strong> western Ma<strong>in</strong>e, central<br />

New Hampshire, and nor<strong>the</strong>astern Vermont that<br />

are too small to del<strong>in</strong>eate <strong>in</strong> Fig. 3.10. This zone<br />

supports primarily beech-birch-maple forest and<br />

spruce-fir forest <strong>in</strong> <strong>the</strong> uplands (Fig. 1.3). Information<br />

on red maple swamps <strong>in</strong> zone V is generally<br />

lack<strong>in</strong>g; hence, zone V floristic data have been<br />

omitted from Table 3.3. Fkd maple and o<strong>the</strong>r<br />

swamp hardwoods are usually subord<strong>in</strong>ate to s<strong>of</strong>twoods<br />

such as hemlock, tamarack, nor<strong>the</strong>rn white<br />

cedar, spruces, and balsam fir. Most <strong>of</strong> <strong>the</strong> wet<br />

bas<strong>in</strong>s conta<strong>in</strong> ei<strong>the</strong>r bogs or conifer swamps (R.B.<br />

Davis, University <strong>of</strong> Ma<strong>in</strong>e, Orono, personal communication;<br />

H. Nowell, New Hampshire Fish and<br />

Game Department, Concord, personal communication).<br />

Wet sites with calcareous groundwater<br />

<strong>in</strong>flow commonly support nor<strong>the</strong>rn white cedar<br />

forests, whereas more acidic sites support various<br />

comb<strong>in</strong>ations <strong>of</strong> nor<strong>the</strong>rn white cedar, tamarack,<br />

spruces, white p<strong>in</strong>e, red maple, yellow birch, and<br />

black ash. Stream bottoms <strong>in</strong> zone V <strong>of</strong>ten conta<strong>in</strong><br />

balsam fur and alder (Alnus spp.) with little or no<br />

red maple (Nowell, personal communication). Deciduous<br />

forested wetlands most <strong>of</strong>ten occur <strong>in</strong> narrow<br />

bands along streams, <strong>in</strong> complexes with shrub<br />

swamps, or <strong>in</strong> small, isolated depressions. The red<br />

maple-black ash community is found <strong>in</strong> nor<strong>the</strong>astern<br />

Vermont, but to a iesser extent than <strong>in</strong><br />

sou<strong>the</strong>rn and western regions <strong>of</strong> that state<br />

(Thompson 1988).


~akareous Seepage <strong>Swamps</strong><br />

England sites mentioned abve, and <strong>in</strong>dividud<br />

swamps held as many as 90 species <strong>in</strong> some cases.<br />

Bedrock and surficial geolodc deposits through- Black ash, which is <strong>the</strong> most nutrient-demmdlout<br />

most <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>ast are low <strong>in</strong> base content. <strong>in</strong>g and least acid-tolerant ash species<br />

a result, most swamps <strong>in</strong> 'his ''don are acidic 1980), is a conspicuous overstory dtssoGiah <strong>of</strong> red<br />

and nutrient-- The majority <strong>of</strong> swamps demaple<br />

<strong>in</strong> calcareous seepage swamps. ~~~~i~~<br />

scribed thus far fall <strong>in</strong> that category. In several elm, white p<strong>in</strong>e, and swamp white oak<br />

areas <strong>of</strong> <strong>the</strong> No*heast, calcweous growdwater Or<br />

are also common. Nearly 30 species <strong>of</strong> shrubs have<br />

surface water derived fmm lhesbne, marble, or<br />

been recorded at <strong>in</strong>dividual sibs; some <strong>of</strong> <strong>the</strong> most<br />

lime-rich surficial deposits enters wetlands and has<br />

<strong>in</strong>clude red-osier dogwood, aldera<br />

dramatic effect on <strong>the</strong> composition and richness<br />

Leaf buckthorn (Rhamnus alnifolia), shrubby<br />

<strong>of</strong> <strong>the</strong> plant In Vemont~ c<strong>in</strong>quefoil (Potentilia fmtimsa), stiff dogwood<br />

nor<strong>the</strong>rn New Hampshire, and Ma<strong>in</strong>e, calcareous<br />

(Cornus foem<strong>in</strong>a), and meadowsweet. Ericaceous<br />

swamps are typicdly dom<strong>in</strong>ated by white species are notably scarce, except for highbush<br />

cedar (Thompson, personal comunication; Nowblueberry<br />

(Metzler and T<strong>in</strong>er 1992). Speckled alell,<br />

personal communication; Davis, personal amder,<br />

silky dogwood, common w<strong>in</strong>terberry, swamp<br />

munication), while <strong>in</strong> sou<strong>the</strong>rn New England and<br />

rose, poison sumac, and poison ivy are o<strong>the</strong>r corn-<br />

New York, hemlock or mjxed conifer-hardwood formon<br />

shrubs.<br />

ests <strong>of</strong>ten predom<strong>in</strong>ate ('I!J. Raw<strong>in</strong>ski, The Nature<br />

Nutrient-rich conditions <strong>of</strong> caEcareous seepage<br />

Conservancy, Boston, Mass., personal comunicaswamps<br />

are most clearly reflected <strong>in</strong> <strong>the</strong> herb layer,<br />

tion). Calcareous swamps dom<strong>in</strong>ated by red maple<br />

which may <strong>in</strong>clude 60 or more species at a s<strong>in</strong>gle<br />

occur primarily <strong>in</strong> sou<strong>the</strong>rn New England, sou<strong>the</strong>rn<br />

New Hampshire, <strong>the</strong> Lake Champla<strong>in</strong> bas<strong>in</strong>,<br />

site. Among <strong>the</strong> most frequently encountered are<br />

and central and eastern New York.<br />

lakebank sedge (Carex lacustris), tussock sedge<br />

The Eastern Regional Office <strong>of</strong> The Nature<br />

(Carex stricta), c<strong>in</strong>namon fern, royal fern, and tall<br />

Conservancy has compiled detailed floristic data meadow-rue. Crested fern, marsh fern, bluejo<strong>in</strong>t<br />

from at least 15 wetlands that it classifies as<br />

grass, l<strong>in</strong>ear-leaf willow-herb (Epilobium kptosou<strong>the</strong>rn<br />

New England calcareous seepage phyllum), bedstraws, boneset (Eupatorium perfoliswamps<br />

(Raw<strong>in</strong>ski 1984). The species list labelled atum), water pennywort (Hydmty le amen'cam),<br />

"calcareous" <strong>in</strong> Table 3.3 <strong>in</strong>cludes all <strong>of</strong> <strong>the</strong> species Swamp buttercup (Ranunnclus septentnbmlk),<br />

recorded at five <strong>of</strong> <strong>the</strong>se swamps where red maple and skunk cabbage are o<strong>the</strong>r common herbs.<br />

was ei<strong>the</strong>r dom<strong>in</strong>ant or codom<strong>in</strong>ant. The locations herbs seepage<br />

<strong>of</strong> <strong>the</strong>se red maple swamps range from sou<strong>the</strong>ast- not be seen as frequently as those above, but<br />

are strong <strong>in</strong>dicators <strong>of</strong> ei<strong>the</strong>r groundwater dissetts<br />

to northwestern Connecticut and adjacent charge or calcium-rich soils (~aw<strong>in</strong>skl, ~ersonal<br />

New York state.<br />

communication). Groundwater <strong>in</strong>dicator planta <strong>in</strong>-<br />

While some calcareous swamps <strong>in</strong> <strong>the</strong> glaciated cludebristly-stalked sedge (carex k~taka), marsh<br />

NO&heast oecur <strong>in</strong> seasonally flooded bas<strong>in</strong>s, <strong>the</strong> marigold, golden saxifrage (Chvsospknium<br />

swamps described by The Nature Conservancy amefianum), purple-stemed angelica (~ngelica<br />

typically occur at <strong>the</strong> headwaters, or along <strong>the</strong> atropu~urea), s<strong>of</strong>t-leaf sedge (carex d-rma),<br />

valley edges, <strong>of</strong> small streams where soils are water avens, fen orchid @Paris hselii), swamp<br />

saturated by groundwater seepage for most or all saxifrage (Saxif~a Pe~ivanica), small purple<strong>of</strong><br />

<strong>the</strong> year, but where surface flood<strong>in</strong>g is <strong>in</strong>fre- fr<strong>in</strong>ged orchid (Phtan<strong>the</strong>ra PSY~~),<br />

woodland<br />

quent. The New York Natural Heritage Program horsetail (Equketum s~lvathm), and golden ragrecognizes<br />

a red maple-tamarack peat swamp, wort (Semcio aureus). khst <strong>of</strong> <strong>the</strong>se plank a .<br />

which is floristically similar to <strong>the</strong> sou<strong>the</strong>rn New scarce or absent from swamps lack<strong>in</strong>g groundwa-<br />

England seepage swamps, but which occurs <strong>in</strong> ter discharge. Calcicoles (Plants normally grow<strong>in</strong>g<br />

poorly dra<strong>in</strong>ed depressions fed by calcareous <strong>in</strong> cafcareous soils) found <strong>in</strong> <strong>the</strong>se seepage swamps<br />

ppundvvakr mid conta<strong>in</strong>s orgdc soil @sc]&e <strong>in</strong>clude fr<strong>in</strong>ged brome (Bromus cilktm), idad<br />

1990). Calcareous seepage swamps tend to support sedge (Carex <strong>in</strong>ter'or), yellow sedge (Carex fktva),<br />

a much greater diversity <strong>of</strong> plant species than bulbous bittercress (Cardam<strong>in</strong>e bulbosa), hemlock<br />

seasonally flooded swamps laek<strong>in</strong>g groundwater parsley (Coniosel<strong>in</strong>un chirzense), tufted loosestrife<br />

<strong>in</strong>flow maw<strong>in</strong>ski, personal communication). Over (Lysimachia thyrsiflora), swa~np thistle (Cirsium<br />

150 species were recorded at <strong>the</strong> five sou<strong>the</strong>rn New muticurn), and globefl ower (Trollius bs). Bog<br />

ern N~~ hi^^ through western ~ ~ ~ ~ ~ ~ h ~


irch (Betula pumikz), shrubby c<strong>in</strong>quefoil, mossy- namon fern cormnunities occur <strong>in</strong> this situation.<br />

cup oak (&uefcus macmrpu), and alder-leaf Some have very poorly dra<strong>in</strong>ed soils and are seabuckthorn<br />

are wmdy plants that also <strong>in</strong>dicate cal- sonally flooded.)<br />

cium-rich soils <strong>in</strong> sou<strong>the</strong>rn New England seepage In summary, <strong>the</strong> differences <strong>in</strong> floristic composwamps.<br />

sition among nor<strong>the</strong>astern red maple swamps are<br />

best expla<strong>in</strong>ed by ei<strong>the</strong>r physiographic location,<br />

Transitional <strong>Swamps</strong> -<br />

which takes <strong>in</strong>to account climatic and elevational<br />

<strong>in</strong>fluences, or hydrogeologic sett<strong>in</strong>g, which deter-<br />

Where <strong>the</strong> land at <strong>the</strong> edge <strong>of</strong> m<strong>in</strong>es water regime, water ,-,hemist. and microwetland<br />

bas<strong>in</strong>s conta<strong>in</strong><strong>in</strong>g open water, marsh,<br />

climate. Floristic differences are fur<strong>the</strong>r exshrub<br />

swamp) fen' Or bog mmmunities9 red pla<strong>in</strong>ed by <strong>the</strong> complex overlap <strong>of</strong> <strong>the</strong> geographic<br />

forests form a narrow<br />

ranges <strong>of</strong> <strong>in</strong>dividual species. Land-use history unbetween<br />

<strong>the</strong>se types and <strong>the</strong> adjacent up- doubtedly <strong>in</strong>fluences swamp noristics as well, but<br />

land' are <strong>of</strong>ten less than 30<br />

<strong>the</strong> details <strong>of</strong> that relationship have not been<br />

wide, <strong>the</strong>y are a conspicuous feature <strong>of</strong> many northdescribed.<br />

eastern wetlands and have been referred to specifically<br />

by several authors. The floristic composition<br />

<strong>of</strong> <strong>the</strong>se transitional communities is <strong>of</strong>ten some- Plants <strong>of</strong> Special Concern<br />

what unique <strong>in</strong> that plants from both <strong>the</strong> adjacent<br />

upland and wetland communities are represented, None <strong>of</strong> <strong>the</strong> plant species <strong>in</strong> Table 3.3 is listed<br />

along with <strong>the</strong> more typical swamp species. as endangered or threatened by <strong>the</strong> Federal Gov-<br />

In association with Atlantic white cedar, north- ernment (J. Dowhan, U.S. Fish and Wildlife Servern<br />

white cedar, hemlock, or balsam fir, red maple ice, Charlestown, R.I., personal communication),<br />

commonly forms a narrow border around north- and none <strong>of</strong> those species is restricted to red maple<br />

eastern bogs (Nichols 1913; Goodw<strong>in</strong> 1942; swamps. However, many <strong>of</strong> <strong>the</strong> species that have<br />

Montgomery and Fairbro<strong>the</strong>rs 1963; Moizuk and been observed <strong>in</strong> red maple swamps also appear<br />

Liv<strong>in</strong>gston 1966; Osvald 1970; Ellis 1980; Dam- <strong>in</strong> <strong>the</strong> <strong>of</strong>ficial rare-plant lists published by <strong>the</strong><br />

man and French 1987). In a study <strong>of</strong> six peat bogs various nor<strong>the</strong>astern states. Appendix B identi<strong>in</strong><br />

sou<strong>the</strong>rn Ma<strong>in</strong>e, R.B. Davis (University <strong>of</strong> fies those species and gives <strong>the</strong>ir status <strong>in</strong> each<br />

Ma<strong>in</strong>e, Orono, personal communication) noted <strong>the</strong> state. Overall, nearly 140 (33%) <strong>of</strong> <strong>the</strong> species<br />

presence <strong>of</strong> Labrador tea (Ledum groenlandicum) known to occur <strong>in</strong> red maple swamps are considand<br />

rhodora (RhocloderuLron camdense), typical ered rare, threatened, or endangered <strong>in</strong> one or<br />

bog shrubs, <strong>in</strong> <strong>the</strong> border<strong>in</strong>g red maple swamps. more states.<br />

Balsam fir, black spruce, velvet-leaf blueberry Ow<strong>in</strong>g to <strong>the</strong> broad extent and physiographic<br />

(Vm<strong>in</strong>ium myrtilloides), black huckleberry (Gay- diversity <strong>of</strong> <strong>the</strong> nor<strong>the</strong>ast region, some species are<br />

lussacia baccata), mounta<strong>in</strong> holly, and speckled common <strong>in</strong> <strong>the</strong> red maple swamps <strong>of</strong> certa<strong>in</strong> states<br />

alder were also present <strong>in</strong> <strong>the</strong> shrub stratum. but rare <strong>in</strong> o<strong>the</strong>rs. Sweet pepperbush, spicebush,<br />

Black spruce, tamarack, and white p<strong>in</strong>e were as- and swamp azalea for example, are endangered <strong>in</strong><br />

sociated with red maple <strong>in</strong> <strong>the</strong> overstory <strong>of</strong> those Ma<strong>in</strong>e, but <strong>the</strong>y are among <strong>the</strong> most common<br />

swamps,<br />

wetland shrubs <strong>in</strong> sou<strong>the</strong>rn New England. Con-<br />

A red maple-c<strong>in</strong>namon fern association has also versely, nor<strong>the</strong>rn white cedar is common <strong>in</strong> northbeen<br />

recognized as a transitional community <strong>in</strong> ern New England but rare <strong>in</strong> Connecticut, Massasou<strong>the</strong>rn<br />

New England (Egler and Nier<strong>in</strong>g 1967; chusetts, and New Jersey. A few plants are listed<br />

Damman and Kershner 1977; Anderson et al. 1980; by five or more nor<strong>the</strong>astern states; <strong>the</strong>se <strong>in</strong>clude<br />

Messier 1980, Metzler 1982). This community typi- climb<strong>in</strong>g fern (Lygodium palmatum), bog birch,<br />

cally occupies a slop<strong>in</strong>g, poorly dra<strong>in</strong>ed soil zone, great rhododendron, showy lady's slipper<br />

<strong>of</strong>ten just upslope from a seasonally flooded swamp (Cypripedium reg<strong>in</strong>ae), small yellow lady's slipper<br />

community. The lack <strong>of</strong> surface water and <strong>the</strong> drier (C. cakeolus var. parviflorum), white adder'sso2<br />

conditions dur<strong>in</strong>g <strong>the</strong> grow<strong>in</strong>g semon, which mouth (Malaxis rnomphy llus var. brachypoda),<br />

characterize this transitional community, make <strong>the</strong> Britton's violet (Vila brittoniana), md gypsywort<br />

site suitable for species that are more frequently (Lycopus rubellus). Swamp red currant (Ribes<br />

found outside <strong>of</strong> wetlands. White oak and American triste), hemlock parsley, sweet coltsfoot (Petmites<br />

beech, for example, are commody observed <strong>in</strong> this palmatus), marsh willow-herb (Epilobium paluscommunity<br />

<strong>in</strong> Rhode Island. (Not all red maple-c<strong>in</strong>- tre), cyperus-like sedge (Carex pseuckqperus),


and globeflower are. listed <strong>in</strong> four states. Tkie oecurrence<br />

<strong>of</strong> bulboua bittercress, globeflower,<br />

mossy-cup onk, and aeveral a<strong>the</strong>r species is<br />

largely dehsm<strong>in</strong>ed by <strong>the</strong> dist,ribution <strong>of</strong> caIcareoue<br />

@oil; thus <strong>the</strong>y are rare or absent <strong>in</strong> many<br />

meaa <strong>of</strong> <strong>the</strong> Nort;keast.<br />

Appndix t3 skotzld be regarded simply as a<br />

potential list <strong>of</strong> spies <strong>of</strong> concwrn. All <strong>of</strong> <strong>the</strong> sp-<br />

cies listed <strong>the</strong>re have ken observed <strong>in</strong> red maple<br />

swflrnps sonxewhere <strong>in</strong> <strong>the</strong> region, but many have<br />

not been docbunented <strong>in</strong> that habitat <strong>in</strong> stake<br />

where <strong>the</strong>y are considered rare OT endangered.<br />

Some <strong>of</strong> <strong>the</strong> apscies In <strong>the</strong> IisL (PGC'UF most frequently<br />

<strong>in</strong> upland habitats or <strong>in</strong> wetlands o<strong>the</strong>r<br />

than red maple swamps. F<strong>in</strong>ally, we muat emphasize<br />

that Appendix B lists only those rare spies<br />

that appear <strong>in</strong> Table 3.3. Identification <strong>of</strong> additional<br />

rare species will be possible only after more<br />

comprehensive floristic surveys <strong>of</strong> red maple<br />

swamps have been conducted.


Chapter 4. Abiotic I uences on <strong>the</strong><br />

Plant Community<br />

The structure and floristic composition <strong>of</strong> red<br />

maple swamps are determ<strong>in</strong>ed by <strong>the</strong> <strong>in</strong>terplay <strong>of</strong><br />

a wide variety <strong>of</strong> environmental factors, <strong>in</strong>clud<strong>in</strong>g<br />

climate and microclimate; abiotic factors such as<br />

water regime, soil and water chemistry, and <strong>the</strong><br />

physical properties <strong>of</strong> soils; microrelief <strong>of</strong> <strong>the</strong> forest<br />

floor; biotic factors such as plant competition,<br />

disease, <strong>in</strong>sect <strong>in</strong>festations, and <strong>the</strong> activities <strong>of</strong><br />

beavers (Castor canadensis); anthropogenic <strong>in</strong>fluences<br />

such as logg<strong>in</strong>g, graz<strong>in</strong>g, and water level<br />

manipulation; and natural catastrophes such as<br />

hurricanes and fire. A thorough exam<strong>in</strong>ation <strong>of</strong><br />

<strong>the</strong> role <strong>of</strong> each <strong>of</strong> <strong>the</strong>se environmental factors <strong>in</strong><br />

<strong>the</strong> ecology <strong>of</strong> red maple swamps is not possible,<br />

simply because most <strong>of</strong> <strong>the</strong>se topics have not been<br />

<strong>in</strong>vestigated. Studies <strong>of</strong> vegetation and environment<br />

<strong>in</strong> nor<strong>the</strong>rn swamps have identified two key<br />

gradients, one related to <strong>the</strong> position <strong>of</strong> <strong>the</strong> water<br />

table and <strong>the</strong> o<strong>the</strong>r related to <strong>the</strong> availability and<br />

means <strong>of</strong> supply <strong>of</strong> m<strong>in</strong>eral nutrients (Paratley<br />

and Fahey 1986). Of <strong>the</strong> environmental factors<br />

that have been studied <strong>in</strong> red maple swamps,<br />

hydrology and nutrient status appear to be most<br />

directly responsible for variations <strong>in</strong> <strong>the</strong> structure<br />

and species composition <strong>of</strong> <strong>the</strong> plant community<br />

Ultimately, both <strong>of</strong> <strong>the</strong>se factors are dictated by<br />

<strong>the</strong> wetland's hydrogeologic sett<strong>in</strong>g: <strong>the</strong> physical<br />

and chemical composition <strong>of</strong> <strong>the</strong> geologic substrate,<br />

<strong>the</strong> size and slope <strong>of</strong> <strong>the</strong> dra<strong>in</strong>age bas<strong>in</strong>,<br />

and <strong>the</strong> relative magnitude <strong>of</strong> <strong>the</strong> wetland's hydrologic<br />

<strong>in</strong>puts and outputs.<br />

Hydrology<br />

Research <strong>in</strong> forested wetlands throughout <strong>the</strong><br />

United States has shown that hydrology is <strong>the</strong><br />

primary force controll<strong>in</strong>g <strong>the</strong> development <strong>of</strong><br />

<strong>the</strong>se wetlands and <strong>the</strong>ir stmctural d floristic<br />

attributes (Conner and Day 1976; Gossel<strong>in</strong>k and<br />

Turner 1978; Brown et al. 1979; Carter et al.<br />

1979; Harms et al. 1980; Dunn and Stearns<br />

1987a). Hydrology also has been l<strong>in</strong>ked to <strong>the</strong><br />

morphological and chemical properties <strong>of</strong> wetland<br />

soils (He<strong>in</strong>selman 1970; Conner and Day 1976;<br />

Veneman et al. 1976; Picker<strong>in</strong>g and Veneman<br />

1984), and to <strong>the</strong> degree <strong>of</strong> development <strong>of</strong> surface<br />

microrelief (Satterlund 1960; Ehrenfeld and<br />

Gulick 1981; Lowry 1984). For <strong>the</strong>se reasons, this<br />

chapter emphasizes <strong>the</strong> central. role <strong>of</strong> hydrology<br />

<strong>in</strong> shap<strong>in</strong>g <strong>the</strong> structure and composition <strong>of</strong> red<br />

maple forested wetlands. The <strong>in</strong>fluence <strong>of</strong> water<br />

regime on tree growth is addressed <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g<br />

chapter.<br />

Influence on Community Structure<br />

The i~fiuence <strong>of</strong> hydrology on <strong>the</strong> structure <strong>of</strong><br />

red maple swamps is poorly documented <strong>in</strong> <strong>the</strong><br />

glaciated Nor<strong>the</strong>ast. In floodpla<strong>in</strong> environments,<br />

<strong>the</strong> rate <strong>of</strong> flow <strong>of</strong> surface water through wetland<br />

forests may restrict woody plant establishment<br />

and hasten tree and shrub mortality simply<br />

through erosion <strong>of</strong> soils and mechanical damage<br />

to <strong>the</strong> vegetation itself (Brown et al. 1979; Harms<br />

et al. 1980; Huenneke 1982; Ehrenfeld 1986).<br />

Brown et al. (1979) found tree density <strong>in</strong> stillwater<br />

wetlands to be more than twice as high as<br />

<strong>in</strong> floodpla<strong>in</strong> wetlands, and <strong>the</strong>y concluded that<br />

water movement was a key factor expIa<strong>in</strong><strong>in</strong>g wetland<br />

forest structure <strong>in</strong> general.<br />

Most red maple swamps <strong>in</strong> <strong>the</strong> glaciated Nor<strong>the</strong>ast<br />

are still-water wetlands. Where <strong>the</strong> swamps<br />

occur <strong>in</strong> streamside locations, ei<strong>the</strong>r <strong>the</strong> streams<br />

are small and lack true floodpla<strong>in</strong>s, or <strong>the</strong> maple<br />

stands are located on <strong>the</strong> <strong>in</strong>ner floodpla<strong>in</strong>, st some<br />

distance from <strong>the</strong> channel. For <strong>the</strong>se reasons, one<br />

might expect <strong>the</strong> effect <strong>of</strong> flow<strong>in</strong>g water on eommunity<br />

structure to be m<strong>in</strong>imal. Ehrenfeld (1986)<br />

found, however, that red maple floodpla<strong>in</strong> forests<br />

<strong>in</strong> <strong>the</strong> New Jersey P<strong>in</strong>e Bamens had fewer woody<br />

species and lower tree and shrub density and<br />

biomass than nonfloodpla<strong>in</strong> red maple swamps.<br />

Floodpla<strong>in</strong> forests also had higher h e mortality<br />

and lower densities <strong>of</strong> tree seedl<strong>in</strong>gs and sapl<strong>in</strong>gs.<br />

Like Brown et al. (1919), Ehrenfeld concluded<br />

that <strong>the</strong> physical disturbance emsed by flow<strong>in</strong>g<br />

water and associated debris <strong>in</strong> floodpla<strong>in</strong> forests


was <strong>the</strong> most likely reason for differences <strong>in</strong> cammunity<br />

stnxeture heLween floodpla<strong>in</strong> and nonfloodpla<strong>in</strong><br />

sites.<br />

We<strong>the</strong>r stand structure <strong>in</strong> nonfloodpla<strong>in</strong> red<br />

maple? swamps variee with water regime is unclear.<br />

%e density and basal area have been<br />

shown to h bt,h higher (Ehrenfeld and Gulick<br />

1981; I ~wry 1984) and lower (Ehrenfeld 1986;<br />

Paratley and Mley 1986) on wetter sites. Cornpariaon<br />

<strong>of</strong> results <strong>of</strong> diffc?rent, studies is difficult<br />

because tho range <strong>of</strong> hydrologic conditions exam<strong>in</strong>ed<br />

and tile mean<strong>in</strong>gs <strong>of</strong> "wetter" md "'drier"<br />

<strong>of</strong>tmn vary widely Fur<strong>the</strong>r, tree density is <strong>in</strong>fluenced<br />

by tmth stand ago and stand orig<strong>in</strong> (Rraiewa<br />

1983). ?Ille ability <strong>of</strong> red maple to dom<strong>in</strong>ate sites<br />

that, mnge widely <strong>in</strong> wet,nc~s itself suggests that,<br />

carlee e~tablisff~d, <strong>the</strong> trees adapt well fa <strong>the</strong> prev~ilrtlg<br />

tiydrcrlogic regime and th:tt, unusually low<br />

dr~-lait,y or basrrl arcsiz can bc expect.ed to occur only<br />

where sitp wctxless ~ XCOO~W thi: spi*cies' t,oleranc<br />

lcvei.<br />

I-ts*lntIvc al_tt~nrlnltce ntld lion~;tu.q <strong>of</strong> shrubs<br />

hrtvt bsoxk iihuwrl 14 iricri?i~s~ wit,h wetlleas <strong>in</strong><br />

rxonflc~)d~rlai~r red nri~ple swurnys (Ehrcrrfcld and<br />

Gtilick 1989; Lowry 1084; Swift et a1. 1984; Paratlemy<br />

arrd Fahcy 1986). In lthode Island, Lowry<br />

folitrld that both ~lcsxlsity and perce~;?.it,agc cover <strong>of</strong><br />

strm-labs were greakst ~t ita as with <strong>the</strong> highest<br />

nlcexx water l~vels, but he noted that. <strong>the</strong>se sites<br />

rtlsr, hixd tha lowent txcw canopy c30vr;r, <strong>the</strong> most<br />

i,mranr~r~rc~ci xllicrort*licf, nnd <strong>the</strong> highest ground-<br />

WH~&T p11. j\. sf.rong rcfnt,io~;?.i bctwccn wrttsr rcgirne<br />

and tbn ~Lructure <strong>of</strong> troth tliti woody ul~ci~rstory trierce 1981; T<strong>in</strong>er 1985) or <strong>in</strong> oxbows or on floodaxtd<br />

<strong>the</strong> grt>tit~tX vqc~tation layer wm obscrvcd by<br />

fwati~y and fi'tklley (1986) <strong>in</strong> a New York mixed<br />

carlifer hwrtiwood swamp. In severely flooded and<br />

nmeslterratdy floacic;d areas <strong>of</strong> <strong>the</strong> swwnp, woody<br />

rzadcrstory cica~.rsitieas were 18,M6 and 10,881<br />

sf~*rsts//kn, ms~rcct ivtaly, while values for seeps and<br />

moderatc3Iy dry areas were 7,429 and<br />

8,9:5G stn*mJX~n. The perccntngc. cover <strong>of</strong> woody<br />

seedl<strong>in</strong>gs, prijtlirroicts, i\lld blyupl~ytes was found<br />

conducted <strong>in</strong> sou<strong>the</strong>rn New England and New<br />

ta vary e3i&-;?.iifionrli,ly aiuorlg six gwoun(I v~~getatiorl York.<br />

asaociatiorxs 13s well. Sedges and rnosscs wcrc<br />

mosL abundant <strong>in</strong> those red maple cornnxunities Hydrologic Variation Among Swamp<br />

wikh <strong>the</strong> highest ~a-rean water levels dar<strong>in</strong>g <strong>the</strong> Cammunitios<br />

grow<strong>in</strong>g season. 12c*rcentnge cover <strong>of</strong> woody seed- Damn~an and Kershner (1977) identified soil<br />

l<strong>in</strong>gs was <strong>in</strong> a msderabfy wet red maple<br />

comnunity th~t received large <strong>in</strong>flow <strong>of</strong> nutrientrich<br />

surface Water fmm a newby creek dur<strong>in</strong>g <strong>the</strong><br />

spr<strong>in</strong>g.<br />

%search <strong>in</strong> red maple swmnps <strong>in</strong> sou<strong>the</strong>rn<br />

New Jersey (Ehrenfeld and Gulick 1981; Ehren-<br />

feid 1986) reaffirms <strong>the</strong> conelusiom drawn <strong>in</strong><br />

glaciated areas <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>ast. In two separate<br />

studies, shrub density and biomass were much<br />

higher <strong>in</strong> wet hardwood swamps than <strong>in</strong> dry hardwood<br />

swamps. While <strong>the</strong> biomass <strong>of</strong> herbs was<br />

small to negligible at <strong>the</strong>se sites, its relative eontribution<br />

to total biomass was much greater at <strong>the</strong><br />

wetter sites; herb biomass totaled 195 kg/ha <strong>in</strong> <strong>the</strong><br />

wet swamps, but only 53 kfia <strong>in</strong> <strong>the</strong> dry swamps.<br />

If <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> hydrology on vegetation structure<br />

is to be fur<strong>the</strong>r elucidated, however, detailed<br />

measurements <strong>of</strong> standard hydrologic parameters<br />

over several years will be required.<br />

Influence on Floristic Composition<br />

The <strong>in</strong>fluence <strong>of</strong> water regime or soil moisture<br />

on species composition and distribution <strong>in</strong> wetland<br />

forests has been most clearly demonstrated<br />

<strong>in</strong> floodpla<strong>in</strong> communities. In <strong>the</strong> bottomland<br />

hmdwood forests <strong>of</strong> <strong>the</strong> sou<strong>the</strong>rn United States,<br />

which <strong>of</strong>ten <strong>in</strong>clude a red maple component, plant<br />

community composition has been shown to be a<br />

function <strong>of</strong> <strong>the</strong> tim<strong>in</strong>g, frequency, and duration <strong>of</strong><br />

flood<strong>in</strong>g or <strong>of</strong> anaerobic soil conditions ('Monk<br />

1%; Brown et al. 1979; Huffman and Forsy<strong>the</strong><br />

1981; Conner and Day 1982; Parsons and Ware<br />

1982). A strong relation between species distribution<br />

and hydrologic regime has been shown on<br />

nor<strong>the</strong>astern floodpla<strong>in</strong>s as well. In this region,<br />

red maple generally occurs <strong>in</strong> alluvial bas<strong>in</strong>s on<br />

<strong>the</strong> <strong>in</strong>ncr floodpla<strong>in</strong> (Buell and Wiskndahl 1955;<br />

pla<strong>in</strong> terraces (Pierce 1981; Holland and Burk<br />

1984; Metzler and Damman 1985) where <strong>the</strong> forest<br />

is less frequently flooded by river waters and<br />

<strong>the</strong> soil is less well dra<strong>in</strong>ed after floods subside<br />

than on <strong>the</strong> outer floodpla<strong>in</strong>. Information on relationships<br />

between water regime and <strong>the</strong> floristics<br />

<strong>of</strong> nonfloodpla<strong>in</strong> red maple swamps <strong>in</strong> <strong>the</strong> glaciated<br />

Nor<strong>the</strong>ast comes primarily from research<br />

n~oisLure regime as a key determ<strong>in</strong>ant <strong>of</strong> floristic<br />

variation <strong>in</strong> western Connecticut forests located<br />

over till and gneissic bedrock. They described<br />

three red maple swamp communities <strong>in</strong> that region<br />

and suggested that <strong>the</strong> floristic differences<br />

anxong those communities were caused by differ-


ences <strong>in</strong> nutrient levels, which were <strong>in</strong>fluenced by<br />

topographic position and hydrology.<br />

The most common type <strong>of</strong> red maple swamp<br />

encountered <strong>in</strong> <strong>the</strong> Damman and Kershner (1977)<br />

study was <strong>the</strong> Symplocarpus foetdus-Acer rubrum<br />

community that typically occurs <strong>in</strong> valley<br />

bottoms where soils are very poorly dra<strong>in</strong>ed and<br />

fed by groundwater seepage (Fig. 4.1). These<br />

swamps are usually dra<strong>in</strong>ed by a stream, so that<br />

surface water does not persist for long periods. If<br />

groundwater <strong>in</strong>flow is especially abundant and<br />

nutrient-rich, a Symplocapus-Acer rubrum-<br />

Ranunculus septentrionalis community is <strong>of</strong>ten<br />

found. Dist<strong>in</strong>guish<strong>in</strong>g species, besides swamp<br />

buttercup, <strong>in</strong> this floristically rich community <strong>in</strong>clude<br />

swamp saxifrage, bulbous bittercress, and<br />

golden ragwort. Upslope from <strong>the</strong> Symplocarpus-<br />

Acer rubrum community, <strong>in</strong> areas where soils are<br />

poorly dra<strong>in</strong>ed but surface water is rarely present,<br />

a Betula alkghuniensis-Acer rubrum-Osmunda<br />

c<strong>in</strong>namomea community is commonly found<br />

(Fig. 4.1).This transitional community frequently<br />

forms only a narrow belt at <strong>the</strong> bases <strong>of</strong> slopes; it<br />

is slightly drier and poorer <strong>in</strong> nutrients than <strong>the</strong><br />

o<strong>the</strong>r two types <strong>of</strong> red maple forests.<br />

Pn devis<strong>in</strong>g a floristic classification for wetlands<br />

<strong>in</strong> <strong>the</strong> gneissic-schistose bedrock region <strong>of</strong> northwestern<br />

Connecticut, Messier (1980) also underscored<br />

<strong>the</strong> l<strong>in</strong>k between water regime and nutrient<br />

levels. He observed that, for a given nutrient<br />

regime, <strong>the</strong> type <strong>of</strong> wetland community was<br />

closely related to <strong>the</strong> elevation and degree <strong>of</strong> fluctuation<strong>of</strong><br />

<strong>the</strong> water table. Figure 4.2 compares <strong>the</strong><br />

extent <strong>of</strong> water level fluctuation dur<strong>in</strong>g a s<strong>in</strong>gle<br />

year among five red maple swamp communities<br />

and five o<strong>the</strong>r wetland types he encountered. In<br />

review<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>g f<strong>in</strong>d<strong>in</strong>gs, remember that<br />

<strong>the</strong> extent <strong>of</strong> water level fluctuation may vary<br />

widely among years, even with<strong>in</strong> <strong>the</strong> same swamp<br />

(Fig. 2.7).<br />

The Osmunda c<strong>in</strong>narnomeu-Acer swamp occurred<br />

on peat soils <strong>of</strong> <strong>the</strong> valley floor, unlike <strong>the</strong><br />

slop<strong>in</strong>g sites described by Damman and Kershner<br />

(1977), and had a saturated water regime. The<br />

water table rema<strong>in</strong>ed with<strong>in</strong> 10-15 cm <strong>of</strong> <strong>the</strong> surface<br />

throughout <strong>the</strong> grow<strong>in</strong>g season, but surface<br />

water was present only briefly. The Rhododendron<br />

viscosum-Acer community occurred both <strong>in</strong> valley<br />

bas<strong>in</strong>s, where groundwater <strong>in</strong>flow was presumed<br />

to occur, and <strong>in</strong> bas<strong>in</strong>s far<strong>the</strong>r upslope, which were<br />

perched above <strong>the</strong> local groundwater table. Water<br />

Quercus pr<strong>in</strong>us - rubra<br />

Quercus !11<strong>of</strong>oba<br />

and<br />

emsed bedr~ck<br />

I<br />

Fraxlnus Carya<br />

Fraxtnus-Acer saccharu<br />

Befula-Acer rubrum<br />

Fig. 4.1. Topsequences <strong>of</strong> plant communities on a till-covered gneiss hill <strong>in</strong> western Connecticut (after Damman<br />

and Kershner 1977). Left side <strong>of</strong> diagram represents normal topsequence; right side is that <strong>of</strong> certa<strong>in</strong><br />

south-fac<strong>in</strong>g slopes. Wetland communities are marked with an usterisk. Elevation <strong>of</strong> summit is between 350 and<br />

400 m above sea level.


kvei fluctuation dur<strong>in</strong>g <strong>the</strong> gmw<strong>in</strong>g season was satuPated; by <strong>the</strong> end <strong>of</strong> <strong>the</strong> grow<strong>in</strong>g season, <strong>the</strong><br />

comparable <strong>in</strong> <strong>the</strong> two Iucations, but <strong>the</strong> valley water table was commonly 60 crn or more below<br />

bas<strong>in</strong>a held much more water after spr<strong>in</strong>g snow- <strong>the</strong> surface.<br />

meit. Messier (1980) noted that varianfx <strong>of</strong> this paratley and Fahey (1986) identified three macommunity,<br />

dom<strong>in</strong>ated by different shrub spcies, jor forested wetland communities <strong>in</strong> a mixed conicould<br />

h di~t<strong>in</strong>eished by <strong>the</strong> m<strong>in</strong>imum pw<strong>in</strong>g- fer--hardwood swamp <strong>in</strong> central New York hemseason<br />

wator level. Ei<strong>the</strong>r RWPLdron visco- lock swamp; mixed conifer-red maple swamp,<br />

sum or Ilex uerl.ic&llntn appeared to be dom<strong>in</strong>ant larch phase; and mixed conifer-red maple swamp,<br />

where t,he? water t ~bk rema<strong>in</strong>ed with<strong>in</strong> 10 cm <strong>of</strong> whih p<strong>in</strong>e phase. Us<strong>in</strong>g water level data ga<strong>the</strong>red<br />

Lho surface (<strong>in</strong> 1978), while t7my:<strong>in</strong>ium coryrnfw- wc?cMy dur<strong>in</strong>g one grow<strong>in</strong>g season, <strong>the</strong> authors<br />

sum wits domirlar~t whore <strong>the</strong> water table dropped. denzomtrated that <strong>the</strong> distribution <strong>of</strong> woody speta<br />

at least 20 cm hilow <strong>the</strong> surface.<br />

cies was controlled largely by <strong>the</strong> mean depth h<br />

Tfle rema<strong>in</strong><strong>in</strong>g tflree red maple swamp cornmunities,<br />

C~MX sbrictn - Awr, Ccirex lacustris-Acer,<br />

<strong>the</strong> water table dur<strong>in</strong>g <strong>the</strong> grow<strong>in</strong>g season and <strong>the</strong><br />

duration <strong>of</strong> <strong>the</strong> summer drawdown. <strong>Red</strong> maple<br />

arrd Symplor~irpus -Acer, were observed both <strong>in</strong> was <strong>the</strong> dom<strong>in</strong>ant tree <strong>in</strong> <strong>the</strong> severely flooded<br />

valley hotbms and <strong>in</strong> association with spr<strong>in</strong>gs at sites, where <strong>the</strong> water level was highest and <strong>the</strong><br />

<strong>the</strong> bases <strong>of</strong> valley . s~o~B. 1~1 valley bottoms, water period <strong>of</strong> drawdown was 8 weeks or less. Hemlock<br />

levels for all <strong>the</strong> commur~ities ranged from about swamp had a lower mean water level, but shorter<br />

20 to $0 cxtr. aPK>vca C.c.3 20 to crrz below <strong>the</strong> surface drawdown period, than <strong>the</strong> mixed conifer-red madur<strong>in</strong>g<br />

<strong>the</strong> grow<strong>in</strong>g season; howovc~r, dur<strong>in</strong>g<br />

&larch, aurfa~e wt~f~e~r was eonsidcrribly deeper <strong>in</strong><br />

Lha auctgt- to~xxrrlrrtlil ics (Fig. 4.2). At aftr<strong>in</strong>g siteer,<br />

190th sedge rorr~nzurkitien tltd water levels with<strong>in</strong><br />

5 -10 crn <strong>of</strong> ttie s~rl*f,rrcb througt~oul <strong>the</strong> grow<strong>in</strong>g<br />

aeasol.1 arrd were fl~wd~d to A ciopth <strong>of</strong> aniy 10-<br />

213 c.rn dur<strong>in</strong>g tlzc* elrr<strong>in</strong>g. ??re$ sedge cornrxrunities<br />

differed chicfly <strong>in</strong> xxtitrient ~Catue, <strong>the</strong> Caren<br />

Ictcustris-Acrr comrnunit~y wsccurrirlg <strong>in</strong> slightly<br />

ple communities (Table 4.1). Mean depth to <strong>the</strong><br />

water table was also one <strong>of</strong> <strong>the</strong> key factors separatirrg<br />

four ground vegetation associations occurrirxg<br />

<strong>in</strong> <strong>the</strong> mixed conifer-red maple swamps; ash<br />

cont~nt and bulk density <strong>of</strong> <strong>the</strong> organic soils were<br />

o<strong>the</strong>r important factors @able 4.1).<br />

P~ratley and Fahey (1986) concluded that, <strong>in</strong><br />

areas <strong>of</strong> <strong>the</strong> forested wetland with low mean water<br />

levels, <strong>the</strong> duration <strong>of</strong> summer drawdown was an<br />

ricizrr arms. The SS~~nrplwnr~~us- Arc~r coxn~nuniCy <strong>in</strong>:portant factor <strong>in</strong>fluenc<strong>in</strong>g both overstory and<br />

OCEUIT~*~~ at, ~pr<strong>in</strong>h: sittas that wcw cttlly seaso~lally ground vegetation composition. Where mean<br />

Fig. 4.2 Water level fluctuation <strong>in</strong> red<br />

maple swamps and o<strong>the</strong>r wetland<br />

communities <strong>of</strong> northwestern Connecticut<br />

(redrafted from Messier<br />

1980).


Table 4.1. Soil and water table characteristics <strong>of</strong>three forested wetland communities at Labmior Hollow<br />

Swamp <strong>in</strong> central New York (modified from Pamtley and Fal'LLey 2986).<br />

Mean Mean Mean Duration<br />

No. <strong>of</strong> Mean soil pH Mean % bulk water table <strong>of</strong> drawsoil<br />

litter at nonvolatile deptha downa<br />

Association<br />

samples pH 12 cm (weeks)<br />

-<br />

Forest<br />

Hemlock swamp<br />

Mixed coniferred maple<br />

(white p<strong>in</strong>e phase)<br />

Mixed coniferred maple<br />

(larch phase)<br />

Ground vegetation b<br />

BT<br />

CL<br />

CP<br />

IV<br />

DV<br />

-<br />

awater table data are based on weekly mensure~nents dur<strong>in</strong>g one grow<strong>in</strong>g season (1984).<br />

b~,und vegetation associations were: UT= B


Table 4.2. .Rektit.e ~bmchnce<br />

w Q)<br />

naeSrew&rrs Conmctht- &vrn Anderson et ai, l9781.'<br />

lFee layer W T C ~hGb fayer W T C Ground cover W T U<br />

!2+ V<br />

j;<br />

Acer rubrun V A A V&iuna mymbosum V ~aian<strong>the</strong>mum cnnade&e 39."<br />

Carpiraw carol<strong>in</strong>kma R O F RMndmn rismmm A A A Osmunda c<strong>in</strong>nanomea A V A C:<br />

Quercus alba F O A L<strong>in</strong>dem bew<strong>in</strong> A F F Theiyptertsmuebommis F A A<br />

P<br />

Betula alleghuniemis U R F Clethm alnifdta F F F Mitcheila ~pns F A A i?<br />

-.(<br />

Quercus mbm R F Carp<strong>in</strong>us c*~r~ii~icma O Pa'oly~nahtmammutahrna F A 5<br />

P<strong>in</strong>us strobue R R Q Iles certiciiiata F F F Dsnnswdtiapunctitobuia O F A -9 ;1<br />

Ulmus mbm 0 Lyonia tigustrim R E F Trientalis borealis O F A w<br />

h3<br />

Capa mnliforntis<br />

R<br />

Hamnrn~lis cirg<strong>in</strong>iQna O R R Rubus lxispidus F O O<br />

Nyssa sylvatim 0 R Smilax hprkea R R R Coptis trifolia F F F<br />

Frax<strong>in</strong>us ameiicana 0 R Fmlnus amertaratcr R O F Medeokz cirg<strong>in</strong>iana 0 0 F<br />

@ems bmbr R F viburnum mrifolium R F F Ly~podium obsntrum F A V<br />

Sassafras albdum R Qssa syir at& R O R Lycopodiurncornplanaturn F F F<br />

Amr saceha.m .n R Ribs trisfe R Amlia nttdicnutis R F A<br />

Ulmus ameriozna R Carya a>TCEZforrnis R S~hagrrum spP- A F<br />

Carya ouata R F Fims strobus R Sy mploazrpus foelidus F<br />

Betula lenta 0 R Cwbm hienfcth R 0 On(3ciecr sensibtiis 0<br />

Cdstanea &ntata R 0 b'iburnum ientago R Trillium ereetum R<br />

Prunus permy luanim R Ulmus mbm R Leudryurn ghmm 0<br />

Gaylussxia bacrnta R A Monotmpa uniflam R<br />

Quem alba F A Camx sbriekt R<br />

Acer mbmm F F Viola app. F R<br />

Vm<strong>in</strong>ium angtlstifalium R F Arisaema triphyllum F R<br />

A@r saccharurn R F Thuidium dellcntulum F O<br />

Gary ocata R R Athyrium filix-fem<strong>in</strong>a F O<br />

Betula ailegitaniertsis R R Lycopodium luciduium 0 R<br />

Quercus mbm F Thlypteris <strong>the</strong>lyptemides 0 R<br />

Prunus semt<strong>in</strong>a F Leersia virg<strong>in</strong>& R R<br />

CoqLus cornuta F Polystkhm acntstichoides F<br />

Arneiarachier arbarea 0 Osmunda regalis R<br />

Sassafras albidum 0 Amphicarpa b mcteata R<br />

Cows fbrida 0 Soltdago ep. R<br />

Fagus gmdfolia R Cam pensylvaniaz F A<br />

Kalmia angustifolia R Rubus app. 0 F<br />

Betula populifolia R A- why@ R R<br />

Kalrnla latifoiia R Pyrola rotundifol<strong>in</strong> R<br />

Par<strong>the</strong>mxissw pu<strong>in</strong>quefolia R Panax rrif01iu.s R<br />

Rosa rugosa<br />

R<br />

V = very abundant (22.8%).<br />

<strong>of</strong> plant specks <strong>in</strong> urefhrrd fWa tnuzsitiora {T), and rrpkd (I;r) zones asscxiated with eight red maple swamps <strong>in</strong>


Fig, 4.3. Relatlvc importance <strong>of</strong> plants from five wetlrtr.ltf<br />

<strong>in</strong>dicator catgones along a soil xnaisture gradient<br />

between red maple swamps and adjacc~nt uplard<br />

foreeta <strong>in</strong> sou<strong>the</strong>rn Fthode Island. Wetland <strong>in</strong>dicator<br />

categories are OBL = obligatcl wetland, FACW =<br />

facultative-wetland, PAC = facultative, FACIJ -<br />

faculhtive-upland, and CJFL = obligate upInnd Soil<br />

moisture categonea are W'Da = very yoorly dra<strong>in</strong>ed<br />

organic, Vf'b = very prly drairled rnlneral, PI3 =<br />

<strong>in</strong> <strong>the</strong> cllnng<strong>in</strong>g coxngmsit ion azid relative abunrtnncc<br />

<strong>of</strong> krerb-layer species (Fig. 4.3). As one<br />

migbi expect, facultative -wetla~'td(FACW) herbs<br />

decl<strong>in</strong>ed <strong>in</strong> abundnlrcc. whilt. facultative-uplaxid<br />

(FACXJ) hcrbs <strong>in</strong>creased along <strong>the</strong> ~~radierxt fmm<br />

very gmrly rirn<strong>in</strong>or3 to rnodcrakky well dra<strong>in</strong>ed<br />

soils. Obligate wetlartd (OBIJ) iserbs occurred only<br />

<strong>in</strong> very poorly dra<strong>in</strong>td soils. Ttle relative cover <strong>of</strong><br />

facultativt- (FAC) herbs peaked <strong>in</strong> ttte poorly<br />

dra<strong>in</strong>ed and somewhat ~x~,rly dra<strong>in</strong>ed soil classes,<br />

suggc*stirig that <strong>the</strong>se plants are bst ndapkd to<br />

moisture vo~xdit<strong>in</strong>ns neiw <strong>the</strong> rliiddle <strong>of</strong> <strong>the</strong> gradient<br />

exatnix~t~ci.<br />

A moisture-related gradient was evident <strong>in</strong> <strong>the</strong><br />

tree. Iaycr as wt4X (Fig. 4.3). Iteci maple (FAC) was<br />

domirrtr~rt <strong>in</strong> ttrc wrtlaizd (VPD -PI.)) portions <strong>of</strong><br />

<strong>the</strong> gfradient, and stce~dily dthcliricd <strong>in</strong> abundance<br />

irz rm upslope direction. White oak (FACU) predomix~nted<br />

<strong>in</strong> modt~rattily well dra<strong>in</strong>ed soils and<br />

gcrlc~rally declixred <strong>in</strong> abu~~c.tnr~c~ z t soil ~ nioisture<br />

<strong>in</strong>creased. This sp~ci~~s wits ztearly as abundant as<br />

red mirplc <strong>in</strong> ptx~rly drair~ed sn~ls, but decreased<br />

sitarply <strong>in</strong>1 vc~y poorly drir<strong>in</strong>ed soils. 111 <strong>the</strong> shrub<br />

l:rytbr, tilt. prcrtt al,urlrfirrwr~ <strong>of</strong> FAC species along<br />

<strong>the</strong> entire 1cr~gtFI.h <strong>of</strong> xrlost trwrrscets pig. 4.3) obsctrrcbd<br />

moisture-related trends <strong>in</strong> vegetation (Allen<br />

et ~1. 1089). Facrzltntivt-1 (FAC) shrubs prcdomirtntcd<br />

at 48 <strong>of</strong> <strong>the</strong> 54 sai~~plixlg stations. A<br />

prcpondernncr <strong>of</strong> swoet popg,crbush throughout<br />

tlic. moisture gradient wrts Irtrgtlly rceporisible fur<br />

<strong>the</strong>se rcsrllts.<br />

l?le shift, irk pretilorn<strong>in</strong>rult irldicat~r status <strong>of</strong><br />

herb layer s~>ec*fcs clrstrly sipnled <strong>the</strong> eharlge<br />

frorrl very paorly draixlcd to lroorly dm<strong>in</strong>ed soils;<br />

tiowc>vcr, <strong>the</strong> rflange frorll hydric to rtonhydric<br />

soils, which occurred betwccrl prly druirxed and<br />

somewtiat poorly drnirled ~tat~ians (Allen et al.<br />

1988), was not accompa~ticxrl by a diet<strong>in</strong>ct chmtgc<br />

irk <strong>the</strong> wrtla~ld ir~dicator composit+ion csf any <strong>of</strong> <strong>the</strong><br />

vegetation layers (Fig. 11.3).'Rlus, precise localion<br />

af t,hc bouxzdary <strong>of</strong> rctii rn~i~~lr~ swttrnps rrray bo<br />

prly dra<strong>in</strong>ed, SE) = aomcwIlat ~worly dram&, ~ n d<br />

= maderahly well dra<strong>in</strong>ed. Data were collected<br />

&om <strong>the</strong>e sites (E C. Golct, unpublrshrd data).<br />

'Psthle 4.3. Wetland <strong>in</strong>dirrator ctrtc>goriccs far plant<br />

species tht wru r <strong>in</strong> turf ka<br />

this study should provide <strong>in</strong>sight <strong>in</strong>io pattcrris <strong>of</strong><br />

species distribution <strong>in</strong> red maple swamps<br />

throughout <strong>the</strong> Kor<strong>the</strong>ast.<br />

The moisture gradient, which was well def<strong>in</strong>ed<br />

by topographic pr<strong>of</strong>iles, groundwater levels, and<br />

soil dra<strong>in</strong>age cimaes at all <strong>of</strong> <strong>the</strong> Rhodc Island<br />

sites (Alien et a1. 1989), was most clearly r<strong>of</strong>lecwd<br />

Category cudo wetlands (96)<br />

- -- - -- -<br />

Obligak upland 'tSPJl, < 1<br />

Facultative - upland FACU 2-33<br />

F~culttrve FAG 3-66<br />

Fhm1tatlvc.--wetlmict FACW 87-99


difficuit to del<strong>in</strong>eate <strong>in</strong> many <strong>in</strong>stances if only<br />

vegetative criteria are used, The shift <strong>in</strong> relative<br />

abundance between red maple (PAC) eu~d white<br />

oak SI;"ACU) trees most closely approximahd <strong>the</strong><br />

change from hydric to nonnhydric soil$,<br />

Obligaw wetiand (OBL) trees atte rare <strong>in</strong> <strong>the</strong><br />

glaciated Nor<strong>the</strong>ast; AtlanLir white cedm is <strong>the</strong><br />

ody relatively cornton ~pec(F?Cie~ SO ~Ia~sified ('&xzd<br />

1988). In <strong>the</strong> Ktlode fslalld study, <strong>the</strong> few cedars<br />

prcssent were restricted b very ywx>rIy dra<strong>in</strong>ed<br />

The greet majority <strong>of</strong> plant spies that occur i ~r mils. Except for scarlet oak (@erm~ carcirzca),<br />

11art;1xeae@tll. red maple swamps csxn grow uttder a<br />

wide range <strong>of</strong> 4 1 rnoi~ture c~mdltions; that is, nlmt<br />

which is an obligak uylmrd (U12L) smies, <strong>the</strong><br />

rema<strong>in</strong><strong>in</strong>g trees were <strong>in</strong> onci <strong>of</strong> <strong>the</strong> facultative<br />

species we FACW, FAC, or WCrJ. This is not sur- categories. The most cornrnon <strong>of</strong> <strong>the</strong>m-Acpr rupri'1~i~1g<br />

<strong>in</strong> light <strong>of</strong> Lire aeasonsl and annual waterlevel<br />

fluctuation <strong>in</strong> <strong>the</strong>se wetlmds. Table 4.4 shows<br />

brurn, ghrercus alba, and Nyssn syllvcrticcr-wcurred<br />

<strong>in</strong> every soil dra<strong>in</strong>age class.<br />

tire di~kib~ztioz~, by soil dra<strong>in</strong>age ccletss, <strong>of</strong> <strong>the</strong> nlajor Obligab wet,laxzd ahrubs RIBO me rare <strong>in</strong> northtree,<br />

shrub, md herb Iayor specie8 earnunbred <strong>in</strong> eastern red maple swaps. Of <strong>the</strong> four OBl, ape<strong>the</strong><br />

Rhde Ialmd rnaiatrwe gradient atudy, doz~<br />

ciea recorded ~II. <strong>the</strong> Khde Idand ~ptudy---awanlp<br />

with <strong>the</strong> wntSmci <strong>in</strong>dicator status <strong>of</strong> each. rose, pis011 aurnac, bnmkside aldor (A<strong>in</strong>us serm-<br />

Table 1.4. Frequmqy <strong>of</strong>rxntrn~mc (W <strong>of</strong> rn rrjr,r f re@, shnlb, and herb lqcr s~~cics by mil dm<strong>in</strong>cgc chss<br />

irz titc iuetlctrulj upltrrrd tmnsitior-t zone r,ftlircc lilxxle 11sk;lrrcl RT*! mop& strtrrmps (shrub crnd herb dntcr<br />

fnrna Davis 19881.<br />

S~X~


Specltta b ~ t us'. ~ t (1 = (rl = Wl8) <strong>in</strong> = I:yt~) (,a. = 7) (n =: 9)<br />

'i&<strong>in</strong>utna t~reillaru IJIT d<br />

29 33<br />

Gamx penqlranlcn IT%, 36 42 78<br />

Gaulthna p m rnbet~ Fi%Cl' 67 8G 1 (XI<br />

FAr 11 57 tW 89<br />

mcu %2<br />

-.<br />

44<br />

L-YCD~~!~<br />

rn ohcar m nz FkZC t! 1: 11 14 57 E.8<br />

? 1 44<br />

29 22<br />

M h k r vi~nuirur<br />

fsiorwtmp uuntflam<br />

nn<br />

FAC t !<br />

lei<br />

17<br />

GI<br />

14 Mitcklla mpens FACU 6<br />

1<br />

43<br />

Ilrnr gla bra fXUW 33 11 71 7 I 44<br />

qurrq11(!fc)lru FAC'I! 17 X) 14 11<br />

Uuulnr<strong>in</strong> sessilifolm FACU 33 ti(? 100 i M) 44<br />

Anemone<br />

fib<strong>the</strong>mum r?rrruzdcrtse E'rZC 67 89 $6 100 89<br />

Tmntalis bsmlrs Ft2C 100 67 93 I (K) 78<br />

Rubs hwLdLLS FAC: W 50 89 14 29 67<br />

Qsrnundn cmr~mumi.cr FGC' W ,50 Mi 100 Wi<br />

Ari,vc~nm trrphylltr rrt FAC W 'A!<br />

C'WW~U iWnlpWfCZ nR 'A3<br />

Ca n*x smrsa PAC W 3 3<br />

pIPIyn)pm wuflonl~ 013 I 33<br />

Vmlrz plkm C)L3I, 39<br />

Aakr navr-bc.&r FAC W 50<br />

Camx k,rwhocnqxl OBI., 60<br />

?bxuddmn rntllclrr~v FAC 17 6 1<br />

Lilturn superbi~m FACW 60 22<br />

mtypte& sirnukatcr FACW 83 44<br />

Thdypteris thc?ly;r>fcmdr?s FACW 17 39<br />

u~ru/u1~folu1 FACU 17 2%<br />

OHI:' 1 (XI 83<br />

Symplocn pus f~~tidus OnL, I<br />

- <<br />

(X) i.2<br />

aVg'f) = vwy pwriy ~lrf;ttt~%i, it[) pt'6y dre8t:1(~d, Sj'iJ = & >II~VW~I = ~ t t ~ ) ( ~ wr!l t ~ drn$rtwi ~ ~ k ~ Sw v '1'nblt,<br />

2 4 for (ff*filtlti(r!l~<br />

"~h.e <strong>in</strong>yrar spmxt.8 IJICIL~~C 1~11 WCXHIV<br />

~ I C I Iti1 X ~ lc-tlnt ~ fi 111 111 II(-IKI~~, h~lrctt, Inycr Ml)*+ctes ~rlvittd~ WIHK~V pit~rttli irwrt o 5 1x1 ti 11,11111,<br />

trcri, Inyrr sp.rtt.n ~nrfudc* tiortwcxxiy vnxt-ulnr j)lrtr~k, wrrcul~ b,irct~tac t c * ttltir~ ~ O 5 irr tail, firrci S!)ti**trlunr rrrtwHcti.<br />

" I: Y. &wfr slid Wlldjjftl Servtrr, wcqt!urx6! irztl~rntrir ~ltttoti for ttic" Nrrrtltrnwt rr*gtc>tr (tL"csri l!I#) Sr.ch 'i'*ti~!c 4 3 for dcfiriitioi<strong>in</strong>, tta<br />

= irtd~rrrtor status itot H.WI~IIP~<br />

'i~hpn. n vant5s, t.11~ fimt nutrllx.r ta 111e 'SI~III~IIC tufts ~ OT Lr(.B, r~~~tely BWOC& 13(?pprbu~h,<br />

swamp azalea, tlighbush blueberryp common<br />

greeiibrier (Srrzil~x TO~UIZ~L~O~~C~), and fet~l"f3usi1,<br />

were cunxrnoli on soa~ewhrit paorly &airled and<br />

~noderatcly well dra<strong>in</strong>ed soils as well (Table 4.4).<br />

Vary<strong>in</strong>g alld ~eem<strong>in</strong>gly cor~Lri~rii~COa"y ~taCE?~nexltEE


<strong>in</strong> <strong>the</strong> librature btlx>~i<strong>the</strong> moi~ttlrcj status <strong>of</strong> array swmp spcic*8 i.;lo~ig fd srluisture padiexxt<br />

padicular a b b sp*cicoa car1 ba ext~laix~ed simply (Ha11 and Smith 1955; Gill 1970; 1k11191.1; Teskey<br />

by <strong>the</strong> faculbtive il'i~tx~m <strong>of</strong> <strong>the</strong>se ~~(fcie"13. For and W<strong>in</strong>cMey 1977; Theriot f 9%). Nd-t~leraxxce<br />

PeaaorxtP o<strong>the</strong>r than W R ~ regime T (e.g., lmd-use* data may ba used Lo (If explaixi <strong>the</strong> distribution <strong>of</strong><br />

histan>ry or mil nut-riant statliar), R I>~~~CUIPLP fneul- aprs~ioa <strong>in</strong> natural vc.etlantlrs, (2) formast tihe irntativa<br />

gpecies may be aburzdarlt irk very wet<br />

swmxps axrtl irk reist'ively dry swmnisPi.<br />

Ikcrttxm <strong>the</strong> root zone for most herh 1ayc.r apecies<br />

ia quik shallow, this vchgetaLion layer i~ more<br />

pact8 <strong>of</strong> <strong>in</strong>crearrcd wakr kevels sax plant g~oMh<br />

and survival, and (3) predict chawes <strong>in</strong> tho structure:<br />

<strong>of</strong> <strong>the</strong> plant csmanunity. A few wetland me<br />

epecies art. able to survive 3 ytaars <strong>of</strong> cant<strong>in</strong>uo~ls<br />

rc*si>orxsiva than ttrrr allrub trr tree 11~pyers to differ- ixlundation ((:reen 1!347f, but mo~t are u~tablc* ta<br />

ences <strong>in</strong> soil rnoi;~t~arcl. at or itoar thu surface <strong>of</strong> <strong>the</strong> sxiwiv~ aver1 2 years (Broadfaat and Williston<br />

~pmtl~rd (Davis 19%; A1lc.n et a&. 1989). As cn mrsutt, 1973). CIf39 deciduous tree ~peeiestudied by 13~11<br />

tlne iwrb Iapr <strong>of</strong> IXIB~IC* B I W ~ ~ fret.luerxt,ly<br />

~ I B and Srnith (1955) <strong>in</strong> Tcnnesscs, r.ionch warr able t;cr<br />

corttairxs tt $la:~ater diver~ity <strong>of</strong> elx*cicse <strong>in</strong> harms nJ<br />

wc*tlund <strong>in</strong>dicntx>x: etntus. In tIis Rh<strong>of</strong>ie Islarrd<br />

moif-ith~irt3 prrdiexrl stttdy, <strong>the</strong> f~arguex~ry <strong>of</strong> cwcurretxcp<br />

<strong>of</strong> mratay Itcprbl layer spociee rtcnjns <strong>the</strong> vrariow<br />

soil clraixxagr* C~Z(BRC*H cIii~t11y n~ftfit-h~d t hc wetsurvive<br />

if <strong>the</strong> mt ayskm was covered with water<br />

for xriare thtzrr 54% <strong>of</strong> ths grow<strong>in</strong>g wmon durulg<br />

an 8-year period.<br />

Flp7c~itti rrt ol~~rt~tl~<br />

rrl ), triore? growirk# 8criso11,u) nrcx riot imprtant MI)(ZC~CP~<br />

atrtd y~tl&ri~lg~*k)c+rr~~ c*ltsitrly W~TV r~xor-~vo~~iri~~~~i<br />

<strong>in</strong> rn red ~t~ul~le Hwamys. %~rs nltrnt rorrunndy fcrurtd<br />

upltud stril~ td1r411 <strong>in</strong> wcatltrtld soilu, t)i)ligi~t~~ WWI*-<br />

iat~cf (OfjIJ B ~X\C~B wtw found OXII~ <strong>in</strong> very ~rexirly<br />

trt ~cast>~ially floudcd swa~nps are typically classifivtt<br />

tolorar-rt or ir~tsrmc*di~tbly tolerant. Xxltnlerdr~kll~d<br />

MOIXR, ~ lld F$$(;W NP'


Table 4.5. Floorl toienznce <strong>of</strong> trees and <strong>in</strong>~c shrubs that occur <strong>in</strong> northastern rtzd maple sswamps (from<br />

Very tolerant spies: tsees that can withstand fldlng for periods <strong>of</strong> two or more gxawirlg seasans; <strong>the</strong>se species<br />

exhibit epod adventitious or secondary ruot p~%h durixlg this period<br />

Tolerant species: trees that can uittlstarld flood<strong>in</strong>g for nmst <strong>of</strong> one grow<strong>in</strong>g season; some new root development is<br />

expected dur<strong>in</strong>g this period<br />

Intermediately toleraxlt species: spies that are able to siirvivc flood<strong>in</strong>g for periods between 1 anid 3 months dur<strong>in</strong>g<br />

<strong>the</strong> grow<strong>in</strong>g season; <strong>the</strong> rwt systems <strong>of</strong> <strong>the</strong>se plants produce few new rrmts or are dorxnant dur<strong>in</strong>g <strong>the</strong><br />

flooded period<br />

Acer saccharurn<br />

Alnus imna<br />

Betula ulIeghanknsis<br />

Carp<strong>in</strong>us mml<strong>in</strong>iurm<br />

Carp cordiforrnis<br />

Crutac?gus spp.<br />

Intolerant species: species that cannot withstand fload<strong>in</strong>g for shod periods (I month or less) dusirVx <strong>the</strong> grow<strong>in</strong>g<br />

season; <strong>the</strong> mot systems die dur<strong>in</strong>g this period<br />

Alnus rugom<br />

&tula pa~rifem<br />

Retub populifblk<br />

Fbgus gmdifolk<br />

Juniprus virg<strong>in</strong>iuna<br />

Lirhdendmn tulipifem<br />

Pn~rzus ser<strong>of</strong> zncr<br />

C&rcus albu<br />

C;tUem'i imbrtcuna<br />

@em$ nibm<br />

rSassafm albldunt<br />

Kkraga cwznadr<strong>in</strong>sis<br />

aa a result, abveground biomaas <strong>of</strong> tterbs <strong>in</strong>creased<br />

as much as sevenfold <strong>in</strong> certabi arease The<br />

prolonged fl+ greatly curtailed reproduction<br />

by green ash, elm, and blue-hh, but favored red<br />

maple, which reproduces ma<strong>in</strong>ly by s k ~ spmtrb p<br />

and root suckem.<br />

Several authors (e.g., -towry 1384; &atley arid<br />

Fahey 1986) have noted difficdty <strong>in</strong> a&mpts to<br />

expla<strong>in</strong> differences <strong>in</strong> ~m1uni4 -psition af red<br />

maple swampa on <strong>the</strong> basis <strong>of</strong> water reghe done.<br />

This, ~ icdty may arise for at least tke@ rixsans:<br />

(1) <strong>the</strong> segment <strong>of</strong> <strong>the</strong> moisture cont<strong>in</strong>uum exam<strong>in</strong>ed<br />

<strong>in</strong> ~udl studies may be too nmw to detect<br />

moistture-mlahd trends <strong>in</strong> species distribution;<br />

(2) significant local variations <strong>in</strong> soil moisture,<br />

duo surface microrelief, may not have been<br />

eowidered; and (3) otller environmental factam,<br />

such hg ~kritrie~lt B ~ ~ X X01"<br />

S fmb-use hist<strong>of</strong>j, may<br />

be relatively more hp[>ortant than water regime<br />

<strong>in</strong> expla<strong>in</strong><strong>in</strong>g species distributions <strong>in</strong> some cases,<br />

especially where tilo range <strong>of</strong> mnoisture conditions<br />

exsunir~ed is nanow.


Orig<strong>in</strong>. an$ Relationship to Water Regime<br />

Microrelief, also referred to as mound-and-pool<br />

bpography, humock-and-hollow microtopgra-<br />

P ~ K and pit-and-rnaurtd microtopography, is a<br />

characteristic feature <strong>of</strong> nonfloodpla<strong>in</strong> forested<br />

wetlands <strong>in</strong> <strong>the</strong> Nor<strong>the</strong>ast (Tittle 19550; Thompson<br />

et al. 1968; G~ACO 1972; Vogelmann 1976; Messier<br />

1980; Swift 1980; Ehrenfeld and Gulick 1981;<br />

Huenneke 1982; Malecki et aI, 1983; Lowry 19M;<br />

Paratley and Fahey 1986). Some floodpla<strong>in</strong><br />

swamps also exhibit pronounced mieroreiief<br />

(Buell md Wistendahl 1955; Hard<strong>in</strong> and Wiatendahl<br />

1983; Menges and WaXler 1983). The development<br />

<strong>of</strong> microrelief has been attributed to a<br />

variety <strong>of</strong> causes, irrclud<strong>in</strong>g frost action (Satkrlund<br />

l%O), w<strong>in</strong>dthrown trees (Satterlund 1960;<br />

Lyford and MacI~txxi 1%; Malecki et al. 1983;<br />

Beatty 1984; TJowry 1984; EJaraLley and Fahey<br />

1986), concentration <strong>of</strong> tree roots above high<br />

water Lablea (Bray 1915; 1,owx-y 1984; Paratley<br />

and Fahey 198G), and ri~izomatous growth <strong>in</strong><br />

shbs (Ehrenfeld and Gtilick 1981; Lowry 1984).<br />

S<strong>in</strong>ce trees grow<strong>in</strong>g <strong>in</strong> swmps generally me<br />

more shallowly rooted than trees on upland sites,<br />

<strong>the</strong>y are particularly susceptible to w<strong>in</strong>dthrow<br />

Fig. 4.4), which appears ts be <strong>the</strong> most common<br />

cause <strong>of</strong> mound formation. <strong>Red</strong> maple has a shallow,<br />

horizontal root system <strong>in</strong> swamps, but <strong>of</strong>ten<br />

produces a long tap root <strong>in</strong> upland habitats where<br />

water tables are deeper (Toumey 1926). Root<strong>in</strong>g<br />

depth and <strong>the</strong> frequency <strong>of</strong> w<strong>in</strong>dthrow have been<br />

shown to vary as a function <strong>of</strong> water table depth<br />

even among forested wetlands. In mixed coniferhardwood<br />

swamps <strong>in</strong> nor<strong>the</strong>rn Michigan, Satterlmd<br />

(1960) found that <strong>the</strong> depth <strong>of</strong> maximum root<br />

penetration for red maple ranged from as little as<br />

51 cm <strong>in</strong> swamps with persistently high water<br />

levels to as much as 147 cm <strong>in</strong> drier swamps. The<br />

frequency <strong>of</strong> w<strong>in</strong>d-damaged trees was 28% on sites<br />

where <strong>the</strong> water table was periodically or permanentiy<br />

high, but only 18% <strong>in</strong> drier swamps.<br />

Mound heights <strong>in</strong> red maple swamps range<br />

from about 15 cm for small shrub mounds to as<br />

much as 1 m for large tree mounds (Van Dersal<br />

1933; Thompson et al. 1968; Messier 1980; Lowry<br />

1984). Microrelief is usually most pronounced <strong>in</strong><br />

<strong>the</strong> wettest swamps. In sou<strong>the</strong>rn New Jersey red<br />

maple swamps that are flooded throughout most<br />

Fjg. 4.4. <strong>Red</strong> maple tree toppled by w<strong>in</strong>d. W<strong>in</strong>dthrow is common <strong>in</strong> swamps, where trees are shallowly<br />

-*a, is believed to be primarily responsible for <strong>the</strong> development <strong>of</strong>mound-and-pol ~crorelief.


<strong>of</strong> <strong>the</strong> year, <strong>the</strong> forest floor commonly consists <strong>of</strong><br />

deep hollows and convex mounds; <strong>in</strong> swamps that<br />

lack surface water entirely or that are flooded only<br />

temporarily, nnicrorelief is not as well developed<br />

(Ehrenfeld and GuXick 1981). Lowry (1984) took<br />

spot elevations at over 700 po<strong>in</strong>ts <strong>in</strong> each <strong>of</strong> six red<br />

maple swamps and six Atlantic white cedar<br />

swamps <strong>in</strong> sou<strong>the</strong>rn %ode Island and determ<strong>in</strong>ed<br />

that microrelief was more highly developed <strong>in</strong> <strong>the</strong><br />

cedar swamps, which had significantly higher<br />

mean water levels as well. He dso confumed that<br />

<strong>the</strong> extent <strong>of</strong> microrelief <strong>in</strong> <strong>the</strong> red maple swamps<br />

was related to water level. Consider<strong>in</strong>g all po<strong>in</strong>ts<br />

more than 20 cm above <strong>the</strong> average level <strong>of</strong> <strong>the</strong><br />

depressions to be mounded, he calculated that<br />

nearly 75% <strong>of</strong> <strong>the</strong> variation <strong>in</strong> <strong>the</strong> amount <strong>of</strong><br />

mounded ground among <strong>the</strong> six swamps could be<br />

expla<strong>in</strong>ed by differences <strong>in</strong> <strong>the</strong> 7-year mean water<br />

levels among <strong>the</strong> sites. Figure 4.5 illustrates pronounced<br />

microrelief <strong>in</strong> a seasonally flooded red<br />

maple swamp.<br />

How active a role vegetation plays <strong>in</strong> <strong>the</strong> development<br />

<strong>of</strong> microrelief is unclear. Initially, <strong>the</strong> dis-<br />

tribution <strong>of</strong> trees and shrubs <strong>in</strong> a swamp is determ<strong>in</strong>ed<br />

by <strong>the</strong> relative wetness <strong>of</strong> various possible<br />

germ<strong>in</strong>ation sites on <strong>the</strong> forest floor. Once <strong>the</strong>y are<br />

established, those trees that have <strong>the</strong> ability to<br />

develop a compact, elevated root system clearly<br />

stand a greater chance <strong>of</strong> surviv<strong>in</strong>g <strong>the</strong> effects <strong>of</strong><br />

prolonged high water levels. Root system development<br />

thus may <strong>in</strong>crease mound size. Significantly,<br />

radial growth <strong>of</strong> red mqle trees <strong>in</strong> any given year<br />

appears to be directly related to <strong>the</strong> deviation <strong>of</strong><br />

that year's average water level from <strong>the</strong> long-term<br />

average. Lowry (1984) demonstrated that, <strong>in</strong><br />

Rhode Island swamps, growth was greatest <strong>in</strong><br />

years when water levels were closest to <strong>the</strong> 7-year<br />

mean. This f<strong>in</strong>d<strong>in</strong>g suggests that <strong>in</strong> each swamp<br />

<strong>the</strong>re may be an optimal distance, depend<strong>in</strong>gupon<br />

water regime and soil characteristics, between <strong>the</strong><br />

elevation <strong>of</strong> <strong>the</strong> average water level and <strong>the</strong> depth<br />

<strong>of</strong> tree roots. Whe<strong>the</strong>r <strong>the</strong> role <strong>of</strong> vegetation <strong>in</strong><br />

microrelief development is active or passive, variation<br />

<strong>in</strong> surface elevation with<strong>in</strong> a swamp maximizes<br />

<strong>the</strong> opportunity for any tree to achieve that<br />

optimum position and to maximize its growth.<br />

Fig. 4.5. Mound-and-pool microrelief <strong>in</strong> a seasonally flooded red maple swamp. <strong>Swamps</strong> with<br />

particularly high water levels, such as this one, generally have high mounds and little vegetation<br />

grow<strong>in</strong>g <strong>in</strong> <strong>the</strong> pools. The measur<strong>in</strong>g stick is graduated <strong>in</strong> ZQ-cm <strong>in</strong>cremenk; <strong>the</strong> water averages<br />

15-25 cm <strong>in</strong> depth. The photograph was taken <strong>in</strong> mid-April.


Influence on Swamp Vegetation<br />

Floristic Composition<br />

Through its <strong>in</strong>fluence on soil aeration (Huenneke<br />

1982; Paratley and Fahey 1986), nutrient<br />

availability (Ehrenfeld and Gulick 1981; Paratley<br />

and Fahey 1986), and relative litter accumulation<br />

(Little 1950; Malecki et al. 1983; Paratley and<br />

Fahey 1986), microrelief creates a variety <strong>of</strong> microhabitats<br />

and thus has a major effect on species<br />

composition and distribution <strong>of</strong> swamp flora.<br />

Beatty's (1984) research <strong>in</strong> a sugar maple-Arnerican<br />

beech upland forest <strong>in</strong> eastern New York<br />

showed that microrelief may cause local variations<br />

<strong>in</strong> soil acidity and soil temperature as well.<br />

Pronounced microrelief allows species with widely<br />

differ<strong>in</strong>g soil moisture requirements or tolerances<br />

to coexist <strong>in</strong> a limited area <strong>in</strong> red maple swamps<br />

(Bergman 1920; Sampson 1930; Thompson et al.<br />

1968; Huenneke 1982; Paratley and Fahey 1986).<br />

Wile mosses, liverworts, and hydrophilic herbs<br />

thrive <strong>in</strong> seasonally flooded or saturated depressions<br />

and at <strong>the</strong> bases <strong>of</strong> mounds, species unable<br />

to tolerate prolonged saturation grsw higher up<br />

on <strong>the</strong> mounds (Nier<strong>in</strong>g 1953; Thompson et al.<br />

1968; Paratley and Fahey 1986). Figure 4.6 shows<br />

<strong>the</strong> <strong>in</strong>fluence <strong>of</strong> microrelief on plant distribution<br />

<strong>in</strong> a Rhode Island swamp. Faratley and Fahey<br />

(1986) found plant species richness to be positively<br />

correlated with microrelief; <strong>in</strong> fact, <strong>the</strong>y cited high<br />

microsite heterogeneity as one <strong>of</strong> <strong>the</strong> factors most<br />

responsible for <strong>the</strong> unusually high species richness<br />

observed <strong>in</strong> <strong>the</strong>ir central New York study<br />

area.<br />

Under a given water regime, certa<strong>in</strong> species <strong>of</strong><br />

plants tend to occur ei<strong>the</strong>r primarily on mounds<br />

or primarily <strong>in</strong> depressions. However, <strong>the</strong> microsite<br />

preferences <strong>of</strong> some species may change<br />

depend<strong>in</strong>g on mound height or on <strong>the</strong> relative<br />

wetness <strong>of</strong> <strong>the</strong> depressions. In a detailed analysis<br />

<strong>of</strong> <strong>the</strong> relation between species distribution and<br />

microrelief <strong>in</strong> a New York swamp with organic<br />

soils, Paratley and Fahey (1986) found that five<br />

ground-layer plants-<strong>in</strong>clud<strong>in</strong>g spotted touchme-not,<br />

marsh marigold, mosses <strong>of</strong> <strong>the</strong> genus<br />

Mnium, sensitive fern, and nor<strong>the</strong>rn bugleweed-


showed a strong preference for depressions <strong>in</strong> all<br />

four dra<strong>in</strong>age classes sampled: moderately dry,<br />

seepage, moderately flooded, and severely flooded.<br />

Black ash, rough-leaved goldemod (Solidago<br />

patula), marsh blue violet, and marsh fern also<br />

were most common <strong>in</strong> depressions. Dwarf blackberry<br />

(Rubus pubescens), nor<strong>the</strong>rn white violet,<br />

and swamp jack-<strong>in</strong>-<strong>the</strong>-pulpit occurred with high<br />

frequency <strong>in</strong> depressions <strong>in</strong> <strong>the</strong> moderately dry<br />

dra<strong>in</strong>age class only; <strong>in</strong> o<strong>the</strong>r dra<strong>in</strong>age classes,<br />

<strong>the</strong>se three species ei<strong>the</strong>r were <strong>in</strong>frequent or<br />

showed no obvious microsite preferences. Poison<br />

ivy was most common <strong>in</strong> depressions overall, but<br />

occurred most frequently on mounds <strong>in</strong> <strong>the</strong> severely<br />

flooded class.<br />

Six ground-layer species were largely restricted<br />

to mounds; <strong>the</strong>y were partridgeberry, white p<strong>in</strong>e,<br />

blue bead-lily, goldthread, American yew, and<br />

starflower; eastern hemlock, red maple, wild lily<strong>of</strong>-<strong>the</strong>-valley,<br />

teaberry, and knight$ plume moss<br />

(Ptilium crista-castrensis) also showed a preference<br />

for mounds. Only stadlower was relatively<br />

common <strong>in</strong> dra<strong>in</strong>age classes with high mean water<br />

levels as well as low mean levels. In <strong>the</strong> moderately<br />

dry class, several <strong>of</strong> <strong>the</strong>se mound species<br />

showed less fidelity to mounds. Wild lily-<strong>of</strong>-<strong>the</strong>valley,<br />

teaberry, and blue bead-lily <strong>in</strong> particular<br />

were more common <strong>in</strong> depressions <strong>in</strong> <strong>the</strong> moderately<br />

dry class, but more common on mounds <strong>in</strong><br />

<strong>the</strong> wetter dra<strong>in</strong>age classes. Figure 4.7 shows <strong>the</strong><br />

distribution <strong>of</strong> five common species by microsite<br />

and dra<strong>in</strong>age class.<br />

Microsite preferences for <strong>the</strong> ground-layer species<br />

highlighted <strong>in</strong> Paratley and Fahey's (1986)<br />

impatiens biflora<br />

Rubus pubescens<br />

M Dry Seep M Flood S Flood M Dry Se-p M Flood S Flood<br />

Rhus radicans<br />

a,<br />

0<br />

C 70<br />

?<br />

60<br />

60<br />

3<br />

0<br />

O w 50<br />

0<br />

40<br />

.-<br />

U)<br />

c a "<br />

30<br />

2 20 20<br />

a,<br />

a ro<br />

lo<br />

Mitchella repens<br />

Fig. 4.7. Frequency distributions <strong>of</strong> five<br />

plant species accord<strong>in</strong>g to microsite<br />

and water regime <strong>in</strong> a central New<br />

York swamp (after F'aratley and Fahey<br />

1986). Impatiens biflom is grouped<br />

under I. mpensis <strong>in</strong> Table 3.3.<br />

M Dry Seep M Flood S Flood M Dry Seep M Flood S Flood<br />

Maian<strong>the</strong>mum canadense<br />

&j Mounds<br />

w<br />

Depressions<br />

0 Intermediate positions<br />

50<br />

U) MDry= Moderately dry<br />

30 S= Seepage site<br />

MFlood= Moderately flooded<br />

20<br />

S~lood= Severely flooded<br />

M Dry Seep M Flood S Flood


taka wpra-x li)wcir, t raac* df~rlattir-8 W~CN~ mrrngnretaia or1<br />

rr~ottr~cis arid fiart,tu, but %ti!! low 11% deprcsraions kw<br />

Ci\gtsta I ~*tt~taf~it-ll ~K~I~IIIIIW <strong>of</strong> wt~tw th~~~x.<br />

Slarrrh de*rrmty witw yxtaittvrfy xx*CIIam'i t~i<br />

1tswaL atul na1crw<strong>in</strong>v8rr.f 11% snx IartAr lair-I& m*d rrtnpte<br />

raw&znXrR st ctt4ia.ti by I awrg' $I$%$); <strong>the</strong> rt~txc~iarrard m~ac~~n~Bi~*f.<br />

i k3lt.t (l%G!)) obsaxmr?.d that repnductir~xl <strong>of</strong> <strong>the</strong><br />

r~iitjw- ts"i.a* 8gxviiba IIPX mci rrttaple svranl&>e at<br />

%bvsr!~*rnrrraa Ntit irsnaii Wtltllifa. ECcfuge <strong>in</strong> c~enk~tl<br />

Sew York iapiwtrn*1.l to k b~fiflurx~~xd by nsicmwXia3f<br />

6831t1 mxf~%lk*~i ,mil fauxrcl both on aaxrrtixx& axrd <strong>in</strong> depmw-<br />

Baorm* but ttli~y were m>f~c~^"~h?y m<strong>of</strong>e ~bxrt2~11L i:<br />

tirrr II~~?YH~ ~L+~>~Y~~AIQ~X."~, f\ll~tr*rx~n~~ elm dlirw<br />

wt%rea tklai2r)nt rr rf iwly rr*atric.tahd tn <strong>the</strong> drier IIIC)UF~~B.<br />

It] lnw stixltrzactr, nd ~nati~te st>t-.cfia epmtsted ixr p m t<br />

I*~LIxI~'~" L"S tttw 11101~x, but dt"w~tk*f*xti, depmmicjx~<br />

tl:tg. 1,PZ rssutg ww~r<br />

levcis k:lh+d v ~ u d rali y <strong>of</strong>


<strong>in</strong>ga by <strong>the</strong> follow<strong>in</strong>g spr<strong>in</strong>g. Successful<br />

red maple reproduction occurred primarily from<br />

stump spmuts or mot suckers.<br />

he mica^ and phyraial<br />

Properties <strong>of</strong> Soils<br />

The chemical and physical properties <strong>of</strong> soils<br />

have been correlated with floristic variation <strong>of</strong><br />

forested wetlands <strong>in</strong> a number <strong>of</strong> studies (e.g.,<br />

Monk 1966; He<strong>in</strong>selman 1970; Messier 1980; Conner<br />

et al. 1981; Huenneke 1982; Parsons and Ware<br />

1982; Reynolds et al. 1982; Paratley and Fahey<br />

1986; Dunn and Stearns 1987b). Among <strong>the</strong> soil<br />

characteristics that have been related to swamp<br />

floristics are nutrient status, pH, organic matter<br />

content, and texture. Quantitative <strong>in</strong>vestigations<br />

<strong>of</strong> <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> such soil features on <strong>the</strong> flora <strong>of</strong><br />

red maple swamps are almost entirely lack<strong>in</strong>g. For<br />

this reason, <strong>the</strong> follow<strong>in</strong>g discussion is based primarily<br />

on qualitative <strong>in</strong>formation.<br />

Nutrient status, which refers to <strong>the</strong> relative<br />

abundance and availability <strong>of</strong> essential plant nutrients,<br />

may be one <strong>of</strong> <strong>the</strong> most important soil<br />

properties <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> species composition <strong>of</strong><br />

red maple swamps. Nutrient status is closely tied<br />

to hydrology, which <strong>in</strong> turn is shaped by <strong>the</strong> topographic<br />

position or geomorphic sett<strong>in</strong>g <strong>of</strong> <strong>the</strong> wetland.<br />

The swamp's sett<strong>in</strong>g determ<strong>in</strong>es <strong>the</strong> volumes<br />

<strong>of</strong> groundwater and surface water it receives. The<br />

chemistry <strong>of</strong> <strong>the</strong> water feed<strong>in</strong>g <strong>the</strong> wetland is <strong>in</strong>fluenced<br />

by <strong>the</strong> m<strong>in</strong>eral composition <strong>of</strong> <strong>the</strong> local<br />

bedrock and surficial deposits, <strong>the</strong> sources <strong>of</strong> water<br />

enter<strong>in</strong>g <strong>the</strong> wetland, <strong>the</strong> slope <strong>of</strong> <strong>the</strong> surround<strong>in</strong>g<br />

land, and <strong>the</strong> size <strong>of</strong> <strong>the</strong> wetland <strong>in</strong> relation to <strong>the</strong><br />

size <strong>of</strong> its watershed.<br />

Nutrient availability with<strong>in</strong> a wetland may be<br />

affected by water regime and by <strong>the</strong> organic matter<br />

content <strong>of</strong> <strong>the</strong> soil, which is largely a function <strong>of</strong><br />

water regime. In wetlands where soils are saturated<br />

for much <strong>of</strong> <strong>the</strong> grow<strong>in</strong>g season, decomposition<br />

<strong>of</strong> organic matter is slowed, and nutrients<br />

such as nitrogen and phosphorus may be tied up<br />

<strong>in</strong> undecomposed plant material. The retarded<br />

growth <strong>of</strong> red maple on fibric (bog) soils has been<br />

attributed to a shortage <strong>of</strong> such nutrients <strong>in</strong> a<br />

cont<strong>in</strong>uously anaerobic soil environment (Moizuk<br />

and Liv<strong>in</strong>gston 1966). Seasonal fluctuation <strong>of</strong><br />

water levels allows aerobic decomposition <strong>of</strong> organic<br />

matter to proceed, releas<strong>in</strong>g nutrients for<br />

plant growth. As noted previously, thick deposits<br />

<strong>of</strong> acid, nutrient-poor organic material may effec-<br />

tively isolate plant roots from m<strong>in</strong>eral-rich soil<br />

layers beneath. Nutrient levels near <strong>the</strong> soil surface<br />

also may be <strong>in</strong>fluenced by Sphugnurn moss,<br />

which has <strong>the</strong> ability to extract bases from already<br />

dilute soil water, lower<strong>in</strong>g its pH (Moore and Bellamy<br />

1974).<br />

Damman and Kershner (1977) placed soil fertility<br />

high on a list <strong>of</strong> factors (<strong>in</strong>clud<strong>in</strong>g disturbance<br />

history and moisture regime) affect<strong>in</strong>g species<br />

composition <strong>of</strong> upland and wetland forests <strong>in</strong> western<br />

Connecticut. Floristically rich red maple<br />

swamps were encountered primarily where nutrient-rich<br />

groundwater <strong>in</strong>flow was evident. They<br />

noted that <strong>the</strong>ir study area conta<strong>in</strong>ed a much<br />

greater variety <strong>of</strong> plant communities than eastern<br />

Connecticut landscapes with similar gneissic bedrock.<br />

They conjectured that <strong>the</strong> possible <strong>in</strong>corporation<br />

<strong>of</strong> calcareous material <strong>in</strong>to <strong>the</strong> glacial till<br />

deposited <strong>in</strong> <strong>the</strong>ir study area may have been responsible<br />

for <strong>the</strong> greater floristic variation.<br />

Groundwater flow<strong>in</strong>g downslope along <strong>the</strong> upper<br />

surface <strong>of</strong> bedrock or dense till layers could carry<br />

calcium and o<strong>the</strong>r bases leached from upland soils<br />

to lower slopes and valleys where it would be<br />

deposited <strong>in</strong> wetlands.<br />

Messier (1980) provided <strong>the</strong> most detailed discussion<br />

to date on <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> soil chemistry<br />

on <strong>the</strong> floristics <strong>of</strong> red maple swamps. He ga<strong>the</strong>red<br />

data on floristic composition, water regimes, soil<br />

fertility, and pH <strong>in</strong> 10 wetland communities <strong>in</strong><br />

northwestern Connecticut, <strong>in</strong>clud<strong>in</strong>g five types <strong>of</strong><br />

red maple swamps. Fertility was equated with<br />

nitrogen availability and expressed as a carbon-tonitrogen<br />

(C/N) ratio <strong>in</strong> his study. Assum<strong>in</strong>g that<br />

only organic matter with a C/N ratio <strong>of</strong> 20 or less<br />

could provide direct m<strong>in</strong>eral nitrogen to <strong>the</strong> soil<br />

through decomposition, Messier calculated C/N ratios<br />

for all communities and classified <strong>the</strong>ir nutrient<br />

status as nutrient-pmr (W > 40), nutrientmedium<br />

(C/N 20-40), or nutrient-rich (C/N < 20).<br />

He noted that soil pH generally <strong>in</strong>creased as <strong>the</strong><br />

C/N ratio decl<strong>in</strong>ed, so pH also could be used as a<br />

rough <strong>in</strong>dex <strong>of</strong> soil fertility<br />

Of <strong>the</strong> 10 wetland communities exam<strong>in</strong>ed, only<br />

wooded bogs were classified as nutrient-poor; <strong>the</strong><br />

nutrient status <strong>of</strong> red maple swamps ranged from<br />

medium to rich. The medium-fertility Osmunda<br />

c<strong>in</strong>narnomea-Acer and Rfmckdendron viscosurn-<br />

Acer swamps had C/N ratios <strong>of</strong> about 20 at <strong>the</strong> soil<br />

surface and 26-30 at a depth <strong>of</strong> 1 m. Messier noted<br />

that <strong>the</strong> communities wiLh<strong>in</strong> this fertility range<br />

were separated primarily by moisture regime. Soil<br />

pH values for <strong>the</strong>se two communities ranged from


dwuL 4.3 6.3. C ~ ~ ~ strisk- P C I ~ Amr ~ SWEI~~~~S,<br />

S.ym - ~wrnips, RII~ c~ttr~nion w~ntx~rlzq FVL?(B mmt <strong>of</strong>hn<br />

plm~q>t~ f~~tidd8- .&Y>Y'T $Waf np, =lid


<strong>of</strong> ground vegetation with<strong>in</strong> a mixed conifer-red<br />

maple forested wetland studied by &atley and<br />

Fahey (2986) <strong>in</strong> central New York. Although <strong>the</strong><br />

concentrations <strong>of</strong> <strong>in</strong>dividual elements were not<br />

determ<strong>in</strong>ed, <strong>the</strong> atlthors found significant differences<br />

<strong>in</strong> <strong>the</strong> ash conterlt <strong>of</strong> <strong>the</strong> organic soil among<br />

<strong>the</strong> various ground vegetation associations Cr~ible<br />

4.1); <strong>the</strong>y <strong>in</strong>terpreted <strong>the</strong> differences b xncarl<br />

that base status was a key factor pronlotirlg <strong>the</strong><br />

floristic variation. Gcnerrilly, ash content <strong>of</strong> <strong>the</strong><br />

soil was higher <strong>in</strong> associatiorls characterized as<br />

swamp (CL and CP <strong>in</strong> Table 4.1) than <strong>in</strong> those<br />

characterized as bog (IV and DV). The swarrlp<br />

communities supported more species as well.<br />

Aa noted earlier, plant species richness <strong>in</strong> red<br />

maple swamp underla<strong>in</strong> by calc~treous bedrock or<br />

calcamous sdicial deposits <strong>of</strong>tcn far exceeds that<br />

<strong>in</strong> acidic swamps. In prepar<strong>in</strong>g species lists for<br />

sou<strong>the</strong>rn New England calcareous seepagc3<br />

swamps, hwirxski (19134) noted that <strong>the</strong> herb 1ayt.r<br />

is <strong>the</strong> most sensitive <strong>in</strong>dicatnr <strong>of</strong> nutrie~lt status.<br />

Individual calcareous swarllps may support xnore<br />

than 50 species <strong>of</strong> herbs, more than twice <strong>the</strong> number<br />

usually found <strong>in</strong> acidic swmrrps. Key <strong>in</strong>dicator<br />

species for calcareous seepage swamps were identified<br />

<strong>in</strong> <strong>the</strong> previous chapter.<br />

The role <strong>of</strong> ptI <strong>in</strong> <strong>the</strong> distribution <strong>of</strong> red maple<br />

swamp flora has not been clearly def<strong>in</strong>ed. hblished<br />

values for pH <strong>in</strong> nor<strong>the</strong>astern red nraple swamps<br />

range fmm below four <strong>in</strong> sonxe organic soils or mas<br />

<strong>of</strong> acidic bedmck (Anderson et d. 1980, Lowry<br />

1%; %atfey and FRhcy 1986) to nearly seven<br />

(Messier 1980; I-Iuermeke 1982) <strong>in</strong> areas with calcareous<br />

bedrock or surficial deposih. Studies by<br />

Messier (1980), Huenneke (1982), and Dunn and<br />

Stear~ls (1987a,b) demonstrated a relation between<br />

pI.1 and SWRXII~ floristics <strong>in</strong> areas where pH<br />

values range widely; <strong>the</strong> strength <strong>of</strong> this relation<br />

with<strong>in</strong> areas <strong>of</strong> low base status has not been established<br />

(A~lderson et a1. 1978, 1980; Lowry<br />

1984; Parnt ley and Ekhey 1986).<br />

The i~fluence <strong>of</strong> soil on swamp flora is likely to<br />

be ma<strong>in</strong>ly hydrologic or chemical, but properties<br />

such as organic nlatter content nnd soil text;ure<br />

have also been shown to be importarit <strong>in</strong> some<br />

cases (Fry@ and @<strong>in</strong>n 1979; Huenneke 1982;<br />

Dunrl and Steams 1987a,b). Roth <strong>of</strong> <strong>the</strong>se properties<br />

vary widely <strong>in</strong> red maple swamps <strong>of</strong> <strong>the</strong> glaciated<br />

Northcast. Anderson et al. (1980) and Grace<br />

(1972) noted no differences between red maple<br />

swarnp corrlrnunities on organic soils and those on<br />

nxi~ierul soils, but <strong>the</strong>ir conclusions were based on<br />

general observatioxts ra<strong>the</strong>r than quantitative<br />

analyses. &cause <strong>of</strong> <strong>the</strong> scant research and <strong>the</strong><br />

close relationships between <strong>the</strong> physical and<br />

chemical properties <strong>of</strong> soils arid wetland water<br />

regimes, <strong>the</strong> direct <strong>in</strong>fluence <strong>of</strong> organic matter<br />

cont~nt and soil texture on <strong>the</strong> species compcrsitiorl<br />

<strong>of</strong> x~or<strong>the</strong>astern red niaple swamps rema<strong>in</strong>s<br />

largely \mknc>wtx,


Chapter 5. Ecosystem Processes<br />

Irr rtortftc~:tm3t~*rri SU.'I~II~J)R, ?[)''(I ti) Eb(So,.ii <strong>of</strong> titc<br />

sx~tr~<strong>in</strong>:tI I-rrdi;rl g~.stwth <strong>of</strong> n*d rnrxy.slc4 CZI~AR IR BCCP~~Hgilrslxc*m, iio~tirtg tknnt it durwtly nfftvb<br />

--<br />

lsirbrnd favtriiglit)~fir~g tli&cti~-<br />

RIOII fcxlistv~ OII tlrf~~l~;!~ 131 rtxd<strong>in</strong>l grtti~>awrlstrtls grf>wflt<br />

watt liktldr:<br />

<strong>of</strong> >til~vltxtt*<br />

111 F P O ~ ~ I C C ~ B ~ ~ ~ F<br />

'W~PX~ICW RIIIIOII~~<br />

-yc*xw tmcl zi~1~ec*e~(3t~~~t


2.0<br />

1 .o<br />

Curtis<br />

Corner<br />

Shermantown<br />

2.0 M<strong>in</strong>k Brook<br />

1.0<br />

yrwa wtlrrl nwm waim levels approach <strong>the</strong> longtern1<br />

site. average, Water levels <strong>in</strong> X&e Champla<strong>in</strong><br />

wc>rc, coraside~-ed to be MrIll~l &on1 1957 to 19fi8,<br />

but ~bnornznlly high fi-om ~969 to 1976 (Vosburgh<br />

19';y). Trw growth was greater dur<strong>in</strong>g <strong>the</strong> period<br />

<strong>of</strong> I ~O~IX~R~ water levels (Table 5.1), and variations<br />

ill over tlrl~t time irlkrval were most<br />

strongly corrclatsci with tree or stand characteristics.<br />

Xhzr<strong>in</strong>g years <strong>of</strong> ~bxlomrilly high water<br />

lclst\ls, tsc~<br />

growth was lnost strongly <strong>in</strong>fluenced by<br />

hyilr-oloby. At five <strong>of</strong> <strong>the</strong> six Rhode Island swamps<br />

strldii~tl by Lawry (I9%4)> greatest gr~witl occurred<br />

dur<strong>in</strong>g years when <strong>the</strong> average annual (April-Decemhcr)<br />

water level was dosest t;o <strong>the</strong> 6-year mean<br />

(Fig. 5.2). E;vidertly, <strong>the</strong> trees were well adapted to<br />

t hc nverizgr wakr level conditiorls at <strong>the</strong> <strong>in</strong>dividual<br />

sit~ss, r a ~ d del~iu-t~uws from those average co~xditicrns,<br />

t-i<strong>the</strong>r rxti~rkcdly wet&?r or drier, resulted <strong>in</strong><br />

dim<strong>in</strong>ished growth. Site-specific adaptation by<br />

trtws also may expla<strong>in</strong> why <strong>the</strong> between-year<br />

growth trends shown <strong>in</strong> Fig. 5.1 were similar at <strong>the</strong><br />

vitrivi~s sibs, eve11 though average water levels<br />

diff~~rrd sigrlificantly among sites <strong>in</strong> most years.<br />

In a study <strong>of</strong> artificial permanent flood<strong>in</strong>g <strong>in</strong><br />

'I'cnnc.,gsr>c, f la11 and Smith (1955) found that red<br />

niaplrs rema<strong>in</strong>ed healthy if <strong>the</strong> root crowns were<br />

flocded for less than 37% <strong>of</strong> <strong>the</strong> grow<strong>in</strong>g season;<br />

flood<strong>in</strong>g for more than 41% <strong>of</strong> khe grow<strong>in</strong>g season<br />

resulted <strong>in</strong> <strong>the</strong> death <strong>of</strong> all trees with<strong>in</strong> a few<br />

yrtirs. Studies <strong>in</strong> <strong>the</strong> glaciat~d Nor<strong>the</strong>ast generizlly<br />

support <strong>the</strong>se f<strong>in</strong>d<strong>in</strong>gs. <strong>Red</strong> maple growth <strong>in</strong><br />

L4akrl Cf~axrxpI~~ir~ swarnps decl<strong>in</strong>ed when root<br />

c.roupns were sulmergtd far more than 5@/0 <strong>of</strong> <strong>the</strong><br />

gnrowirlg season, on <strong>the</strong> avorage (Vosburgh 1979).<br />

Year<br />

Fig. 6.1. Annual rad~al growth <strong>of</strong> red maple <strong>in</strong> six Itkiode<br />

Island swamps from 1976 tkrrough 1981 (after I~wry<br />

1984). Data are based om 30 trees per sita, two<br />

Increxnent cores per tree.<br />

ations <strong>in</strong> growth were also pronounced ('Vosburgl~<br />

1979). Generally, variation was least on <strong>the</strong> lowest<br />

snd vtettesk sites; tmes 0x2 siightly more elevated<br />

sites with shorter hydroperiods showed more<br />

growth respor~e to annual hydrologic variations.<br />

Research at Lake Champla<strong>in</strong> and <strong>in</strong> mode ISland<br />

suggests that tree grott.th is greatest <strong>in</strong> those<br />

'I'able 5.1. r%r~nuul radial growth <strong>of</strong> red maple trees<br />

<strong>in</strong> relation to surfwx-water hydroperiod <strong>in</strong> 10<br />

I~zkc. Clmmpla<strong>in</strong> wet lcrrzcls bet ween 1957 and<br />

1976. Values <strong>in</strong>parent/@scs are ranges <strong>of</strong>annual<br />

rtir eans (from Vosburgh 1979).<br />

Mean seasonal<br />

duration <strong>of</strong> Percentage <strong>of</strong><br />

Mrarl annual flaodi~rg, grow<strong>in</strong>g<br />

o Mn y -September season


- 0 2<br />

E<br />

E 0l<br />

*"<br />

C<br />

8<br />

g 00<br />

-<br />

c_<br />

m<br />

3 -0<br />

c I<br />

Fig. 6.2 hlatron911ip &twecn rurriual m-<br />

tL<br />

m<br />

d~al grou.th af rod mapie and nlem<br />

annual water be! <strong>in</strong> ~)IX Rhode Islaxid<br />

5 -02 rcd maple ~wanps hfrorrl 1976 tkmugh<br />

E<br />

Lr * 1981 ( ~ [&wry ~ I%!). r Each p<strong>in</strong>t<br />

b ntpresent8 one yenr'a dat~ fmln ant.<br />

swamp.<br />

t -a i<br />

Ih<br />

E<br />

*- E? -04 L<br />

C<br />

0<br />

.+ to<br />

5 3<br />

0<br />

C<br />

-1) 6<br />

6 7<br />

-0 8<br />

-20 - 10 a 10<br />

Ilet~iation frotn 6 year rnean annual water lave1 (cm)<br />

<strong>in</strong> lif~odt* isliiitd, c*vtari tllougtt. crowti~ <strong>of</strong> trt~ roots 'hw, af~rl~i, NIX^ site tl~aractcriskics o<strong>the</strong>r than<br />

were IIZ~V~~P<br />

~*0niplt*tx4lly stil)~llt*rgcld, rrsdierl. ~:rowth wtrtn*r rrg<strong>in</strong>ie lnay rdso ~~ccour~t. for a Iltrgp propa--<br />

wfre ~igriifictfrntly grriud, wd nlttpIt. ~c~wt.I1 <strong>in</strong> Lake Chamscrrrralr<br />

t.litfrrt 111 HWPXST~~S with longt*r hy(fr<strong>of</strong>x~rio~h j>1~111 SWAI~~B was xrlost highly crorm~latr*ci with tree<br />

(Lowry 1984). Mizlvcki ef rai. (1983) fourlrl 5% rt~tluc- ngc= (%sburgh 1979). Irr fthoticl IsItmd, atand dention<br />

<strong>in</strong> rttdial growth <strong>of</strong> red n~~pltj im~ 3r.w york sity, v,*rown covc&r, and &~ourrdwtiir.r dl crppxred<br />

grc?c?n-tirnhr irnywut.idlner~ts timt Elclrl 25 30 c~tl to tx? irqxtrtnrlt (Lowry lClfi.4). Hedial wwth <strong>of</strong><br />

<strong>of</strong> surface water rixltil ewEy Jn1y (rougtrly 5m0 <strong>of</strong> maple tscwn is also affvcttxd by statltl origirx (I~ffdtba<br />

grow<strong>in</strong>g srasnnj over n 12-year period. Af- nlirrk and f-ltiwiey 1925; Braiewa 1983). Braiewa<br />

L1.1n11gfl s mrnrked <strong>in</strong>crease <strong>in</strong> gowth caccurrc?d drnlur~stra.tc.d tfiat radid growth <strong>of</strong> red maples<br />

dur<strong>in</strong>g <strong>the</strong> firat 3 yema <strong>of</strong> flood<strong>in</strong>g, a. sh~1-p cieol<strong>in</strong>c fmnl sprout-orig<strong>in</strong> stm~ds exceeded that <strong>of</strong> kces<br />

was observed by <strong>the</strong> fodh yetw (Golet 1969). from =til<strong>in</strong>g-arigir~ srands for abut 25 ye-, but<br />

These results aga<strong>in</strong> suggest, that tree growt l.1 <strong>in</strong> <strong>the</strong>rl fell Ishixrd as <strong>the</strong> stads matiwed. Established<br />

any particular yew may be <strong>in</strong>fluenced by water roog syst.enrs permit imzitially rapid [growth <strong>in</strong><br />

level canditiom <strong>in</strong> preced<strong>in</strong>g yams.<br />

sprout-orig<strong>in</strong> stands, but conlpetitian between


Heyll0liL4<br />

Braiewa et al.<br />

Ghara<br />

-<br />

No. <strong>of</strong><br />

Tree ages (yew) 32 -55 17- 148<br />

Total txee biomass 133,116 316,104<br />

(% red maple) (1@)) (93.6)<br />

h d maple biomass 133,116 295,235<br />

lhuiks 68,925" 253,283<br />

Branches 42,430 40,268<br />

Foliage 18,221" 1,444<br />

O<strong>the</strong>r tree biomass<br />

Nyssa sylvatica 13,3137<br />

Magnolia virg<strong>in</strong>iann 7,182<br />

Chamnecyparis tll,vo&8<br />

Sassafms albidurn<br />

P<strong>in</strong>us &<br />

Shb biomass<br />

Herb<br />

- -<br />

"Wct tturtiwood awarnpx<br />

bllry hnrdwtxxi swurnfw (no snrfr~ct* wnt~r d~rrirty sutx)~~i(*r)<br />

Pltxxlplnirl swampa.<br />

d~trrnwmxi >10 I crri <strong>in</strong> dlnrr~~tc-r.<br />

'Includes brnnc.hes


Ehnzdoltf (IWj wm mmht~nt, rru@w only fmm<br />

4,&?1 t~) 4,562 kg. ha "ear ! 7- awu~~td for<br />

61 W/o d&e owralfi aaett pr<strong>in</strong>:nlruy pdi.c'tion (hWj,<br />

whilr: <strong>the</strong> aslrmb layer wntribuls;d 13 lo sW% md <strong>the</strong><br />

fte& layer 1 to @/o, r%xrrluhzf tLwllt~ a,wunt& for<br />

52-tXBh <strong>of</strong> are hm: iirlti tlxc bionra~s/NF13 mtio<br />

rt.irw~d from, 22 to 25. f4*Iowbmund produetion was<br />

nut eskirna&tf. %rtd ttlt)mag (-8, shnlbrp, and<br />

krehj pn~iitctian vzxliie~ caictllatLX1 for t*?d rniipl~<br />

~wmtfkm by Eixr**rrfei.ld (ti,il% -6,643 kg ha ' year 9 ilic<br />

ts~watd tha Irm rrttl srf tlw nowe forf


li&r (Fig. 6.3) is relatively high <strong>in</strong> value for all <strong>of</strong><br />

<strong>the</strong>se features.<br />

In <strong>the</strong> seasonally fiooded Gwat Dismd SWmlp,<br />

red maple leaf litter decayed about 37% after 1 year<br />

and 46% after 2 yem (Day 1982). <strong>Maple</strong> wood<br />

decomposed only l6O.0 <strong>the</strong> first year and 27Oio <strong>in</strong><br />

2 years. hn~position raks <strong>of</strong> md maple litter<br />

placed <strong>in</strong> litter bags <strong>in</strong> maple -gun1 stmlds were not<br />

significantly different from decomposition rates for<br />

red maple litter placed <strong>in</strong> Atlantic white cedw<br />

swamps, mixed hardwood (Qu~nus spp.) forests, or<br />

baldcypress (Tlzxdurn distkhunr) swmlps, suggest<strong>in</strong>g<br />

that litter composition was <strong>the</strong> primary<br />

fador controll<strong>in</strong>g decay rate (Day 1982).<br />

Temperature, water regime, and pH ~1.e o<strong>the</strong>r<br />

impsrtant factors <strong>in</strong>fluenc<strong>in</strong>g deconipositioxl rates.<br />

Brimon et d. (1981a) suggested that temperature<br />

is probably <strong>the</strong> s<strong>in</strong>gle most imlwrta~x.t variable<br />

when moisture and oxygen availability are not limit<strong>in</strong>g.<br />

Although a clear relation betweexl decomposition<br />

rates and hydrologic regime is difficult to<br />

demonstrate, <strong>the</strong> usunl assumption is that rates<br />

are lowest under conti~luously anaerobic conditions.<br />

hay rates tend to ir~crease when aerobic<br />

and anaerobic conditions alhrr~ate, md <strong>the</strong>y are<br />

probably greatest when, dong with some degree <strong>of</strong><br />

wett<strong>in</strong>g and dry<strong>in</strong>g, aerobic conditions prevail<br />

(Brown et al. 1979; Br<strong>in</strong>son et al. 1981a; Gomez<br />

and Day 1982). Gomez nnd Day (1982) suggested<br />

that alternat<strong>in</strong>g periods <strong>of</strong> exposure md <strong>in</strong>undation<br />

promote pulses <strong>of</strong> decay and nutrient release.<br />

In contrast ta <strong>the</strong> above, Day (1982) found <strong>the</strong><br />

decomposition rate <strong>of</strong> red maple litter to <strong>in</strong>crease<br />

with <strong>the</strong> duration <strong>of</strong> flood<strong>in</strong>g. IIe noted that soil pH<br />

and nutrient concentrations were higher at flooded<br />

sites than at dewatered sites and hypo<strong>the</strong>sized that<br />

<strong>the</strong> higher decay rates stemmed from <strong>the</strong> more<br />

favorable substrate conditions for microbial deconlposers.<br />

These contradictory furd<strong>in</strong>gs underscore<br />

<strong>the</strong> need for additional research on <strong>the</strong> complex<br />

relationships among <strong>the</strong> various factors <strong>in</strong>fluenc<strong>in</strong>g<br />

decomposition rates <strong>of</strong> red maple litter (i.e., litter<br />

composition, water regime, temperature, and o<strong>the</strong>r<br />

physicochemical conditions).<br />

Oxygen levels <strong>in</strong> nor<strong>the</strong>astern swamp soils vary<br />

seasonally. Decomposition rates <strong>in</strong> most swamps<br />

are probably greatest durixg mid Lo late summer,<br />

when temperatures are highest and both soils arrd<br />

litter are most likely to be aerobic. The rak <strong>of</strong><br />

decomposition may dso vary among years, along<br />

with variatiom <strong>in</strong> swamp water levels.<br />

Nu tricnt Cycl<strong>in</strong>g<br />

Biovhenlical cycles <strong>in</strong> wetlmds RIP. conlplex,<br />

at least partly <strong>of</strong> <strong>the</strong> varied <strong>in</strong>fluence <strong>of</strong><br />

groundwakr and surface-water hydrology, cont<strong>in</strong>uous<br />

changes irr soil and water oxygen levels, seasorld<br />

metabolic changes, arid mthropogenic <strong>in</strong>fluences.<br />

Obta<strong>in</strong><strong>in</strong>g even a simplified \u>derstand<strong>in</strong>g<br />

<strong>of</strong> cyclixlg for key nutrients (e.g., N, 1: Ca, K) requires<br />

<strong>in</strong>fornlatioxz on nutrient soilrces mid trwmport,<br />

<strong>in</strong>to <strong>the</strong> ecosystem, potential s<strong>in</strong>ks with<strong>in</strong> <strong>the</strong><br />

wetland, m~d transfer rates <strong>of</strong> nutrients between<br />

<strong>the</strong> major compartments (soil, plant^, water) <strong>of</strong> <strong>the</strong><br />

system. An understsuld<strong>in</strong>g <strong>of</strong> <strong>the</strong> controIl<strong>in</strong>g factors<br />

for each <strong>of</strong> <strong>the</strong>se processes also is required<br />

@ichwirdson et a1. 1978). Construct<strong>in</strong>g a nutrient<br />

budget that accurately prt;rays <strong>the</strong> cycl<strong>in</strong>g <strong>in</strong> any<br />

wetlmd system is difficult; no such research has<br />

been conducted for nor<strong>the</strong>astern red maple<br />

swamps. General discussion <strong>of</strong> nutrient cycl<strong>in</strong>g <strong>in</strong><br />

natural wetlands can be? foilnd <strong>in</strong> Richardsox~ et al.<br />

(1978)) van der Valk et d. (1979), Nixon and IAX.<br />

(1986), and Bowden (19871, among o<strong>the</strong>rs. We reconunend<br />

<strong>the</strong>se publications for an overview <strong>of</strong> key<br />

pathways.<br />

Many <strong>of</strong> <strong>the</strong> processes observed <strong>in</strong> nonfowsled<br />

wetlands or <strong>in</strong> forested wetlmds outside <strong>the</strong> Nor<strong>the</strong>ast<br />

clearly occur <strong>in</strong> nor<strong>the</strong>astern red maple<br />

sw~nlps as well (see Fig. 5.4), but tile relative magnitude<br />

<strong>of</strong> <strong>the</strong> various cloxnponents <strong>in</strong> <strong>the</strong>se cycles is<br />

u*kxlown. Important sources <strong>of</strong> both N and P <strong>in</strong>clude<br />

surface-water and grot~ndwater <strong>in</strong>flow and<br />

atmospheric deposition. Nitrogen fixation also may<br />

contribute significant load<strong>in</strong>gs <strong>of</strong> N <strong>in</strong> some wet-<br />

lands (surxun~arized <strong>in</strong> Nixon and Lee I%), but <strong>the</strong><br />

significance <strong>of</strong> this process <strong>in</strong> red maple swamps is<br />

urhowrr. Potential nutrient removal processes<br />

(i.e., s<strong>in</strong>ks) with<strong>in</strong> swamps <strong>in</strong>clude sedimentation<br />

(burial <strong>of</strong> particulate nnd adsorbed fractions), denitrification<br />

(<strong>the</strong> biochemical reduction <strong>of</strong> nitrate to<br />

nitrogen gas), and chemical complex<strong>in</strong>g <strong>of</strong> phosphorus<br />

with ions such as iron Lo form <strong>in</strong>soluble compounds<br />

(vm der Valk et al. 1979; Nixon and b~<br />

1986). The seasoxmal uptake <strong>of</strong> nutrients by higher<br />

plants and microbes temporarily deta<strong>in</strong>s <strong>the</strong>se elements,<br />

md may result <strong>in</strong> trmfomations from<br />

<strong>in</strong>organic to organic forms.<br />

Nutrients taken up by vegetation may be returned<br />

to <strong>the</strong> water or soil through leach<strong>in</strong>g, litter<br />

fall, or root excretions. Many studies <strong>in</strong> wetlands<br />

have demonstrated significant losses <strong>of</strong> certa<strong>in</strong><br />

soluble m<strong>in</strong>erals from plant tissues with<strong>in</strong> a few<br />

days or weeks after senescence (Willoughby 1974,<br />

cited <strong>in</strong> Day 1983; Boyd 1970; Mason and Bryant


1976; I">irwia RE& vari iier Vdk 1878; I3rlr~~ort cht 81. northc~wnlfiz-ti wtatlrtndf~reets are availab1e;nt pm-<br />

19811). Such la~se~ art* gca~icwt!!y aatf rllwtLd ti) 8tYlt, nutriellf. d~taarelu~lited toco~~c@rltrations <strong>in</strong><br />

pas~rivc. Icnchir~g; howe*vcr; rapid nr<strong>in</strong>rrr-tliznliorx vf various pl~rlt tis@uc,a or orgaxiic soil material.<br />

labile mt?itttrial also i.ontribtlkc*s <strong>the</strong> losst*a (Rrirl Nitroprz c7etncmtratiuxur uf mapic leaf wid<br />

Borl ~'t 1t1. 198lb). Na d ~ un e ntltricmt ~ cycl<strong>in</strong>g <strong>in</strong> ntxw twig t1t1a;ut.s (1.70 t 0.1P,b <strong>of</strong> dry weight) and


Table 5.4. Nutrient mncvnfmtions jp&gl <strong>in</strong> lie:tcya~td su$~rypcnt fmm n Connecticut red mapleswamp<br />

(fmrn r17 an 1979 cutd Luuntirc 1986)).<br />

Leaf litter 2,687 77 8.6 12 225 7 2<br />

stems (0.542 0.1Ph) reported by Elrrenfeld (19%)<br />

for sou<strong>the</strong>rn New Jersey red maple swamps fi1ll<br />

with<strong>in</strong> <strong>the</strong> general range reported for o<strong>the</strong>r swamps<br />

and floodpla<strong>in</strong> forests. Additional data on tllr? nutrient<br />

content <strong>of</strong> red maple stem, branch, amld leLkf<br />

tissues from New Jersey swmps are provided <strong>in</strong><br />

Table 5.3.<br />

Damman (1979) and Laundre (1980) found<br />

higher concentrations <strong>of</strong> K, Mn, and Zn <strong>in</strong> red<br />

maple leaf litter <strong>of</strong> a Connecticut swamp than <strong>in</strong><br />

<strong>the</strong> upper 40 cm <strong>of</strong> organic soil beneath, but fourld<br />

higher levels <strong>of</strong> Fe, Pb, and Ni <strong>in</strong> <strong>the</strong> soil; Ievcls <strong>of</strong><br />

Na and Cu were similar <strong>in</strong> <strong>the</strong> two compartnlcnts<br />

flable 5.4). These data suggest that K, Mxl, and<br />

Zn are readily taken up by <strong>the</strong> vegetation and<br />

rapidly cycled, enrich<strong>in</strong>g <strong>the</strong> surface <strong>of</strong> <strong>the</strong> swamp<br />

annually<br />

The <strong>in</strong>itial leach<strong>in</strong>g <strong>of</strong> ions from Iitkr <strong>of</strong>ten<br />

reverses with time, as concentrations <strong>of</strong> many<br />

m<strong>in</strong>erals subsequently <strong>in</strong>crease <strong>the</strong>re (van der<br />

Valk et al. 1979). 1mmobiIization <strong>of</strong> nutrients by<br />

microbes associated with decompos<strong>in</strong>g plant. mnterial<br />

has been demonstrated or <strong>in</strong>ferred <strong>in</strong> many<br />

wetland studies (Mason and Bryant 1975; Br<strong>in</strong>aon<br />

1977; Day 1982). In <strong>the</strong> Great Dismal Swamp,<br />

litter concentrations <strong>of</strong> N and P rema<strong>in</strong>ed unchanged<br />

or <strong>in</strong>creased over a 1-year period, while<br />

K levela decreased <strong>in</strong>itiaHy and <strong>the</strong>n <strong>in</strong>creased<br />

(Day 1982). These data suggest <strong>the</strong>re was active<br />

immobilization <strong>of</strong> nutrienh from external sources<br />

and net m<strong>in</strong>eralization <strong>of</strong> Ca and Mg. Laborabry<br />

studies also have shown that, without accrual <strong>of</strong><br />

nukients from external sources, N and P levels <strong>in</strong><br />

decompos<strong>in</strong>g red maple leaf litter cont<strong>in</strong>ue tx, decl<strong>in</strong>e<br />

(Day 1983). <strong>in</strong> study<strong>in</strong>g a North Carol<strong>in</strong>a<br />

water tupelo (Nyssa aquatics) swamp, Brimon<br />

(1977) concluded that element accumulation<br />

through immobilization appesed to be an important<br />

mechanism for trapp<strong>in</strong>g nutrients that might<br />

o<strong>the</strong>rwise exist <strong>in</strong> dissolved form and be expo*d.<br />

He found that immobilization generally lasted<br />

beyond spr<strong>in</strong>g months, mak<strong>in</strong>g <strong>the</strong> nutrients<br />

available for plant uptake dur<strong>in</strong>g <strong>the</strong> grow<strong>in</strong>g 8 ~ -<br />

SQn.<br />

Them has been so little research on nutrient<br />

cycl<strong>in</strong>g <strong>in</strong> rial-<strong>the</strong>astern forested wetlands that it is<br />

I~~sibltx to develop oxdy a very simplified scenario<br />

<strong>of</strong> sorrrc <strong>of</strong> <strong>the</strong> seasonal processes that occur <strong>in</strong> <strong>the</strong>se<br />

swaIrrps (Fig. 5.4). As with most wetlands, <strong>the</strong> extent<br />

to which red maple swmps reta<strong>in</strong> and cycle<br />

nutrients is stroilgly <strong>in</strong>fluenced by hydrology,<br />

which h~s prono~lnced seasonal variability. Both<br />

leachirtg r~nct <strong>in</strong>~rnobilizat~ion <strong>of</strong> nutrients from extcmd<br />

sources rnay occur from fall <strong>in</strong>to spr<strong>in</strong>g.<br />

l.fydrologi:ic cvents clearly can <strong>in</strong>fluenc~ <strong>the</strong> magnitrtdc<br />

and tirnirrg <strong>of</strong> <strong>the</strong>se processes; flush<strong>in</strong>g events,<br />

which rarnove detritus, or backwater flood<strong>in</strong>g,<br />

which br<strong>in</strong>gs enriched waters <strong>in</strong>to <strong>the</strong> wetlands,<br />

are examples. Streams carry<strong>in</strong>g suspended sediments<br />

and dissolved nutrients overflow <strong>in</strong>to<br />

Inany swamps dur<strong>in</strong>g flood periods. As water<br />

velocities decrease <strong>in</strong> <strong>the</strong> wetlands, suspended<br />

particles and adsorbed constituents (e.g., phosphorus<br />

and heavy metals) settle to <strong>the</strong> soil surface,<br />

turd dissolved nutrienb <strong>in</strong> <strong>the</strong> water may<br />

diffu~e with<strong>in</strong> <strong>the</strong> soil and detrital layers. Surface<br />

water run<strong>of</strong>f from surround<strong>in</strong>g upland areas alsa<br />

may contribute significant load<strong>in</strong>gs tx, wetlands<br />

(van der Valk et al. 1979). The follow<strong>in</strong>g are conservative<br />

estimates for annual nutrient and metal<br />

removal via sediment deposition <strong>in</strong> 1 m2 <strong>of</strong><br />

nor<strong>the</strong>astern wetland soils: N, 1.5 g; F: 375 mg;<br />

Cu, Pb, and Zn, 25 mg; Cd, 0.2 mg; and Wg, 0.2-<br />

2.5 mg (Nixon and h e 1986). Soil adsorption,<br />

immobilization by microbial decomposers, algal<br />

uptake, denitrification, and chemical complex<strong>in</strong>g<br />

(e.g., as ferric phosphate) may all <strong>in</strong>fluence mtrient<br />

pathways dur<strong>in</strong>g <strong>the</strong> dormant season<br />

(Richardson et al. 1978; Br<strong>in</strong>son et al. 1981a,b).<br />

With <strong>the</strong> onset <strong>of</strong> <strong>the</strong> grow<strong>in</strong>g season and<br />

warmer conditions <strong>in</strong> a red maple swamp, <strong>in</strong>creased<br />

decomposition <strong>of</strong> organic matter speeds<br />

<strong>the</strong> releaae <strong>of</strong> nutrients at <strong>the</strong> same time that<br />

plant uptake <strong>in</strong>creases. Heightened evapotranspiration<br />

gradualIy lowers <strong>the</strong> water table, typically<br />

to a po<strong>in</strong>t with<strong>in</strong>, or just below, <strong>the</strong> root<br />

zone. As a result, soil oxygen levels <strong>in</strong>crease,<br />

and soil chemical and biochemical procestres are<br />

affeekd. Br<strong>in</strong>son et al. (19$lb), for example,


Xletritus Exprort and 'sod<br />

Cha<strong>in</strong> Support<br />

noted that, dur<strong>in</strong>g dr;): periods <strong>in</strong> sw:imgs, ammonium(NIl4.t)<br />

sat1 be co~~verte?d to nitrate (NO,+-),<br />

thus permitt<strong>in</strong>g denitrificwtian dur<strong>in</strong>g subeeql-ietlt<br />

wet perioda. Most forested wett~rrda irr Orgnnic detzitus that 1s not Sillly dmwmped<br />

<strong>the</strong> Nor<strong>the</strong>ast appear to have ~iuitablr tondi- and nut;ricnt9 that aw not irnmubilizd irr fomst-d<br />

tims for denitcificakicm (i.c*, periodically or con- wetlands arc avT*ilat)ie for ~?cjart a*) adjaccznt swtirktkoualy<br />

anncrobir auhatrittr? with high organic<br />

face wwtc~s. Rrirtson et nl, (l!IHlb) have shown that<br />

carbon coxik~nt), but <strong>the</strong>? process bas received<br />

rivers that dra<strong>in</strong> watershcd*i witfa ex:mmive areas<br />

tittle study (Nixon and IA?~ 1986; I;r<strong>of</strong>fr~ran ct 81.<br />

<strong>of</strong> tm~d~rirzg wcltland~ cotltirixt rrtore organic mete-<br />

1:HlI.<br />

rid (dissulveci and tfital nrgnnic cartmn) than rivers<br />

fb~~~m~h is rr~eded 0x1 all I~BJHBC~~ <strong>of</strong> riutricnt<br />

<strong>in</strong> watcr~lleds witkiorlt aurh wetlands. Dissslvr+tI<br />

cycl<strong>in</strong>g <strong>in</strong> red rrarrplt. awnnll>s, Prirrrt! topics for<br />

rnakriata rrrr hlievcci tx) ong<strong>in</strong>catr: tt<strong>in</strong>>ugh lesc'tzstudy<br />

<strong>in</strong>clude <strong>the</strong> followixrg:<br />

<strong>in</strong>& <strong>of</strong> litter and orgrwir soil z~1~teritfls (illr<strong>in</strong>g wet-<br />

* pr<strong>in</strong>cipal WOU~CC"~ <strong>of</strong> IIU~~~C'I~~H for plant land i1i~ilxdati011. Organic carbar1 exparted from<br />

fl(~wt,h (i.~., cyclit~g with<strong>in</strong> thca aw~rnp VM.<br />

awarxljxr <strong>in</strong> htir particulntr stid diamlved forms<br />

oxtcnlal suurcrn)<br />

rimy ,.rtrvcb ifis an c1lcrg-y a~~)umt> for cotlfiuxlzers <strong>in</strong><br />

irfitxence <strong>of</strong> ger.ormar&~ltir. ~rhtt ill@ on rlutrierit ndjacorlt rivc..~+ir~e or lacustr<strong>in</strong>tr crosyaterne, but<br />

<strong>in</strong>puts uncl catp)t%<br />

attadies dcwtuxlr-xttix~g detritfzl exg~ort and tsoptkic<br />

raka <strong>of</strong> nutrient ~lplakc* and tritrlslr~vtt ion by yrrt.trwrrys ama liick<strong>in</strong>g for wd nlaple ~w~tmps.<br />

pltaxxta<br />

hleixly red nlriplo swamps <strong>in</strong> Ihr glaciat~ci North-<br />

* extwx~t, to whish N w 1) lirtrit ~t-~nl~ic'ti~ily<br />

t~itut >xus hyc<strong>in</strong>>logirally 1<strong>in</strong>kt.d to ekearna, lakes, or<br />

rdat.ivo import,nr~c.t* <strong>of</strong> N fixgttiorm rzrlcl tirtnitsi- cntuaries. The liukttp nirty lake thrs forrr~ <strong>of</strong> overficalior~<br />

lard flow through Ihc wcklnnd dwialg stU~?rln or<br />

* role <strong>of</strong> mot. ~RWPAP~~*W <strong>in</strong> ~1utriexlt cyrl<strong>in</strong>g after s~~ownrclt; groundwittr~r disch~rge :cnd subwlc*<br />

<strong>of</strong> ~EX~IT~HIN <strong>in</strong> 1lutric11lt ~yc.l<strong>in</strong>~ aequcrzt flaw throtigh <strong>the</strong> awnnlp; or <strong>in</strong>undation,<br />

Fk. 5.6. <strong>Red</strong> maple swan~p along a peremrisl stream. Such a111ivial swnrnps may receive ~dlxnent and<br />

nutrients from <strong>the</strong> stream duri~lg arxrri~al floods wrrd cxpcwt both ntxtrients r<strong>in</strong>d org~rlic detritus to<br />

<strong>the</strong> stsea as Rmdwatfirs subside.


followed by recession, <strong>of</strong> ftooduratem from an adjacent<br />

stseam or lake (Fig, 5.5). No studies have<br />

addressed ei<strong>the</strong>r <strong>the</strong> export <strong>of</strong> detritus or nutrients<br />

from ned maple swmps to adjacent water Wies or<br />

<strong>the</strong> <strong>in</strong>fluence <strong>of</strong> such expurt on aquatic food cha<strong>in</strong>s.<br />

The likelihd <strong>of</strong> signific~llt export depnds on<br />

<strong>the</strong> strength <strong>of</strong> <strong>the</strong> hydrologic coupl<strong>in</strong>g between <strong>the</strong><br />

swamp and adjacent aquatic systems; key factors<br />

<strong>in</strong>clude <strong>the</strong> fkquency, duration, depth, md velocity<br />

<strong>of</strong> floodwaters, as well as <strong>the</strong> volume and duration<br />

<strong>of</strong> <strong>the</strong> surface-water discharge h m <strong>the</strong> swamp.<br />

Ilowcves, sixxcc cuniulative <strong>in</strong>puts from numerous<br />

wetl~llds it1 niruiy subwatelvrheds determ<strong>in</strong>e <strong>the</strong><br />

chmactr;riatics and functions <strong>of</strong> lower perennial<br />

river<strong>in</strong>e systenm, even relatively small wetlands<br />

with only irlternlittent surface-water discharge<br />

may play a significmxt role <strong>in</strong> xlutrient export and<br />

food cha<strong>in</strong> support.


Chapter 6. Wetland Dynamics<br />

Most nod hem ten^ freshwater wetlmda orig<strong>in</strong>ahd<br />

durixrg tho Wiscorrsilr~ glacial stage nmre than<br />

12,000 yeam ago. S<strong>in</strong>ce <strong>the</strong>n, cfisngea <strong>in</strong> clirnatrr,<br />

togat.har with tlre acct~xrlulation <strong>of</strong> nlirlernl scdidisturbru~ce.<br />

He recamnlexrded abandon<strong>in</strong>g thp<br />

term "auccession'bax~se <strong>of</strong> its Clemexrtsiml mxrnot,atiorts,<br />

and substitut<strong>in</strong>g kmli such as "vegetation<br />

dyxlmics" or "vegetational development."<br />

nlexlttl and peat, JI~c~vc brotrght. about gradual Some sciexlti~b (e.g., van der VnEk 1981) cantixliae<br />

changc~s <strong>in</strong> wekland watcr wg<strong>in</strong>ies, soil g>mlwrtit.s, Use tilt? kr?ll "~uc~ession," but def<strong>in</strong>e it more<br />

micrcmmlief, vcgctr?lation st.mcture, md plant and broadly ta avoid cotlf~xsion with Clexxiclnb' use.<br />

~gxxirnal cornmurxity cornpsition. Sudden changes ixl Tho concept <strong>of</strong> rIirY~ax has bee11 abmdoned by<br />

wetlands huve &]so reslllted fr01xl fire, wir~d~brnm, nlnst t?cologi~lst;s, and, along with it, <strong>the</strong> notion that<br />

beaver ~wnt3 cozxstrtlction, imd k1unisi11 activities wetlllulda everltudly beeonlo hrreakid or nonwet-<br />

H U ~ BN I vegc~t~xtior~ rlefirixig auld water It?vel ~ 11~-<br />

Imrd tomniunities QMoizuk arid Liv<strong>in</strong>gstun XSfi;<br />

xtipufrzt.iot1. lkausc changrs <strong>in</strong> tire biotic and abi-<br />

1)uukrunire 1968; E-iucxrncke 1982; Nierixlg 1988).<br />

r,t,ic fe~nt.urc~s <strong>of</strong> wt~tlnrlrls Inciy effiqt chlitrlgee <strong>in</strong><br />

't'herc? is no wiex~tific evidence ta show that wetlarrd<br />

wet land ftlrictiort~ aii~X VELILICR, iitl il~~tlt>rstwiciii~g <strong>of</strong><br />

rhangea tx, nonwetlmd under natural cunditiorm,<br />

wi~t.ie~t~d $ytlamir.~ is ~*s,rc*trt ird ta effwtivc? rtliitragrc-<br />

~xcept <strong>in</strong> <strong>the</strong> cnae <strong>of</strong> Iaxlctalides, shiftixy: sand dunr.a<br />

rrrrtit <strong>of</strong> tli<strong>in</strong> rer;ourc.t*. 'l%is cku~ptk~r givt" i1r1 owr<br />

(I~trwn 1.t EJ.<br />

vitaw nf fmsllwntrbr watlt<strong>in</strong>tf dyrl~illic8 <strong>in</strong> f ilv ~I:Ic+Lt980),<br />

or othclr ram everlts.. In <strong>the</strong><br />

plac<strong>in</strong>kti<br />

rttd Nort+itc*rrsil. arid d~'8cri~s tiic* dy~lsrui~~ <strong>of</strong> rd<br />

Nodhcaask,, forcstsc.cl watllluld is <strong>the</strong> moat<br />

mr*l~Ii: swantps <strong>in</strong> that trrortder cnntr*xt.<br />

rtatvar~ced B ~ W <strong>of</strong> ~ G vcage~tr~tt ion dstrelopmc~~t orr freshwat~r<br />

sib. Fareshd wetland ~oila ouc, uxmuitnble<br />

It$awie Coneopts and I3roc=cescs<br />

for tht* p41 <strong>of</strong> xrlaat upland txwe BF ~ ibixause<br />

e ~<br />

<strong>of</strong> thok high moistsure content, high arganic content,<br />

low xluLrierrt availability, and o<strong>the</strong>r iirnitiry~<br />

pm~.rcrties (Dnukrxmire 1968; Nier<strong>in</strong>g 1988). For<br />

tht~cae ri>atiPOne, fonsatcd wetlands can bc? exgwlcbd to<br />

gx>mist itldef<strong>in</strong>ik*ly, AB lorig as <strong>the</strong>y are not filled,<br />

Under <strong>the</strong> mr,skoc.l<strong>in</strong>l*x tlrclury <strong>of</strong> pl~l~lf SUL+CQB dra<strong>in</strong>ed, or o<strong>the</strong>rwise itlkmd. Tho preaeience <strong>of</strong> esvrsiara<br />

ilxkr~duced by Frodiirrick C:leniclhts (1!)1G), era1 nr~crturs <strong>of</strong> w d y peat kt aonie nor<strong>the</strong>mbmr<br />

plant eoxnmttniticla wen* iwlioved tcr awcc.t.c.d each wetland forests <strong>in</strong>rlicatetl not only that <strong>the</strong>se sites<br />

ot<strong>in</strong>rsr <strong>in</strong> ail nrtIerfy, ~~ro~essiv~ ftistlias~ tailti1 a have twn swampha for thousnxkcts <strong>of</strong> yem, but &so<br />

self-~wr~xttuatix~g cl<strong>in</strong><strong>in</strong>x st.agpl was rt3rilctxetf. %t- tilazt <strong>the</strong> ~rirrdwa@r kabic <strong>in</strong> tllesse wetlands hrz9<br />

ladw were vis;.wetI xnerely tis ~ if~qj~ <strong>in</strong> 81 "hyitrt~xI~'~ padually rkcn daxlg with tho nixtarnulation <strong>of</strong> this<br />

succt*~sionnl ~C~XIOI~C'C that would c*vet~tu~EIy cu1-<br />

organic material.<br />

ramttk* irz s CL'mes't~ia1 (KIQXLWC~~RX~~)<br />

C~~XX~HX I'CIIXLchctngca8<br />

ill wetla~ids ~~(rtty be viewed brorray,<br />

xrrnnit;4. EmIagiedr suctl rzs Whittnlcrl- (1953) took<br />

frr~nl iua ecosyskm @rswctivc, ar mare narrowly,<br />

issue with this tfrcory, skxgge&Cimlg <strong>in</strong>~trttd thxt<br />

front R plant corrlrnurliky pi.rsywctive. <strong>in</strong> this re<strong>the</strong>re<br />

might G sevtmd stab1 e terrcstr<strong>in</strong>l vc*gc%tat iott<br />

i,ypea (~rzultiplo elitnaes) ixl a particular n;g' a k ~ ~ r x port, ~ <strong>the</strong> brnr "wot,ltmd dpamica" is used to dedcpc3ndiirg<br />

on edsphic eonditioxrs, More rew~rrily,<br />

scribe changes at <strong>the</strong> wosystem level-gerierally<br />

Nicrlrng (1587) ernphasi~d that, because <strong>of</strong> natuchaxra~s<br />

front one? class <strong>of</strong> wetland (scnsu Golet<br />

rali a1.d hunr nnz-hduced dist~wirbnnccs, eharlgcs <strong>in</strong><br />

and Idarson 1974 or Gctwrrrd<strong>in</strong> et al. 2979) to ancarnuxities<br />

me zxot ~mndirectiotkal, <strong>in</strong> ~0x1-<br />

atfrer. Wetfnrxd cXyntu11ics entail changes <strong>in</strong> wahr<br />

trast ta what Cleme?x~fs (1916) strmested. Nieri~xg rrgime, dorn<strong>in</strong>arlt. life form <strong>of</strong> vewtation, and<br />

observed that vegetation change? em<br />

lead to ei<strong>the</strong>r <strong>of</strong>ten soils. The term "vegetation dynaice" is<br />

a ~Iatlvoly &.able syst~rn or a constantly cktnng<strong>in</strong>g restricted here to ch~nps <strong>in</strong> plant eo~mlukty<br />

system, depend<strong>in</strong>g on <strong>the</strong> frequency and $COP <strong>of</strong> strurtum md fioristics.


Fig. 6.1. Major changes <strong>in</strong> sou<strong>the</strong>rn New England freshwater wetlands over a 20- to 33-year period (based on Larson<br />

and Golet 1982 and Organ 1983). Progressive changes are <strong>in</strong>dicahd by solid l<strong>in</strong>es, retrogressive changes by<br />

&-lted l<strong>in</strong>es (classification accord<strong>in</strong>g to Golet and Larson 1974).<br />

follow<strong>in</strong>g paragraphs, we review <strong>the</strong> major f<strong>in</strong>d<strong>in</strong>gs<br />

<strong>of</strong> <strong>the</strong>se three studies. We describe only<br />

changes from one type <strong>of</strong> wetland to ano<strong>the</strong>r; <strong>in</strong>formation<br />

on wetland losses (i.e., conversion to upland)<br />

is provided <strong>in</strong> a subsequent chapter.<br />

Despite <strong>the</strong> relatively short periods exam<strong>in</strong>ed <strong>in</strong><br />

<strong>the</strong>se studies, <strong>the</strong> extent <strong>of</strong> wetland change was<br />

dramatic. Overall, nearly 20% <strong>of</strong> <strong>the</strong> orig<strong>in</strong>al wetland<br />

area changed classification (Golet and Parkhurst<br />

1981; Organ 1983). In both Rhode Island and<br />

Massachusetts, more than 700h <strong>of</strong> <strong>the</strong> change was<br />

progressive. Retrogressive changes were most<br />

<strong>of</strong>ten caused by beavers or humans, chiefly<br />

through <strong>the</strong> rais<strong>in</strong>g <strong>of</strong> water levels.<br />

The model <strong>in</strong> Figure 6.1 summarizes <strong>the</strong> major<br />

changes observed <strong>in</strong> <strong>the</strong>se time-lapse studies. In<br />

all cases, <strong>the</strong>re was a predom<strong>in</strong>antly progressive<br />

flow from open water and emergent wetland toward<br />

shrub and forested wetland. Certa<strong>in</strong> classes,<br />

such as forested swamp, open water, and deep<br />

marsh, exhibited relatively little change (Table<br />

6.1). About 95% <strong>of</strong> <strong>the</strong> forested wetland that<br />

was present at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong> study periods<br />

was unchanged at <strong>the</strong> end. This is not surpris<strong>in</strong>g,<br />

Table 6.1, hgrce <strong>of</strong> charge <strong>of</strong> sou<strong>the</strong>rn New England freshwater wetland types dur<strong>in</strong>g <strong>the</strong> recent past.<br />

Values are <strong>the</strong> percentage <strong>of</strong> <strong>the</strong> orig<strong>in</strong>al area <strong>of</strong> each type that changed to ano<strong>the</strong>r type dur<strong>in</strong>g <strong>the</strong><br />

nd bsses) are not <strong>in</strong>cluded here.<br />

15 tom-,<br />

Magsachuse ts<br />

(1951-77) d<br />

7<br />

34<br />

Deep n~srvh 17 11<br />

Shallow marsh 53 82<br />

Wet meadow 32 59<br />

Emergent wetland 76<br />

32<br />

66<br />

ti0 37<br />

Forested wetland<br />

- -- - -- --- --- 5 4<br />

--<br />

"Wetland types are described by ei<strong>the</strong>r Golet and I~rson (1974) or Coward<strong>in</strong> et al. (1979).<br />

'~tudy by Imon et at. (1980); forested wrtlnrlds wwe not <strong>in</strong>ventoried.<br />

Study by Colet and Parkhurst (1981).<br />

d~tudy by Organ (1983).


s<strong>in</strong>ce forested wetland is <strong>the</strong> endpo<strong>in</strong>t <strong>of</strong> freshwater<br />

wetland development <strong>in</strong> <strong>the</strong> Nor<strong>the</strong>ast. Open<br />

water and deep marsh are also relatively stable<br />

classes, at least over short periods, simply because<br />

<strong>of</strong> <strong>the</strong>ir considerable water depth.<br />

Shallow marsh, wet meadow, and shrub swamp<br />

were highly dynamic. From 30 Lo 8@/0 <strong>of</strong> <strong>the</strong> orig<strong>in</strong>al<br />

acreage <strong>of</strong> <strong>the</strong>se <strong>in</strong>termediate wetland types<br />

changed classification dur<strong>in</strong>g <strong>the</strong> 20- to 33-year<br />

study periods (Table 6.1). The dynamic nature <strong>of</strong><br />

<strong>the</strong>se wetlands can be expla<strong>in</strong>ed, at least partially,<br />

by <strong>the</strong>ir similar water regimes; typically, <strong>the</strong>y are<br />

seasonally flooded or seasonally saturated, as <strong>in</strong> <strong>the</strong><br />

case <strong>of</strong> forested wetlands. As a result, changes<br />

among <strong>the</strong>se classes (and from <strong>the</strong>se classes to<br />

forested wetland) may occur relatively quickly, especially<br />

iffactors retard<strong>in</strong>g change, such as mow<strong>in</strong>g<br />

or graz<strong>in</strong>g, are discont<strong>in</strong>ued.<br />

Not only is <strong>the</strong>re a high rate <strong>of</strong> change <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>termediate wetland classes, but <strong>the</strong>se classes are<br />

also decl<strong>in</strong><strong>in</strong>g <strong>in</strong> abundance regionally (Larson<br />

et al. 1980; Golet and Parkhurst 1981; Organ 1983).<br />

Conversely, <strong>the</strong> more stable wetland types, particularly<br />

open water and forested swamp, have <strong>in</strong>creased<br />

<strong>in</strong> abundance <strong>in</strong> most cases. Two major<br />

factors responsible for <strong>the</strong> change <strong>in</strong> abundance <strong>of</strong><br />

<strong>the</strong> various wetland types are <strong>the</strong> decl<strong>in</strong>e <strong>of</strong> agriculture<br />

<strong>in</strong> <strong>the</strong> Nor<strong>the</strong>ast and <strong>the</strong> construction <strong>of</strong><br />

impoundments for water supply, recreation, or irrigation.<br />

Abandonment <strong>of</strong> agriculture has caused<br />

formerly cleared wetlands to advance to shrub<br />

swamp and forested swamp. That pattern <strong>of</strong><br />

change, which began <strong>in</strong> <strong>the</strong> mid-1800's, is still<br />

significant more than 100 years later. The <strong>in</strong>crease<br />

<strong>in</strong> open water result<strong>in</strong>g from human activities is a<br />

nationwide phenomenon (Frayer et al. 1983; T<strong>in</strong>er<br />

1984) that is augmented <strong>in</strong> some parts <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>ast<br />

by <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g abundance <strong>of</strong> beaver ponds<br />

(Organ 1983).<br />

Dynamics <strong>of</strong> <strong>Red</strong> Maplie<br />

<strong>Swamps</strong><br />

In sou<strong>the</strong>rn New England, sigdicant areas <strong>of</strong><br />

emergent wetland and shrub wetland have developed<br />

<strong>in</strong>to forested wetland s<strong>in</strong>ce 1940. Golet and<br />

ParC\mt (1981) calculated a 7% <strong>in</strong>crease <strong>in</strong> red<br />

maple swamp over a period <strong>of</strong> 33 years <strong>in</strong> Rhode<br />

Island. Organ (1983) estimated <strong>the</strong> <strong>in</strong>crease <strong>in</strong> all<br />

forested wetland types <strong>in</strong> Massachusetts to be 11%<br />

over 20 years. By comparison, retrogressive<br />

changes <strong>in</strong> forested wetlands have been relatively<br />

m<strong>in</strong>or. Beaver pond construction (Organ 1983), <strong>the</strong><br />

creation <strong>of</strong> ponds for irrigat<strong>in</strong>g cranberries (T<strong>in</strong>er<br />

and Z<strong>in</strong>ni 1988), and impoundments for waterfowl<br />

(Golet and Parkhurst 1981) have converted some<br />

forested wetlands to open water, marsh, or shrub<br />

swamp. Retrogression from forested swamp to<br />

shrub swamp has also occurred as a result <strong>of</strong> <strong>the</strong><br />

cutt<strong>in</strong>g <strong>of</strong> trees for fuelwood and utility rights-<strong>of</strong>way.<br />

Even though data document<strong>in</strong>g forested wetland<br />

dynamics <strong>in</strong> o<strong>the</strong>r parts <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>ast are<br />

not available, <strong>the</strong>re is reason to believe <strong>the</strong><br />

changes found <strong>in</strong> sou<strong>the</strong>rn New England hold elsewhere.<br />

Based on U.S. Forest Service forest <strong>in</strong>ventory<br />

data, Abernethy and Turner (1987) estimated<br />

that <strong>the</strong>re was a 6% <strong>in</strong>crease <strong>in</strong> forested wetland<br />

<strong>in</strong> New York between 1940 and 1980. They attributed<br />

<strong>the</strong> <strong>in</strong>crease to abandonment <strong>of</strong> pastures.<br />

Increases <strong>in</strong> forested wetland were noted for all<br />

o<strong>the</strong>r nor<strong>the</strong>astern states as well, except for<br />

Ma<strong>in</strong>e, New Jersey, and Pennsylvania.<br />

Accurate assessment <strong>of</strong> <strong>the</strong> effects <strong>of</strong> land use<br />

on red maple swamps requires a thorough understand<strong>in</strong>g<br />

<strong>of</strong> both <strong>the</strong> processes <strong>of</strong> swamp development<br />

and <strong>the</strong> conditions that cause <strong>the</strong>se wetlands<br />

to change to o<strong>the</strong>r wetland types. In <strong>the</strong> rema<strong>in</strong>der<br />

<strong>of</strong> this chapter, we describe <strong>the</strong> progressive and<br />

retrogressive changes affect<strong>in</strong>g red maple swamps<br />

and <strong>the</strong> successional relationships between red<br />

maple and o<strong>the</strong>r wetland forest trees.<br />

Swamp Orig<strong>in</strong>s and Development<br />

Some red maple swamps occupy deep, peat-filled<br />

bas<strong>in</strong>s that were lakes dur<strong>in</strong>g <strong>the</strong>ir early history<br />

(Beetham and Nier<strong>in</strong>g 1961). Before red maple<br />

trees could dom<strong>in</strong>ate such sites, a series <strong>of</strong> o<strong>the</strong>r<br />

wetland types, <strong>in</strong>clud<strong>in</strong>g aquatic beds, emergent<br />

wetlands, and shrub wetlands, would have developed<br />

<strong>the</strong>re. Because <strong>of</strong> <strong>the</strong> major change <strong>in</strong> water<br />

regime required, <strong>the</strong> progression fmm deep, open<br />

water to forested swamp would take thousands <strong>of</strong><br />

years under natural conditions. O<strong>the</strong>r red maple<br />

swamps are <strong>in</strong> shallow bas<strong>in</strong>s that orig<strong>in</strong>ally may<br />

have been only seasonally flooded, or on hillsides<br />

that probably had a seasonally saturated water<br />

regime throughout <strong>the</strong>ir postglacial history. In<br />

<strong>the</strong>se cases, <strong>the</strong> vegetated wetlands that first occupied<br />

<strong>the</strong>se sites were most likely emergent wetlands<br />

(e.g., wet meadows) dom<strong>in</strong>ated by grasses,<br />

rushes, or sedges. 'fie transition to shrub and<br />

forested wetland <strong>in</strong> <strong>the</strong>se locations codd have been<br />

rapid, as long as <strong>the</strong> climate was conducive and


seed sources for woody wetland plants were available.<br />

By def<strong>in</strong>ition, wetlands must pass through a<br />

shrub stage (


kettle bogs, lakes, or large rivers. Similarly, development<br />

<strong>of</strong> forested swamps from wet meadows is<br />

likely to be slow where <strong>the</strong> meadows have prolonged<br />

surface water hydroperiods or where surface<br />

microrelief is poorly developed.<br />

Retrogressive Changes<br />

The conversion <strong>of</strong> red maple swamp to nonforested<br />

wetland is generally precipitated ei<strong>the</strong>r by a<br />

rise <strong>in</strong> <strong>the</strong> local water level or by <strong>the</strong> cutt<strong>in</strong>g <strong>of</strong><br />

vegetation (Fig. 6.4). A permanent rise <strong>in</strong> <strong>the</strong> water<br />

level that <strong>in</strong>undates <strong>the</strong> root crowns <strong>of</strong> <strong>the</strong> trees<br />

kills virtually all plants <strong>in</strong> <strong>the</strong> swamp and converts<br />

<strong>the</strong> wetland to an open water body or deep marsh.<br />

Beaver ponds constructed <strong>in</strong> former red maple<br />

swamps typically conta<strong>in</strong> aquatic beds dom<strong>in</strong>ated<br />

by plants such as white water lily (Nymphaea<br />

dmta) and bladdenvorta (Utricularia spp.) <strong>in</strong> <strong>the</strong><br />

deepest areas; marsh plants such as bur-reeds<br />

(Sparganium spp.) where <strong>the</strong> average water depth<br />

is 0.5 m or less; and a variety <strong>of</strong> rushes (e.g., Juncus<br />

emus), sedges (e.g., Carex stricta), and grasses<br />

(e.g., Glycericl, spp.) <strong>in</strong> seasonally flooded areas<br />

along <strong>the</strong> marg<strong>in</strong>s <strong>of</strong> <strong>the</strong> pond (Fig. 6.5). Once a<br />

pond is abandoned and <strong>the</strong> dam breaks, <strong>the</strong> former<br />

flowage is usually first colonized by gram<strong>in</strong>oids<br />

(Fig. 6.6)) <strong>the</strong>n soon after by shrubs, such as alders<br />

and willows, and fmally by trees, such as red maple.<br />

When <strong>the</strong> <strong>in</strong>crease <strong>in</strong> <strong>the</strong> swamp water level is<br />

gradual, or more limited <strong>in</strong> extent, trees may die<br />

over a period <strong>of</strong> years. If microrelief <strong>in</strong> <strong>the</strong> swamp<br />

is well developed, shrubs and herbs, which are<br />

more shallowly rooted than <strong>the</strong> trees, may survive<br />

and eventually dom<strong>in</strong>ate <strong>the</strong> site (Fig. 6.4). Such<br />

a retrogressive change has been observed where<br />

road culverts dra<strong>in</strong><strong>in</strong>g swamps have become<br />

clogged with sediment (Golet and Parkhurst<br />

1981). If shallow surface water persists throughout<br />

<strong>the</strong> grow<strong>in</strong>g season, float<strong>in</strong>g mats <strong>of</strong> Sphagnum<br />

moss may develop locally, provid<strong>in</strong>g a base<br />

for colonization <strong>of</strong> <strong>the</strong> site by bog plants such as<br />

lea<strong>the</strong>rleaf (Chamaeduphne calyculata) and cranberries<br />

(Vacc<strong>in</strong>ium macrocarpon).<br />

Clear-cutt<strong>in</strong>g <strong>of</strong> trees causes a red maple<br />

swamp to revert to shrub swamp or, less commonly,<br />

to emergent wetland (Fig. 6.4). Shallow<br />

marshes or wet meadows dom<strong>in</strong>ated by ferns and<br />

various gram<strong>in</strong>oids are <strong>of</strong>ten produced when trees<br />

are removed from maple swamps that conta<strong>in</strong> a<br />

poorly developed shrub layer or when all woody<br />

vegetation is removed. Due to a reduction <strong>in</strong> transpiration<br />

losses at <strong>the</strong> site after cutt<strong>in</strong>g, a local<br />

rise <strong>in</strong> <strong>the</strong> summer water table may occur. Such<br />

an <strong>in</strong>crease <strong>in</strong> wetness is most likely to occur <strong>in</strong><br />

I<br />

<strong>Red</strong> maple swamp<br />

I<br />

(Seasonally flooded or<br />

seasonally saturated)<br />

Water level rise<br />

I<br />

Shallow Semipermanent Trees and Trees cut; Trees cut;<br />

permanent shrubs shrubs shrubs<br />

flood<strong>in</strong>g cut absent present<br />

Shrubs<br />

present<br />

Open water<br />

Deep marsh<br />

Fig. 6.4. Retrogressive changes <strong>in</strong> nor<strong>the</strong>astern red maple swamps due to water level rise or cutt<strong>in</strong>g.


Fig. 6.6. Active beaver pond comtmcted <strong>in</strong> a former red maple swamp. The dom<strong>in</strong>ant plant is white<br />

wahr lily (Nympftnon odcrmta).<br />

Fig. 6.6. Recently abandoned beaver flowage dom<strong>in</strong>ated by grsm<strong>in</strong>oids.


mmdwakr depression wetlands. Because md<br />

maple sprauts pmlificdly after cutt<strong>in</strong>g, eatover<br />

swsmps usually supprt a dense cover <strong>of</strong> 1nnyIe<br />

sapl<strong>in</strong>gs with<strong>in</strong> a few years, and <strong>the</strong> progression<br />

toward forested wetland resuxnes. &~r,re shrub<br />

cover may hmprcrrily retard <strong>the</strong> resurgence <strong>of</strong><br />

red maple after cutt<strong>in</strong>g.<br />

Fire md hurricanes may dm be agents <strong>of</strong> m?hgr-etwive<br />

change <strong>in</strong> fom&x.3 wetlmsds, but Iwth are<br />

relatively unimporLAnt <strong>in</strong> no&reaskrn rod maple<br />

swamps. The potentid irrrpact <strong>of</strong> fire is 1<strong>in</strong>rita.d by site<br />

wetness and by fire pm~ion pmpm~~s, while hurricane<br />

danlage tends Lo be <strong>in</strong>fkquent a d highly<br />

locdid.<br />

Sumssionctl Relationships A morzg<br />

Wt land Forest Trees<br />

Grace (1972) argued that red maple. lacks <strong>the</strong><br />

ability to replace itself unless cut, and that irr<br />

nor<strong>the</strong>astern Connecticut it will evexxtually lose<br />

dom<strong>in</strong>ance to eastern herniock, white p<strong>in</strong>e, or<br />

wet-site hardwoods such as yellow birch, Grwcc<br />

also noted that <strong>the</strong> canopy <strong>of</strong> red nraple stands<br />

opens with age and suggested that, if ttlcbrc. were<br />

no advanced rege.cl~eratiorr <strong>of</strong> o<strong>the</strong>r tree speeics to<br />

fill <strong>the</strong> gaps, even understory shrubs such as<br />

sweet pepperbush might assume donl<strong>in</strong>anc*u.<br />

The validity <strong>of</strong> <strong>the</strong>se assertiorrs is open to dcbate.<br />

The great predom<strong>in</strong>ance <strong>of</strong> red nraple<br />

swamps throughout major sectZions <strong>of</strong> <strong>the</strong> glaciated<br />

Nor<strong>the</strong>ast suggests that this wetland type is<br />

<strong>the</strong> normal endpo<strong>in</strong>t <strong>of</strong> wetlarrd development <strong>in</strong><br />

<strong>the</strong>se areas. Sprout<strong>in</strong>g frequerltly occurs <strong>in</strong> wixzdthrown<br />

trees and <strong>in</strong> trees with decayed stems, as<br />

well as <strong>in</strong> trees that have beer1 cut. In addition,<br />

open<strong>in</strong>gs <strong>in</strong> <strong>the</strong> forest canopy created by trec<br />

mortality allow sunlight to reach mounds 01) <strong>the</strong><br />

forest floor where red maple seedl<strong>in</strong>gs may dcvelop.<br />

While species such as hemlock may outcompete<br />

red maple on seasorlally saturated,<br />

porly j.iramcd @oils <strong>in</strong>r certa<strong>in</strong> weas <strong>of</strong> <strong>the</strong> Northtaast,<br />

evidence for jnrI-'~-srtllt.' future repiacenrent<br />

<strong>of</strong> red tllrtPlt? as tfar? domirlmrt species <strong>in</strong> nor<strong>the</strong>astertl<br />

wtbtlrtnd firrests is lackixlg.<br />

Ille stlcct~ss~uxltill rclatiorlship between red maple<br />

arid Atlantic white cedar also is a subject <strong>of</strong><br />

great <strong>in</strong>tprcst, t.aIx~.c.cittll~~ because <strong>of</strong> <strong>the</strong> cont<strong>in</strong>u<strong>in</strong>g<br />

dcxllnt. <strong>of</strong> codttr (1.ader<strong>in</strong>an 1987). In his 1950<br />

morrograqh or) At iant ic white cedar, Little stated<br />

that, it1 <strong>the</strong> XPW Jersey P<strong>in</strong>e Barrens, cedar<br />

stands exre s~tt~'llnrax e-43 swanrp hardwoods associ~tion<br />

cforlrgx1atit.d by red nraple, black gum, and<br />

sweetbay xnrlgrlolia (fifq~r~oliu rjir2p<strong>in</strong>iana). He observed<br />

tttat, lllll~~8 cedar is clearcut <strong>in</strong> large<br />

trach, it will eventually be replaced by hardwoods<br />

because (I) ctadi~r trccds ope11 gonu<strong>in</strong>ation sites to<br />

nrhicve t ht. ~rut<strong>in</strong>i grotvtl~ rah necessary to compete<br />

with bardwocadu; (2) urrlike llardwood skmds,<br />

cridnr sttsnds ztro typically even-aged, and <strong>the</strong><br />

trees do not rcylircc <strong>the</strong>mselves under a forest<br />

canopy; and (3) rapid growth <strong>of</strong> hardwood sprouts<br />

gives thc*:n AIL ctdvraxrtnge over cedar seedl<strong>in</strong>gs ixr<br />

forest* thzzt ttxts seicctiveiy cut,<br />

l%cwearc*h suggust,~ that water reg<strong>in</strong>re may<br />

be an <strong>in</strong>lpr~rtaixlt frrctor ixlfluencirrg <strong>the</strong> rate <strong>of</strong><br />

conversion frc)r~r htIaxltic white cedar to red<br />

~nrrpir. Irx fZh~rdc Is~Hx~c~, average surface water<br />

hyctroycr~od,r r+rc. longer, and xncnlr water levels<br />

sllghtiy highcar, irl cedar swamps than <strong>in</strong><br />

maple swailtlrs (1,owry 1984). Little (2950) also<br />

fouxld <strong>in</strong> grebc+r~lrctuo;c studies that cedar seedl<strong>in</strong>gs<br />

werv best nbXe to compete with hardwoods<br />

wtierc* wcitor levels were highest. However,<br />

cvt>n or1 nna~st~rally wet sites, red maple<br />

colonization <strong>of</strong> rxlnunds is highly Iikeiy when<br />

caxropy o~texlillgs occur <strong>in</strong> cedar forests due to<br />

tree death, w~tltitfrlruw, or selective cutt<strong>in</strong>g.<br />

Oxleu rcati rrraple as ttstablished it1 an Atlantic<br />

whitt~ ccdt~r forest, conversion to a mapledonlixliated<br />

swr*nal, appears to be <strong>in</strong>evitable<br />

(Iitt it. 1950).


Chapter 7. Vertebrate Fauna<br />

Although red maple swamp is <strong>the</strong> most abun- wetlands can be broadly categorized as ei<strong>the</strong>r wetdant<br />

freshwater wetland type <strong>in</strong> much <strong>of</strong> <strong>the</strong> glaci- land-dependent species or facultative species.<br />

ated Nor<strong>the</strong>ast, relatively little research has been<br />

canducted on its fauna and <strong>the</strong>ir habitat requirenents.<br />

This ia eswially noteworthy because several<br />

states (Connecticut, New Jersey, New York,<br />

Massachusetts, and mode Island) <strong>in</strong>clude wildlife<br />

habitat as a recognized value <strong>of</strong> wetlands with<strong>in</strong><br />

replabry acts.<br />

The vertabrah faunal community <strong>of</strong> nor<strong>the</strong>astern<br />

red maple swamps is large and varied<br />

(Appndix C). For tire most part, this community is<br />

cornpased <strong>of</strong> spies that select swmps as habitat<br />

ei<strong>the</strong>r on <strong>the</strong> b(wis <strong>of</strong> vegetation structure or on <strong>the</strong><br />

baais <strong>of</strong> water regime. Vegetation structure has<br />

been shown to be a primary factor <strong>in</strong> wildlife<br />

habitat, selection, especially <strong>in</strong> forested areas<br />

(MncArthur and Mrlchrtbur 1961; Anderson axid<br />

Shugart 1974; Miller axld Cetz 1977a; James and<br />

Warner 1982). Water regime is critical for those<br />

spx5as that, require shallow surface water dur<strong>in</strong>g<br />

p& <strong>of</strong> <strong>the</strong> year.<br />

No studies have hen published oh <strong>the</strong> iiiverkbrat0<br />

fauna <strong>of</strong> no~zflootipla<strong>in</strong> forested wetlands <strong>of</strong><br />

<strong>the</strong> Nart+heast. This lack <strong>of</strong> <strong>in</strong>formation merits attention<br />

because <strong>in</strong>vertebrates are important as<br />

prey <strong>of</strong> forested wetland wildlife (Getz 1961~;<br />

McGilwy 1968; Clark 1979; Craig 1984). Many<br />

aquatic <strong>in</strong>vertebrates found <strong>in</strong> streams, vernal<br />

pooXs (Kexxk 1949; Wiggirm et al. 1980), bottondand<br />

Xrardwood forests (Batema et d. 1985; White 1985),<br />

md m~t~-thxt~r impouxx&~xenh (Kxull 1%9) nlay<br />

oecw <strong>in</strong> red maple swamps as weil, but documentation<br />

is lack<strong>in</strong>g, Therefore, this pr<strong>of</strong>ile <strong>of</strong> <strong>the</strong> fauna<br />

<strong>of</strong> red maplc swmrps focuses on vertebrate taxa.<br />

Wetland Dependence <strong>of</strong>'<br />

Wildlife<br />

For community analysis and habitat evaluation<br />

purposes, it is useful Lo consider <strong>the</strong> degree ta which<br />

various animal species or groups are dependent;<br />

upon wetlands (Golet 1973). Vertebrate wildlife<br />

that <strong>in</strong>habit red maple swmps and o<strong>the</strong>r types <strong>of</strong><br />

wet hznd-dependent Species<br />

Under natural conditions, wetland-dependent<br />

species cannot exist without wetlands. Included<br />

are two groups that vary <strong>in</strong> <strong>the</strong> extent to which<br />

<strong>the</strong>y use wetland habitats.<br />

Wetland Species<br />

Species for which wetlands are primary habitat<br />

may be considered wetland species. This group<br />

lives pr<strong>in</strong>cipally, or exclusively, <strong>in</strong> wetlands and<br />

depends upon wetlands for most or all <strong>of</strong> its habitat<br />

requirements (i.e., food, water, cover, breed<strong>in</strong>g<br />

sites). Examples <strong>of</strong> wetland species that mur <strong>in</strong><br />

red maplc swamps <strong>in</strong>clude <strong>the</strong> wood duck (Ark<br />

sponsa), American black duck (Anas rubrips),<br />

nor<strong>the</strong>rn waterthrush (Sciurus nouehmcensis),<br />

beaver, river otter (Lutra canademis), and m<strong>in</strong>k<br />

(MusteZu vison).<br />

Wetland-dependent Upland Species<br />

These are species such as <strong>the</strong> spr<strong>in</strong>g peeper<br />

(Pseudacris crucifer), American toad (Bz& americanus),<br />

wood frog (Ram syluaticu), and spothd salamander<br />

(Ambystoma macukttum), which live primdy<br />

<strong>in</strong> upland habitats but lay <strong>the</strong>ir eggs and<br />

develop through larval stages <strong>in</strong> <strong>the</strong> shallow water<br />

<strong>of</strong> wetlands. Wetlands are as critical to <strong>the</strong> survival<br />

<strong>of</strong> this group as <strong>the</strong>y are to <strong>the</strong> wetland species. <strong>Red</strong><br />

maple swamps provide breed<strong>in</strong>g habitat for many<br />

wetland-dependent upland species.<br />

Facultative Species<br />

For <strong>the</strong> rema<strong>in</strong><strong>in</strong>g species, <strong>the</strong> wetness <strong>of</strong> wetlands<br />

is nei<strong>the</strong>r a require~nent nor a limit<strong>in</strong>g factor.<br />

Taxa <strong>in</strong> this group are generally considered<br />

upland wildlife, but <strong>the</strong>y also <strong>in</strong>habit wetlands,<br />

so~xnet<strong>in</strong>res <strong>in</strong> iarge nunhrs. Facuitative species<br />

span a M.ide range <strong>in</strong> <strong>the</strong> extent <strong>of</strong> wetland use.<br />

Many passer<strong>in</strong>e species, such as <strong>the</strong> gray catbird<br />

(EXLnzeteZk mrol<strong>in</strong>ensis), black-capped chickadee<br />

(Pam atrimpillus), common yellowthroat<br />

(Geothlypis tricb), and black-and-white warbler


(Mniotila varia), regularly breed <strong>in</strong> both upland<br />

habitats and red maple swamps. O<strong>the</strong>rs, <strong>in</strong>clud<strong>in</strong>g<br />

several species <strong>of</strong> warblers, make extensive use <strong>of</strong><br />

forested wetlands dur<strong>in</strong>g migration, but breed <strong>in</strong><br />

uplands, Some facultative species clearly prefer<br />

wetlands dur<strong>in</strong>g w<strong>in</strong>ter. In %ode Island, wild turkeys<br />

(Mekagris ga2lopavo) feed <strong>in</strong> late w<strong>in</strong>ter 011<br />

<strong>the</strong> sporophylls <strong>of</strong> sensitive fern <strong>in</strong> red maple<br />

swamps (C. Baker, Department <strong>of</strong> Natural Resources<br />

Science, University <strong>of</strong> Rhode Island, K<strong>in</strong>gston,<br />

personal communication). <strong>Red</strong> maple itself is<br />

a preferred w<strong>in</strong>ter browse <strong>of</strong> <strong>the</strong> eastern cottontail<br />

(Sylv ilagus floridanus) (Cronan and Brooks 1968).<br />

Additional examples <strong>of</strong> facultative species that<br />

regularly <strong>in</strong>habit red maple swamps <strong>in</strong>clude <strong>the</strong><br />

American crow (Corvus bmchyrhynchus), American<br />

rob<strong>in</strong> (TLLTdUS migrutorius), blue jay (Cyanocittn<br />

crtstata), great crested flycatxher (My<strong>in</strong>rchus<br />

cr<strong>in</strong>itus), raccoon (Pmcyon lotor), Virg<strong>in</strong>ia opossum<br />

(Didelphis virg<strong>in</strong>ianu), and white-footed<br />

mouse (Peromyscus leucopus).<br />

Reptiles and Amphibians<br />

Reptiles and amphibians constitute a significant<br />

proportion <strong>of</strong> some nor<strong>the</strong>astern forest animal cornmunities.<br />

For <strong>in</strong>stance, <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn hardwoad<br />

(American beech-yellow birch-sugar maple) forests<br />

<strong>of</strong> Hubbard Brook, New Hampshire, Burt011 and<br />

Likens (1975) found that <strong>the</strong> biomass <strong>of</strong> salamanders<br />

was approximately twice that <strong>of</strong> <strong>the</strong> breed<strong>in</strong>g<br />

bird community, and was rougfily equal to <strong>the</strong><br />

biomass <strong>of</strong> small mammals. Studies <strong>of</strong> amphibians<br />

and reptiles <strong>in</strong> nor<strong>the</strong>astern forested wetlands are<br />

rare, even though <strong>the</strong>se habitats appear to be <strong>of</strong><br />

major importance to forest-dwell<strong>in</strong>g species.<br />

DeGraaf and Rudis (1986) identified 45 New<br />

England species <strong>of</strong> amphibians and reptiles that<br />

use forest wver at some time dur<strong>in</strong>g <strong>the</strong> year. Of<br />

<strong>the</strong> 11 forest cover types reviewed, red maple was<br />

<strong>the</strong> most frequently preferred (by 12 species); it was<br />

used, but not preferred, by an additional 30 species<br />

pable 7.1). Because <strong>the</strong> majority <strong>of</strong> amphibians<br />

require stand<strong>in</strong>g water for breed<strong>in</strong>g, vegetation<br />

structure may be less important to <strong>the</strong>m than water<br />

regime (NlcCoy 1989). The seasonal flood<strong>in</strong>g <strong>of</strong><br />

many red maple swmps provides suitable breed<strong>in</strong>g<br />

asem for several spies and iu clearly a prime<br />

reason for selection <strong>of</strong> this habitat .type by axnphibians<br />

and reptiles.<br />

More recently, Wraaf and Rudis ( 1W) compared<br />

<strong>the</strong> hewt<strong>of</strong>auna <strong>of</strong> three forest cover +s<br />

<strong>in</strong> New Hampshire: nor<strong>the</strong>rn hardwoods, balsam fi?<br />

Table 7.1. Use <strong>of</strong> red map& sroarnps by amphibians<br />

and reptiles <strong>in</strong> Ncru Engknd. Habitat suitability<br />

for eadz specks is noted eitht.r as P = pmferred<br />

habitat or U = utilized habitat {data from<br />

Broedlrlg<br />

breed<strong>in</strong>g<br />

Amphibiam<br />

Marbled salamander P U<br />

Jefferson salamander P U<br />

Spotted salamander P U<br />

Mounta<strong>in</strong> dusky salamander P U<br />

<strong>Red</strong>back salamander P U<br />

Nor<strong>the</strong>rn slimy salamander P U<br />

Four-toed salamander P U<br />

Spr<strong>in</strong>g salamander P U<br />

Nor<strong>the</strong>rn two-l<strong>in</strong>ed salamarrder P U<br />

Pickerel frog<br />

Nor<strong>the</strong>rn leopard frog<br />

U<br />

U<br />

U<br />

Silvery salamander<br />

U<br />

Blue-spotted salamander<br />

U<br />

Tremblay's salamander<br />

U<br />

Eastern newt<br />

U<br />

Dusky salamander<br />

U<br />

American toad<br />

Fowler's toad<br />

U<br />

U<br />

Spr<strong>in</strong>g peeper<br />

U<br />

Gray treefrog<br />

U<br />

Bullfrog<br />

U<br />

Green frog<br />

U<br />

M<strong>in</strong>k frog<br />

U<br />

Wood frog<br />

U<br />

Reptiles<br />

Five-l<strong>in</strong>ed sk<strong>in</strong>k<br />

Eastern ribbon snake<br />

R<strong>in</strong>gneck snake<br />

Wood turtle<br />

Eastern box turtle<br />

Nor<strong>the</strong>rn water snake<br />

Brown snake<br />

<strong>Red</strong>belly snake<br />

Common garter snake<br />

Racer<br />

Rat snake<br />

Milk snake<br />

Copperhead<br />

Timber rattlesnake<br />

Smooth green snake<br />

Pa<strong>in</strong>t~d turtle<br />

Snapp<strong>in</strong>g turtle<br />

Boa turtle<br />

and red maple. All L h r ~ forest tm supported <strong>the</strong><br />

same number <strong>of</strong> species <strong>of</strong> reptiles Rnd amphibians<br />

(11); however, relative abundance was significantly<br />

higher <strong>in</strong> red maple and nor<strong>the</strong>rn hardwood stands


Table 7.2, Rehtive abundume<br />

<strong>of</strong> ~ptibs a d amphibk~ns capfu~cl iasili.zira or <strong>in</strong>ttnediately !j*djac"c'nf<br />

hlerican toad 18.0 8.0 24.5<br />

Spotted aalarnnrldctr 2.6 0.8 3.1<br />

Eastem newt 1.8 I .Ci 14<br />

Spr<strong>in</strong>g ~ mpr 1.8 2.0 0.2<br />

Cmn fwg 0.9 5.8<br />

NarLkxem two-l<strong>in</strong>~i salamantlcr 0.7<br />

C~~rnrnon gaar srlakt% 0.6 0.4 0.1<br />

Spr<strong>in</strong>g ~ JWIBIXIRZ~~C~ 0.4 e0 1<br />

Xhisky rwiur~~r<strong>in</strong>(ler 0.2<br />

Nortl~er~r itwpczrd frog 2.1)<br />

R,tar-W+d swlam~<strong>in</strong>rlcr 2 6<br />

I+ckerc*l frog<br />

1 .ti<br />

RI~sblcd cualarnandtar 0.3<br />

Chay ~mt*frfl.op 0.2<br />

Iiiswlpr'd toad 0.1<br />

1%tra1ircl Ctirtlc 10 1<br />

tixtai>p,f;rirkg t ~arllc lo 7.2.<br />

'Rxrt*c nnzpi~iblsrrr BPC~C~C'S - W ~ H I frog, ~ rcdhgirk<br />

ettXam~artknr CPlcflrcx?ori cir~r,rru.s), rtnd Auricxr~r,illl<br />

~>A~---~ZC("*k~, arid ot tlcr<br />

sfebri~ (~ICXIWCZIC I$Xi%f. Ankzritarx toads ran i4i.<br />

fuuricf <strong>in</strong> R large varwty <strong>of</strong> habit~ts~ but r~r~uirc~<br />

*h~lft,w W R ~ ET! P ~ which fa [lcty rgg* (flonwr-rt 19751<br />

Wnod frogs (Fig. 7.1) br6~d <strong>in</strong> snlall prxds and<br />

sirallow surface water <strong>in</strong> wooded arta;rs durtng<br />

'PL""~~ but HTe f'v from w'~' IFig. 7.1. "$v& eOg<br />

variety <strong>of</strong>fomst types durlng<strong>the</strong> mmri<strong>in</strong>der <strong>of</strong> tb@<br />

year fMeaLwole 1961).<br />

(Rurria s3:l arrm), one sf <strong>the</strong><br />

ithundarxt amphibxans breedir~g <strong>in</strong> red maple<br />

swrt~nps, Drnt~'z~1~ by -4. Romr


EXusbtand arid Eddleman (1Y30) quantified herpebfaur~al<br />

use <strong>of</strong> upland forests <strong>in</strong>mediately surround<strong>in</strong>g<br />

four red maple swmlps <strong>in</strong> &ode Eslmd.<br />

As &Grad and Rudis (1990) found <strong>in</strong> New Elampshire,<br />

wood frogs, Anlerican toads, and redback<br />

salmanders were <strong>the</strong> most nunlerous species<br />

captured; <strong>the</strong>y constituted about 810h <strong>of</strong> <strong>the</strong> total<br />

captures (Table 7.2). The highest monthly captures<br />

occurred <strong>in</strong> July wid August and consisted<br />

primarily <strong>of</strong> juvenile American toads and green<br />

frogs (Rana clnmitans) leav<strong>in</strong>g <strong>the</strong> forested<br />

swamps.<br />

While data are scarce, <strong>the</strong> above studies demonstrate<br />

that red maple swamps comt.itut;e significant<br />

habitat for amphib<strong>in</strong>ns <strong>in</strong> widely differ<strong>in</strong>g<br />

forest regions <strong>of</strong> <strong>the</strong> glaciated Nor<strong>the</strong>ast,. The specific<br />

uses (e.g., breed<strong>in</strong>g and feed<strong>in</strong>g) that <strong>the</strong> various<br />

species <strong>of</strong> anlphibians and reptiles make <strong>of</strong><br />

<strong>the</strong>se swamps and <strong>the</strong> relative importance <strong>of</strong> different<br />

swampmicrohnbitufs to <strong>in</strong>dividual species need<br />

additional study.<br />

Birds<br />

Species Cornpsi t ion<br />

Of all <strong>the</strong> vertebrate classes <strong>in</strong>habit<strong>in</strong>g nor<strong>the</strong>asknl<br />

red maple swamps, birds are <strong>the</strong> best<br />

documented. Avian species conlposition and density<br />

have been determ<strong>in</strong>ed through standard<br />

Breed<strong>in</strong>g Bird Censuses conducted <strong>in</strong> New Jersey<br />

(Black and Seeley 1953; Seeley 1954, 1955, 1956,<br />

1957, 1%; Meyers et a1. 1981; Taylor 1984) and<br />

western New York (Slack et al. 1975). Anderson<br />

and Maxfield (1962) listed birds that were mistnetted<br />

dur<strong>in</strong>g <strong>the</strong> breed<strong>in</strong>g season <strong>in</strong> a mixed red<br />

maple-Atlantic white cedar swamp <strong>in</strong> Massachusetts.<br />

Two more recent studies have focused specifically<br />

on factors determ<strong>in</strong><strong>in</strong>g <strong>the</strong> composition<br />

and structure <strong>of</strong> <strong>the</strong> breed<strong>in</strong>g bird comunitiss <strong>of</strong><br />

red maple swamps <strong>in</strong> Massachusetts (Swift 1980;<br />

Swift et al. 1984) and Rhode Island (Memow 1990).<br />

Table 7.3 lish <strong>the</strong> bird spies breed<strong>in</strong>g <strong>in</strong> nor<strong>the</strong>astern<br />

red maple swanlps, accord<strong>in</strong>g to published<br />

Table 7.3. Helutiue abundance <strong>of</strong> breed<strong>in</strong>g birds <strong>in</strong> red rncrple swamps <strong>of</strong> <strong>the</strong>glaciated Nor<strong>the</strong>ast. Values<br />

are <strong>the</strong> percentages <strong>of</strong> all <strong>in</strong>dividuals censused <strong>in</strong> each study.<br />

Species<br />

N.Y. X.J. N.J. N.J. Mass. Mass. R.I. Mean<br />

v-ry<br />

Common yellowthroat<br />

Ovenbird<br />

Black-capped chickadee<br />

Wood thrush<br />

Gray catbird<br />

American rob<strong>in</strong><br />

Blue jay<br />

American redstart<br />

Canada warbler<br />

<strong>Red</strong>-eyed vireo<br />

Nor<strong>the</strong>rn waterthrush<br />

Rufous-sided towhee<br />

Black-and-white warbler<br />

Blue-w<strong>in</strong>ged warbler<br />

Tufted titmouse<br />

Nor<strong>the</strong>rn oriole<br />

Great crested flycatcher<br />

House wren<br />

Downy woodpecker<br />

Scarlet tanager<br />

Nor<strong>the</strong>rn card<strong>in</strong>al<br />

Eastern wood-pewee<br />

Gomon grackle<br />

Rose-breasted grosbeak<br />

White-eyed vireo


_<br />

-- -<br />

- ---- Studya<br />

"<br />

1 2 3 4 5 6 7<br />

Species ~ . y NJ, NJ. N.J. Mass. Mass. R.1.<br />

Mean<br />

-<br />

I_I___<br />

- - - -- -- - - ----<br />

-<br />

Hooded warbler 5.3 0.8<br />

Nor<strong>the</strong>rn flicker 0.8 3.1 0.1 0.8 0.7<br />

Brown creeper 4.0 1.0 0.7<br />

Yellow-throated warbler 4.2 0.6<br />

Swamp sparrow 4.0 0.6<br />

White-breasted nuthatch 1.7 1.0 1.1 0.5<br />

Indigo bunt<strong>in</strong>g 3.8 0.5<br />

Bmwn-headed cowbird 1.5 0.1 0.5 0.7 0.4<br />

Hairy woodpecker 1.1 1.1


census results. Twenty-five (40%) <strong>of</strong> <strong>the</strong> 63 species<br />

were encountered <strong>in</strong> four or more <strong>of</strong> <strong>the</strong> seven<br />

studies, The avian community is composed pr<strong>in</strong>cipdy<br />

<strong>of</strong> facultative species that commonly occur <strong>in</strong><br />

upland forests as well. Examples <strong>of</strong> facultative species<br />

found throughout <strong>the</strong> region <strong>in</strong>clude blackcapped<br />

chickadee, gray catbird, ovenbird (Seiuw<br />

aumpillus), wood thrush (Hyhiehla mustelim),<br />

American rob<strong>in</strong>, and blue jay. Several o<strong>the</strong>r breed<strong>in</strong>g<br />

species seem to be attracted to swamps because<br />

<strong>of</strong> <strong>the</strong> presence <strong>of</strong> surface water. Species that are<br />

most strongly associated with nor<strong>the</strong>astern wetland<br />

forests <strong>in</strong>clude nor<strong>the</strong>rn waterthrush<br />

(Fig. 7.2), Canada warbler (Wikonia cadnsis)<br />

(Fig. 7.3), and veery (Catharus fuscescens). Of<br />

<strong>the</strong>se, only <strong>the</strong> nor<strong>the</strong>rn waterthrush does not<br />

breed <strong>in</strong> upland habitats. Canada warblers and<br />

veeries are abundant <strong>in</strong>forested wetlands <strong>in</strong> sou<strong>the</strong>rn<br />

New England, but <strong>the</strong>y also may be found <strong>in</strong><br />

stseamside or mesic upland forests, particularly <strong>in</strong><br />

o<strong>the</strong>r areas <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>ast (Bent 1953; Bert<strong>in</strong><br />

1977; American Ornithologists' Union [AOUj<br />

1983). Prothonotary warblers (Protonotaria citrea)<br />

and cerulean warblers (Lkndroica cerulea) breed <strong>in</strong><br />

deciduous forested wetlands, but <strong>the</strong>ir ranges encompass<br />

only <strong>the</strong> western and sou<strong>the</strong>rn boundaries<br />

<strong>of</strong> <strong>the</strong> glaciated Nor<strong>the</strong>ast (Bent 1948,1953; AOU<br />

1983; DeGraaf and Rudis 1986).<br />

Raptors are generally secretive, rapid-mov<strong>in</strong>g,<br />

and wide-rang<strong>in</strong>g dur<strong>in</strong>g <strong>the</strong> breed<strong>in</strong>g season;<br />

<strong>the</strong>refore, <strong>the</strong>y are seldom recorded <strong>in</strong> censuses<br />

us<strong>in</strong>g spot-mapp<strong>in</strong>g or s<strong>in</strong>g<strong>in</strong>g male counts (Fuller<br />

and Mosher 1981). Of all nor<strong>the</strong>astern raptors,<br />

Fig. 7.2 Nor<strong>the</strong>rn waterthwh (Seiurus novebommis),<br />

one <strong>of</strong> <strong>the</strong> few species <strong>of</strong> nor<strong>the</strong>asteRl songbirds that<br />

breed only <strong>in</strong> forested wetlands. Draw<strong>in</strong>g by R.<br />

m n .<br />

Fig. 7.3. Canada warbler (Wilsonia anadensis), one <strong>of</strong><br />

<strong>the</strong> most abundant breed<strong>in</strong>g birds <strong>in</strong> sou<strong>the</strong>rn New<br />

England red maple swamps. Draw<strong>in</strong>g by R. Deegan.<br />

red-shouldered hawks (Buteo l<strong>in</strong>eatus) exhibit <strong>the</strong><br />

strongest affimity for forested wetlands, both for<br />

nest sites and for hunt<strong>in</strong>g areas (Henny et al. 1973;<br />

Portnoy and Dodge 1979; Rymon 1989). In sou<strong>the</strong>astern<br />

New York and nor<strong>the</strong>rn New Jersey, nor<strong>the</strong>rn<br />

goshawks (Accipiter gentilis) have also been<br />

found to select nest sites closer to red maple<br />

swamps than would be expected by chance alone<br />

(Speiser and Bosakowski 1987). The authors noted<br />

that <strong>the</strong> swamps were relatively undisturbed by<br />

humans and appeared to support a greater density<br />

and diversity <strong>of</strong> prey species than surround<strong>in</strong>g<br />

xeric oak forests. O<strong>the</strong>r birds <strong>of</strong> prey that frequently<br />

<strong>in</strong>habit nor<strong>the</strong>astern red maple swamps<br />

<strong>in</strong>clude broad-w<strong>in</strong>ged hawks (Buteo platypterus),<br />

barred owls (St& varia), eastern screech-owls<br />

(Otus asw), and nor<strong>the</strong>rn saw-whet owls (Aegolius<br />

acadicus) (AOU 1983; DeGraaf and Rudis 1986;<br />

Rymon 1989).<br />

Factors Affect<strong>in</strong>g Avian Richness and<br />

A bundance<br />

Swift et al. (1984) were <strong>the</strong> fwst to identify factors<br />

<strong>in</strong>fluenc<strong>in</strong>g breed<strong>in</strong>g bird communities <strong>in</strong><br />

nor<strong>the</strong>astern red maple swamps. They censused<br />

shg<strong>in</strong>g males with<strong>in</strong> eight swamps rang<strong>in</strong>g <strong>in</strong> area<br />

from 30 to 45 ha and measured both vegetation and<br />

hydrologic characteristics with<strong>in</strong> bird census plots.<br />

Us<strong>in</strong>g methods adapted from Swift et al. (1984),<br />

Merrow (1990) censused breed<strong>in</strong>g birds <strong>in</strong> <strong>in</strong>2 mode<br />

Island red maple swamps rang<strong>in</strong>g <strong>in</strong> area from 0.5<br />

to 19.3 ha. Merrow compiled two observational<br />

data sets: s<strong>in</strong>g<strong>in</strong>g bird observations (i.e., songs <strong>of</strong>


territorial species) and all bird registrations (i.e.,<br />

songs, calls, and visual observations). Among <strong>the</strong><br />

most significant factors <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> avian community<br />

<strong>in</strong> <strong>the</strong>se studies were wetland size, vegetation<br />

structure, and water regime.<br />

Wetland Size<br />

Breed<strong>in</strong>g bird species richness is correlated<br />

with <strong>the</strong> size <strong>of</strong> red maple swamps (Merrow 1990).<br />

In Merrow's study, species richness ranged from 3<br />

to 15 species per site for s<strong>in</strong>g<strong>in</strong>g birds, and from 7<br />

to 24 species per site for all bird registrations.<br />

Sites 4 ha or smaller had significantly lower species<br />

richness than sites rang<strong>in</strong>g from 6 to 19 ha. In<br />

larger (30-45 ha) swamps <strong>in</strong> Massachusetts, Swift<br />

(1980) found richness to range from 18 to 26 species.<br />

By comb<strong>in</strong><strong>in</strong>g data from Swift, Merrow<br />

(1990), and pert<strong>in</strong>ent breed<strong>in</strong>g bird censuses, a<br />

more comprehensive picture <strong>of</strong> <strong>the</strong> species-area<br />

relationship can be developed (Fig. 7.4). Although<br />

factors o<strong>the</strong>r than wetland size also affect avian<br />

species richness, size clearly is a key determ<strong>in</strong>ant.<br />

Whe<strong>the</strong>r swamp size has any effect on breed<strong>in</strong>g<br />

bird density or relative abundance is unclear.<br />

Breed<strong>in</strong>g bird censuses have shown that avian<br />

density may vary widely, from as few as 4.3 to as<br />

many as 11.0 males per ha (Table 7.3), even among<br />

areas <strong>of</strong> swamp that are comparable <strong>in</strong> size (5-<br />

10 ha). In Rhode Island red maple swamps less<br />

than 20 ha <strong>in</strong> size, avian relative abundance<br />

ranged from 0.6 to 2.0 s<strong>in</strong>g<strong>in</strong>g males per census per<br />

0.28-ha plot, and <strong>the</strong>re was no significant relation<br />

between relative abundance and wetland size<br />

(Merrow 1990). Relative abundance values were<br />

higher (mean 2.8 s<strong>in</strong>g<strong>in</strong>gmales per census per plot;<br />

range 0.8-4.5) <strong>in</strong> <strong>the</strong> larger swamps censused by<br />

Swift et al. (1984). Unfortunately, direct comparisons<br />

among studies may be mislead<strong>in</strong>g because <strong>of</strong><br />

differences <strong>in</strong> census methods. Additional research<br />

is needed Lo clarify <strong>the</strong> relation between swamp<br />

size and avian abundance.<br />

Vegetation Structure<br />

The <strong>in</strong>fluence <strong>of</strong> vegetation structure on breed<strong>in</strong>g<br />

bird communities has been well documented<br />

(Beecher 1942; MacArthw 1964; Tramer 1969; Anderson<br />

and Shugart 1974; James and Warner 1982).<br />

Tramer, for example, showed that species richness<br />

and diversity <strong>of</strong> breed<strong>in</strong>g birds are higher <strong>in</strong> forest<br />

habitats that conta<strong>in</strong> several vegetation layers<br />

than <strong>in</strong> simpler communities dom<strong>in</strong>ated by herbs<br />

or shrubs. Avian richness and diversity <strong>in</strong> nor<strong>the</strong>astern<br />

red maple swamps are comparable to those<br />

<strong>of</strong> upland deciduous and upland coniferous forests,<br />

but lower than <strong>in</strong> floodpla<strong>in</strong> forests (Fig. 7.5).<br />

The study areas selected by Swift et al. (1984)<br />

represented a wide range <strong>of</strong> vegetation structure;<br />

<strong>the</strong>y <strong>in</strong>cluded five mature red maple forested<br />

swamps, as well as three wetlands conta<strong>in</strong><strong>in</strong>g areas<br />

<strong>of</strong> both forested swamp and shrub swamp. Avian<br />

abundance was significantly higher <strong>in</strong> <strong>the</strong> structurally<br />

diverse forested-shrub wetlands (mean<br />

3.7 males per plot per census) than <strong>in</strong> <strong>the</strong> mature<br />

forests (mean 2.2 males per plot per census), based<br />

on our calculations from data <strong>in</strong> Swift (1980). Species<br />

richness, however, was similar for <strong>the</strong> two<br />

types. Species present only <strong>in</strong> forested-shrub wetlands<br />

<strong>in</strong>cluded <strong>the</strong> yellow warbler (Dendroica petechia),<br />

warbl<strong>in</strong>g vireo (Vireogilvus), swamp sparrow<br />

7<br />

2<br />

v, 35 i. 0 0 ST---<br />

'" 1 __--- -- 0<br />

2 . * O<br />

___-<br />

z 20 1 t o Fig. 7.4. Avian breedmg species richness<br />

K<br />

-Q -<br />

0<br />

0 as a function <strong>of</strong> wetland size <strong>in</strong> north-<br />

o 5 i ~ . A 1 eastern Bird Census red maple (BBC) data swamps. are &om Breedmg Slack<br />

6,<br />

et al. (1975), Meyers et al. (1981), Tayn<br />

; 10 lor (19&i), Black and Seeley (1953),<br />

t_<br />

and Seeley (1954, 1955, 1956, 1957,<br />

o BSR = 97 + (025 x IogAREA) 1966). Results <strong>of</strong> <strong>the</strong> latter six cen-<br />

-I-<br />

(D<br />

suses rtre plotted RZ a &year mean<br />

ff2-083 F


elated to avian richness and abundance. Swift<br />

et al. (1984) found that stem densities <strong>of</strong> short<br />

shrubs (1-3 m), tall shrubs (3-5 m), and subcanopy<br />

trees were positively correlated with breed<strong>in</strong>g species<br />

richness, while short shrub density was positively<br />

correlated with abundance. Several measures<br />

<strong>of</strong> <strong>the</strong> tree stratum, <strong>in</strong>clud<strong>in</strong>g tree height, stem<br />

diameter, and crown closure, were negatively correlated<br />

with avian richness and abundance. Shrub<br />

layer characteristics were strongly related to bird<br />

community characteristics <strong>in</strong> Merrow's (1990)<br />

study also. The percentage cover <strong>of</strong> shrubs less than<br />

2 m tall was positively correlated with <strong>the</strong> species<br />

richness <strong>of</strong> s<strong>in</strong>g<strong>in</strong>g males, and richness generally<br />

<strong>in</strong>creased with shrub foliage volume as well. The<br />

presence <strong>of</strong> a dense, extensive shrub layer with<strong>in</strong><br />

red maple forested wetlands appears to add significantly<br />

to habitat complexity, provid<strong>in</strong>g nest sites,<br />

forag<strong>in</strong>g substrates, song perches, and escape cover<br />

for a variety <strong>of</strong> bird species.<br />

Fig. 7.6. Breed<strong>in</strong>g bird richness and diversity <strong>in</strong> major<br />

North American vegetation types. Means with 2<br />

standard errors are depicted. Paren<strong>the</strong>ses <strong>in</strong>dicate <strong>the</strong><br />

number <strong>of</strong> censuses <strong>in</strong>cluded for each vegetation type.<br />

Data for all types except red maple swamp are from<br />

Tramer (1969). <strong>Red</strong> maple swamp data were recorded<br />

from nor<strong>the</strong>astern U.S. sites greater than 5 ha <strong>in</strong> size<br />

censused by Black and Seeley (1953)' Slack et al.<br />

(1975), Swift (1980), Meyers et al. (1981), Taylor<br />

(1984), and Merrow (1990).<br />

(Melospiza georgiana), and<br />

(Agelaius phoeniceus).<br />

Over <strong>the</strong> wide range <strong>of</strong> structural characteristics<br />

measured by Swift et al. (1984) and Merrow (lw),<br />

shrub layer structure appeared to be most closely<br />

Water Regime and Peat Depth<br />

Soil moisture gradients <strong>in</strong> nonwetland forests<br />

have been shown to affect <strong>the</strong> distribution <strong>of</strong> breed<strong>in</strong>g<br />

birds (Karr 1968; Bert<strong>in</strong> 1977; Smith 1977).<br />

Karr even suggested that surface water is <strong>of</strong> such<br />

great importance that it should be considered<br />

equivalent to vegetation strata when describ<strong>in</strong>g<br />

avian habitats.<br />

In Massachusetts red maple swamps, Swift et al.<br />

(1984) found that percent cover <strong>of</strong> surface water,<br />

presence <strong>of</strong> streams, and peat depth were positively<br />

correlated with avian richness and abundance,<br />

while <strong>the</strong> degree <strong>of</strong> water level fluctuation tihroughout<br />

<strong>the</strong> summer was negatively correlated with<br />

<strong>the</strong>se characteristics. Peat depth was negatively<br />

wrrelated with water level fluctuation and positively<br />

correlated with percent surface water; <strong>the</strong>refore,<br />

it was <strong>in</strong>terpreted to be an <strong>in</strong>dicator <strong>of</strong> sib<br />

wetness (Swift 1980).<br />

The <strong>in</strong>fluence <strong>of</strong> hydrology on swamp bird communities<br />

may be more clearly understood when<br />

considered <strong>in</strong> comb<strong>in</strong>ation with <strong>the</strong> effects <strong>of</strong> vegetation<br />

structure. In <strong>the</strong> eight wetlands studied by<br />

Swift et al. (1984), wetter sites also had greater<br />

peat depths, denser shrub layers, a less-developed<br />

tree stratum, and a larger and more diverse breed<strong>in</strong>g<br />

bird community. The swamps studied by Swift<br />

et al, spanned a wide range <strong>of</strong> hydrologic, edaphic,<br />

and structural conditions; <strong>the</strong>ir results should be<br />

<strong>in</strong>terpreted <strong>in</strong> that light.<br />

Because <strong>of</strong> <strong>the</strong> relatively great <strong>in</strong>fluence <strong>of</strong> hydrologic<br />

variables on <strong>the</strong> breed<strong>in</strong>g bird community, Swift


et al. (1984) hypo<strong>the</strong>sized that, given similar vegetation<br />

struh, avian richness and abundance<br />

would <strong>in</strong>crease at sites with deeper organic soils<br />

and water seasonal surface-water coverage. Merrow<br />

(1990) verified this hypo<strong>the</strong>sis, to some extent,<br />

<strong>in</strong> his study <strong>of</strong> 12 mature, relatively homogeneous<br />

red maple swamps. Of 20 habitat variables exam<strong>in</strong>ed,<br />

only peat depth was significantly correlated<br />

with avian abundance. Surface-water coverage<br />

was not an important variable <strong>in</strong> Merrow's<br />

study, most likely because water levels <strong>in</strong> sou<strong>the</strong>rn<br />

Rhode Island were unusually low dur<strong>in</strong>g his<br />

census period.<br />

<strong>Red</strong> Mapk <strong>Swamps</strong> a'<br />

Habitat<br />

swamp immediately adjacent to <strong>the</strong> impoundment.<br />

Nest densities <strong>in</strong> <strong>the</strong> green-timber impoundment<br />

were also higher than those <strong>in</strong> flooded dead timber<br />

and cattail marshes with<strong>in</strong> <strong>the</strong> refuge (see<br />

Coward<strong>in</strong> et al. 1967). Mallards accounted for<br />

nearly 8094 <strong>of</strong> <strong>the</strong> 355 nests found (Kivisalu et al.<br />

1970). O<strong>the</strong>r nest<strong>in</strong>g species <strong>in</strong>cluded wood duck,<br />

black duck, Canada goose (Bnznta canadensis),<br />

blue-w<strong>in</strong>ged teal (Anas discors), green-w<strong>in</strong>ged teal<br />

(A. crecca), hooded merganser, gadwall (A.<br />

strepera), and American wigeon (A. americam).<br />

Stumps and tree cavities with open<strong>in</strong>gs less than<br />

1 m above <strong>the</strong> ground accounted for <strong>the</strong> majority <strong>of</strong><br />

waterfowl nest sites from 1965 to 1967 at Montezuma<br />

(Kivisalu et al. 1970). After a predator-control<br />

program was <strong>in</strong>stituted <strong>in</strong> 1968, <strong>the</strong> majority<br />

<strong>of</strong> waterfowl nests were built on tree mounds. Racpredad<strong>of</strong>eggs<br />

~ ~ ~ floodpla<strong>in</strong>s, t e d bm<strong>in</strong> swamps, and beaver<br />

flowages <strong>of</strong> tho Nor<strong>the</strong>ast are important feed<strong>in</strong>g coons andm<strong>in</strong>kwem<strong>the</strong>~rimar~<br />

snd -as for migrat<strong>in</strong>g waterfowl and <strong>in</strong>cubat<strong>in</strong>g hens. Nests were placed an average<br />

1959; Stanton 1965; Rockwell 1970; Kirby 1988). In <strong>of</strong> 70 cm above <strong>the</strong> water surface; thus, <strong>the</strong> need for<br />

most years, surface water levels <strong>in</strong> forested wet- ca~ful water level management <strong>in</strong> forested waterlands<br />

are highest from late fall through spr<strong>in</strong>g, fowl impoundments is clear.<br />

allow<strong>in</strong>g access ta <strong>the</strong>se areas by migrat<strong>in</strong>g water- Of all <strong>the</strong> waterfowl species that breed <strong>in</strong> <strong>the</strong><br />

fowl, Among <strong>the</strong> species that frequent flooded Nor<strong>the</strong>ast, wood ducks (Fig. 7.6) are <strong>the</strong> most<br />

swamps dur<strong>in</strong>g migration are <strong>the</strong> wood duck, highly adapted for life <strong>in</strong> forested wetlands<br />

American black duck, mallard (Anas platyrhyn- (Johnsgard 1975; Bellrose 1976). Their strong dechs),<br />

r<strong>in</strong>g-necked duck (A~th~a collaris), and pendence on surface water, cavity-nest<strong>in</strong>g habit,<br />

hooded merganser (Lophodytes cucullatus). perch<strong>in</strong>g ability, and deft maneuverability <strong>in</strong> flight<br />

Waterfowl species that breed <strong>in</strong> nor<strong>the</strong>astern lidfilt bws shruba unique adaptations to<br />

forested wetlands <strong>in</strong>clude QK)=~ or stump m~ters this habitat. Throughout <strong>the</strong> and central<br />

such as American black ducks and mallards, as well united states, wood ducks breed <strong>in</strong> floodas<br />

cavity-nest<strong>in</strong>g wood ducks, common goldeneyes pla<strong>in</strong> forests and bottomland hardwood<br />

(Buce~hala 'langula), 'Ommon mergansers Wer- maple swamp is <strong>the</strong> pr<strong>in</strong>cipal forest type used by<br />

@s me~mer), and hooded mergansers @lbse<br />

bmd<strong>in</strong>g wood ducks <strong>in</strong> <strong>the</strong> Nor<strong>the</strong>ast (M&ilvreY<br />

1976). 1968). Upland forest stands with<strong>in</strong> 0.3 krn <strong>of</strong> sur-<br />

Impoundments <strong>in</strong> hard- face water bodies also may be used as nest<strong>in</strong>g areas<br />

woods <strong>of</strong> <strong>the</strong> sou<strong>the</strong>rn and central United States<br />

and Rogers McCilvrey 1968).<br />

provide important migration and w<strong>in</strong>ter<strong>in</strong>g habitat<br />

Grice and Rogers (1965) and McGilvrey (1968)<br />

for waterfowl (Yeager 1949; Kadlec 1962; Fredrickoutl<strong>in</strong>ed<br />

<strong>the</strong> habitat requirements <strong>of</strong> breed<strong>in</strong>g wood<br />

son and Taylor 1982). Given <strong>the</strong> success <strong>of</strong> this<br />

technique <strong>in</strong> w<strong>in</strong>ter<strong>in</strong>g areas, green-timber im- ducks <strong>in</strong> detail. Trees at least 40 cm <strong>in</strong> diameter,<br />

poundments were constructed <strong>in</strong> <strong>the</strong> mid-1960$ at with cavities at least 15 cm deep and entraoees<br />

<strong>the</strong> Montezuma National Wildlife Refuge <strong>in</strong> central larger than cm <strong>in</strong> diameter? appear to be <strong>the</strong><br />

p+w york. ~h~ pwpose <strong>of</strong> <strong>the</strong> impoundments was m<strong>in</strong>imal nest<strong>in</strong>g; requirement. Still or slowly movto<br />

provide both migration and nest<strong>in</strong>g habitat for surface water 8 to 45 cm deep must be present<br />

waterfowl (Thompson et al. 1968). A 120-ha red <strong>in</strong> <strong>Swamps</strong> when ducks are seek<strong>in</strong>g nest sites <strong>in</strong><br />

maple swamp, which was diked and flooded to a Mmh and April, and areas should rema<strong>in</strong> i .~depth<br />

<strong>of</strong> 25-30 em from mid-March through June, dated at leasf, halfway thgh<br />

<strong>the</strong> <strong>in</strong>cubation pewas<br />

wed by 10 species <strong>of</strong> nest<strong>in</strong>g waterfowl be- riod. Because <strong>of</strong> <strong>the</strong> scarcity <strong>of</strong> natural cavities <strong>in</strong><br />

tween 1965 and 1969 (Kivisalu et al. 1970). Water- many swmps and <strong>the</strong> loss <strong>of</strong> forested wetland<br />

fowl nest density averaged 0.91 per ha over <strong>the</strong> habitat, <strong>the</strong> <strong>in</strong>troduction <strong>of</strong> artificial nest boxes has<br />

&year period; only six waterfowl nests were found signif~cantly <strong>in</strong>creased wood duck breed<strong>in</strong>g populadur<strong>in</strong>g<br />

<strong>the</strong> same 5 years <strong>in</strong> 365 ha <strong>of</strong> unmanaged tions throughout <strong>the</strong> eastern United States


Fig. 7.6. Wood duck (Aix sponsa). This<br />

species uses seasonally flooded and<br />

temporarily flooded red maple<br />

swamps extensively, both <strong>in</strong> breed<strong>in</strong>g<br />

and <strong>in</strong> spr<strong>in</strong>g and fall migration. Photo<br />

by W Byme.<br />

(McLaughl<strong>in</strong> and Grice 1952; McGilvrey 1968; Bell- was less attractive for wood duck nestii. A8 a<br />

rose 1976).<br />

result, breed<strong>in</strong>g densities decl<strong>in</strong>ed, but nest success<br />

Green-timber impoundments at <strong>the</strong> Montezuma <strong>in</strong>creased.<br />

National Wildlife Refuge provided high quality Black ducks, which breed <strong>in</strong> a great variety <strong>of</strong><br />

nest<strong>in</strong>g habitat for wood ducks (Reed 1968; habitah, are most co-only found <strong>in</strong> fieshwabr<br />

'I'hompson et al. 1968; Haramis 1975). Water depth or estuar<strong>in</strong>e rnarshes; however, swamps and beaver<br />

was ma<strong>in</strong>ta<strong>in</strong>ed at about 25 cm throughout <strong>the</strong> flowages important breed<strong>in</strong>g habitats <strong>in</strong><br />

nest<strong>in</strong>g season, and <strong>the</strong> density <strong>of</strong> II~tllral cavities many areas <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>ast (coder and Mendall<br />

was relatively high Wed 1968; Haramis 1968; Reed 1968; Thompon et 1968; Rhgeh<br />

The <strong>in</strong>troduction <strong>of</strong> nest boxes dramatically <strong>in</strong>et<br />

1982; Kirby 1988). In central Ma<strong>in</strong>e, breed<strong>in</strong>g<br />

popuJatiOn Wood ducks for years black ducks showed preference9 <strong>in</strong> descend<strong>in</strong>g order<br />

after <strong>the</strong> boxes were <strong>in</strong>stalled; however, competi<strong>of</strong><br />

importance, for emergent marsh, deciduous fortion<br />

for nest<strong>in</strong>g boxes, dump-nest<strong>in</strong>g by hens unested<br />

wetland, and deciduous shrub swamp<br />

able to eecure nest<strong>in</strong>g cavities, and <strong>in</strong>creased predation<br />

on eggs by woodpeckers (primarily nor<strong>the</strong>rn<br />

(R<strong>in</strong>gelman et al. 1982). Diefenbach and Owen<br />

flicker, Colaptes aumtus) lowered wood duck hatch- (1989) developed a model <strong>of</strong> breed<strong>in</strong>g season habi<strong>in</strong>g<br />

Bumess and <strong>in</strong>creased +.he frequency <strong>of</strong> nest tat use <strong>in</strong> <strong>the</strong> same area <strong>of</strong> central Ma<strong>in</strong>e and found<br />

desertion ( ~ and Thompson ~ 1985). ~ This ~ four habitat i variables ~ to be most Fmprtant <strong>in</strong> p ~ -<br />

trend was reversed <strong>in</strong> 1978, when flood<strong>in</strong>g <strong>of</strong> <strong>the</strong> dict<strong>in</strong>g wetland US^ by black ducks: (I) perimeter<br />

impoundment was discont<strong>in</strong>ued to reduce stress on <strong>of</strong> surface water area, (2) area <strong>of</strong> timber flooded by<br />

<strong>the</strong> forest community. Without abundant surface at least 10 cm <strong>of</strong> water, (3) presence <strong>of</strong> beaver, and<br />

water, <strong>the</strong> forested <strong>in</strong>terior <strong>of</strong> <strong>the</strong> impoundment (4) visibility <strong>of</strong> occupied human dwell<strong>in</strong>gs (negative


omlation). b th studies stressed <strong>the</strong> imp-ce<br />

<strong>of</strong> beaver flowages to breed<strong>in</strong>g waterfowl.<br />

<strong>Red</strong> maple swamps are not primary brood habitat<br />

for waterfowl, ma<strong>in</strong>ly because most swamps<br />

lack surfaee water by early summer to midsummer.<br />

High-quality food may be scarce as well <strong>in</strong> many<br />

swamps. For <strong>the</strong>se reasons, semipermanently and<br />

permanently flooded shrub swamps and emergent<br />

wetlands serve as primary brood areas for nor<strong>the</strong>astern<br />

waterfowl (McGilvrey 1968; Kivisalu et al.<br />

1970; R<strong>in</strong>gelman and Longore 1982; Kirby 1988).<br />

Mammals<br />

Nearly 50 species <strong>of</strong> mammals are known to live<br />

<strong>in</strong> nor<strong>the</strong>astern red maple swamps (Table 7.4).<br />

These species range <strong>in</strong> size from large animals,<br />

such as moose (Alas akes), black bears (Ursus<br />

americanus), and white-Wed deer (Odocoileus virg<strong>in</strong>ianus),<br />

to smaller animals, such as raccoons,<br />

river otters, voles, shrews, and bats. Some species,<br />

such as beaver, otter, m<strong>in</strong>k, and water shrew (Sorex<br />

palustris), are wetland dependent, but <strong>the</strong> great<br />

majority <strong>of</strong> mammals found <strong>in</strong> nor<strong>the</strong>astern forested<br />

wetlands are facultative species (Kirkland<br />

and Serfass 1989). Significant research on <strong>the</strong><br />

mammalian use <strong>of</strong> red maple swamps has been<br />

limibd t;a studies <strong>of</strong> small mammals and black<br />

bears,<br />

Small Mammals<br />

Jersey and Connecticut <strong>in</strong>di-<br />

Table 7.4. Wetland dependence <strong>of</strong> mammals<br />

occurr<strong>in</strong>g <strong>in</strong> red maple swamps <strong>of</strong> <strong>the</strong> glaciated<br />

Nor<strong>the</strong>ast (from DeGraaf and Rudis 1986;<br />

Kirktand and Serfass 1989).<br />

Wetland-dependent species<br />

Water shrew<br />

Star-nosed mole<br />

Beaver<br />

M<strong>in</strong>k<br />

River otter<br />

Facultative epeciee<br />

Virg<strong>in</strong>ia opposum<br />

Masked shrew<br />

Smoky ahrew<br />

~or<strong>the</strong>rn short-tailed shrew<br />

Hairy-tailed mole<br />

Eastern mole<br />

Keen's myotis<br />

Little brown myotis<br />

Indiana myotis<br />

<strong>Red</strong> bat<br />

Silver-haired bat<br />

Eastern pipistrelle<br />

Big brown bat<br />

Eastern cottontail<br />

New England cottontail<br />

Snowshoe hare<br />

Eastern chipmunk<br />

Woodchuck<br />

Gray squirrel<br />

<strong>Red</strong> squirrel<br />

Sou<strong>the</strong>rn fly<strong>in</strong>g squirrel<br />

White-footed mouse<br />

Deer mouse<br />

Sou<strong>the</strong>rn red-backed vole<br />

~~~d~~ vole<br />

a variety <strong>of</strong> habitats<br />

wetland (red<br />

r numbers <strong>of</strong><br />

Pbrcup<strong>in</strong>e<br />

<strong>Red</strong> fox<br />

Gray fox<br />

7.5). White- Fh2-n<br />

d <strong>in</strong> for-


Table 7.5. Small-mammal communities <strong>in</strong> red maple swamps and o<strong>the</strong>r habitats <strong>of</strong> New Jersey (Dowkr<br />

et ~1.1985) and Connecticut (compiled from appendix <strong>in</strong> Miller and Getz 1977~). Values for <strong>in</strong>dividual<br />

species are captures per 100 tmp-nights.<br />

-- --<br />

<strong>Red</strong> Upland Upland Late Early Freshwater<br />

maple coniferous deciduous successional successional marsh<br />

Mammal swamp forest forest grassland grassland edge<br />

New Jersey<br />

White-footed mouse 7.1<br />

Masked shrew 4.2<br />

Nor<strong>the</strong>rn short-tailed shrew 0.4 1.1 1.7 0.1 0.6<br />

Meadow jump<strong>in</strong>g mouse 0.3<br />

Meadow vole 0.3<br />

Eastern chipmunk 0.1<br />

Star-nosed mole<br />

All species 12.4 11.4 5.8 3.8 6.7<br />

Number <strong>of</strong> trap-nights 2,100 2,100 2,100 2,100 2,100<br />

Total species richness 6 6 6 5 6<br />

Species diversity (H'z) 1.44 1.86 2.15 1.51 1.88<br />

Connecticut<br />

Sou<strong>the</strong>rn red-backed vole<br />

White-footed mouse<br />

Nor<strong>the</strong>rn short-tailed shrew<br />

Masked shrew<br />

Meadow vole<br />

Sou<strong>the</strong>rn bog lemm<strong>in</strong>g<br />

Woodland jump<strong>in</strong>g mouse<br />

Woodland vole<br />

Smoky shrew<br />

Meadow jump<strong>in</strong>g mouse<br />

Star-nosed mole<br />

Water shrew<br />

All species 8.0 6.3 6.1<br />

Number <strong>of</strong> trap-nighta 5,070 1,026 8,283<br />

Total species richness 12 7 8<br />

Species diversity (33'2) 1.61 1.22 1.52<br />

water shrew, were trapped only <strong>in</strong> wetland forests.<br />

The small-mammal community <strong>of</strong> red maple<br />

swamps was dom<strong>in</strong>ated by <strong>the</strong> sou<strong>the</strong>rn redbacked<br />

vole (Clethriommysgapperi) and <strong>the</strong> whitefooted<br />

mouse.<br />

Key Habitat Features<br />

Factors such as vegetation structure, food availability,<br />

substrate moisture, and debris cover (large<br />

rocks or fallen logs) have been found to <strong>in</strong>fluence<br />

small mammal populations <strong>in</strong> upland forests<br />

(Dueser and Shugart 1978; Kitch<strong>in</strong>gs and Levy<br />

1981), but few studies have exam<strong>in</strong>ed <strong>the</strong> factors<br />

affect<strong>in</strong>g small-mammal species distribution and<br />

abundance <strong>in</strong> wetland forests. Miller and Getz<br />

(1977a) found that red maple swamps with abundant<br />

shrub cover had higher mammalian diversity<br />

and richness than ei<strong>the</strong>r upland forests or red<br />

maple swamps with a lesser abundance <strong>of</strong> shrubs.<br />

Mammalian species diversity also was positively<br />

correlated with <strong>the</strong> number <strong>of</strong> tree and shb<br />

species.<br />

This relationship was believed to center on<br />

food availability, s<strong>in</strong>ce most small-mammal species<br />

that were captured fed primarily on mast and fruit<br />

produced by trees and shrubs. Additionally, <strong>the</strong><br />

authors speculated that a greater variety <strong>of</strong> tree<br />

and shrub leaves <strong>in</strong> <strong>the</strong> litter layer might lead to<br />

<strong>in</strong>creased richness <strong>of</strong> <strong>in</strong>vertebrate prey species.


Species composition <strong>of</strong> trees and shrubs <strong>in</strong><br />

swamps may be even more important than species<br />

richness <strong>in</strong> eqla<strong>in</strong>irlg <strong>the</strong> local distributions <strong>of</strong><br />

certa<strong>in</strong> small mammals. me majority <strong>of</strong> woody<br />

plants <strong>in</strong> swamps, such as red maple, highbush<br />

blueberry, and dewberries (Rubus spp.), produce<br />

samaras or fleshy fruits, which provide abundant<br />

food dur<strong>in</strong>g summer and fall but are not available<br />

for w<strong>in</strong>ter consumption. The stable year-round supply<br />

<strong>of</strong> mast <strong>in</strong> upland oak-hickory forests is a major<br />

factor promot<strong>in</strong>g higher numbers <strong>of</strong> white-footed<br />

mice <strong>in</strong> that habitat than <strong>in</strong> red maple swamps<br />

(Getz 1961b; Batzli 1977; Breidl<strong>in</strong>g et al. 1983).<br />

The sou<strong>the</strong>rn red-backed vole (Fig. 7.7) was <strong>the</strong><br />

most abundant small mama1 species found <strong>in</strong><br />

Connecticut red maple swamps (Miller and Getz<br />

1973, 1977a, b). This spies <strong>in</strong>habits most forest<br />

types <strong>in</strong> nor<strong>the</strong>m New England, but <strong>in</strong> sou<strong>the</strong>rn<br />

New England, where upland soils are generally<br />

drier, it is apparexxtly restricted to forested wetland~.<br />

GGtz (1%) showed that <strong>the</strong> red-backed vole<br />

hm higher evaporative water loss and less efficient<br />

kidx~eys than o<strong>the</strong>r srnall mammal species. As a<br />

result,, it must live where stand<strong>in</strong>g wabr or succulent<br />

foot5 items are readily available. In red maple<br />

swamps, water is ~vaililblr voles <strong>in</strong> most <strong>of</strong> <strong>the</strong><br />

growixlg season. Even dur<strong>in</strong>g exceed<strong>in</strong>g1 y dry peri-<br />

ods, title water t.zrLle is rls~~ally close enough to <strong>the</strong><br />

surface so that VOICR call gn<strong>in</strong> access to it by tuxulell<strong>in</strong>g<br />

along w<strong>in</strong>d-lcmseucd t,rcae roots (hfiller and Getz<br />

1972, 1973).<br />

Witll<strong>in</strong> forested wc~t,lrtntfs, <strong>the</strong> amount, <strong>of</strong> escape<br />

cover provided by low vegc:tation or debris strongly<br />

<strong>in</strong>fluerxces tXxc; local. distribution and abundance <strong>of</strong><br />

red-backed voles. Miller and Cetz (1972, 1977b)<br />

noted that vole abundance and survival rates were<br />

nlcprkc.&y lower <strong>in</strong> arcas lack<strong>in</strong>g escape cover, and<br />

speculated that time lack <strong>of</strong> cover allowed higher<br />

predation by diurnal avian raptors (e.g., red-shoddered<br />

hawk).<br />

Wildlife resid<strong>in</strong>g <strong>in</strong> seasonally flooded wetlands<br />

must be able to adapt to widely fluctuat<strong>in</strong>g water<br />

levels. Surface <strong>in</strong>undation <strong>in</strong> forested wetlands<br />

dur<strong>in</strong>g <strong>the</strong> spr<strong>in</strong>g and fall may make it difficult for<br />

some srnall mammals to move about easily on <strong>the</strong><br />

forest floor. Water shrews and red-backed voles are<br />

efficient swimmers and will enter water more readily<br />

than o<strong>the</strong>r small mammal species (Getz 1967;<br />

God<strong>in</strong> 1977). White-footed mice are semiarboreal<br />

and thus are able to retreat <strong>in</strong>to trees to avoid<br />

surface water. As noted earlier, lower food availability,<br />

not seasonal flood<strong>in</strong>g, appears to be responsible<br />

for <strong>the</strong> lower densities <strong>of</strong> white-footed mice <strong>in</strong><br />

swamps compared with upland forests (Batzli<br />

1977; Miller and Getz 1977b).<br />

Medium-sized and Large Mammals<br />

In western Massachusetts, black bears show a<br />

strong habitat preference for wetlands from mid-<br />

April, when <strong>the</strong>y emerge from w<strong>in</strong>ter dens, until<br />

mid-August (Elowe 1984). Although wetland composed<br />

only an average <strong>of</strong> 11% <strong>of</strong> <strong>the</strong> territories <strong>of</strong><br />

seven radio-equipped female black bears, <strong>the</strong> bears<br />

spent more than one-third <strong>of</strong> <strong>the</strong>ir time <strong>in</strong> spr<strong>in</strong>g<br />

and summer <strong>in</strong> wetlands. <strong>Swamps</strong> were used most<br />

heavily <strong>in</strong> spr<strong>in</strong>g, <strong>the</strong> season when food was most<br />

scarce. Skunk cabbage was <strong>the</strong> most important<br />

food at that time.<br />

Throughout <strong>the</strong> North American range <strong>of</strong> black<br />

bears, <strong>the</strong> majority <strong>of</strong> w<strong>in</strong>ter dens are located <strong>in</strong><br />

upland areas. <strong>Swamps</strong> are used as denn<strong>in</strong>g sites <strong>in</strong><br />

some areas <strong>of</strong> <strong>the</strong> eastern United States, but w<strong>in</strong>ter<br />

flood<strong>in</strong>g is a major hazard (Alt 19W, Smith 1985;<br />

Hellgren and Vaughan 1989). In nor<strong>the</strong>astern<br />

Pennsylvania, Alt (1984) found that cub mortality<br />

can be as high as 5% due to <strong>the</strong> flood<strong>in</strong>g <strong>of</strong> dens by<br />

frozen-ground run<strong>of</strong>f. The highest mortality occurred<br />

<strong>in</strong> excavated or root-cavitv dens located <strong>in</strong><br />

swamps and selected by females dur<strong>in</strong>g relatively<br />

dry autumns; above-average precipitation dur<strong>in</strong>g<br />

fall reduced <strong>the</strong> selection <strong>of</strong> potentially dangerous<br />

sites because <strong>of</strong> <strong>the</strong> presence <strong>of</strong> water at <strong>the</strong> time <strong>of</strong><br />

selection.<br />

In <strong>the</strong> Nor<strong>the</strong>ast, beavers prefer to colonize lowgradient<br />

perennial streams <strong>in</strong> small forested watersheds<br />

(Iloward and Larson 1985), many <strong>of</strong> which<br />

<strong>in</strong>clude red maple swamps. <strong>Red</strong> maple is a relatively<br />

unimportant fwd species compared with al-<br />

Fig. 7.7. Sou<strong>the</strong>rn red-backed vole (Ckihrionomys ders, aspens, and wiliows<br />

gapperi), one <strong>of</strong> <strong>the</strong> most ccmmon small mammals <strong>in</strong><br />

et 1951;<br />

nodheastern red maple swamps. Draw<strong>in</strong>g by R. Hodgdon and I-%unt 19661, but it may be <strong>of</strong> signifz-<br />

Alexander:<br />

cant vdue where <strong>the</strong>se species are scarce and dur-


<strong>in</strong>g <strong>the</strong> latter years <strong>of</strong> flowage occupancy. Prolonged<br />

flood<strong>in</strong>g eventually kills most trees with<strong>in</strong> <strong>the</strong> impounded<br />

area, but <strong>the</strong> result<strong>in</strong>g open-water and<br />

marsh habitats are <strong>of</strong> great value to forest-dwell<strong>in</strong>g<br />

amphibians, waterfowl, m d mammals.<br />

While <strong>the</strong>re has been little research on <strong>the</strong> topic,<br />

several o<strong>the</strong>r species <strong>of</strong> medium-sized and large<br />

mammals are known to make extensive use <strong>of</strong> red<br />

maple swamps. River otters, m<strong>in</strong>k, raccoons, and<br />

opossums are most common <strong>in</strong> swamps conta<strong>in</strong><strong>in</strong>g<br />

perennial streams or located along lakeshores. All<br />

<strong>of</strong> <strong>the</strong>se animals feed ei<strong>the</strong>r <strong>in</strong> <strong>the</strong> swamps or <strong>in</strong><br />

water bodies associated with <strong>the</strong>m. Otters rely<br />

heavily on fish, crayfish, and amphibians, while<br />

m<strong>in</strong>k eat crayfish, amphibians, muskrats, small<br />

mammals, and birds. Raccoons and opossums are<br />

omnivorous, feed<strong>in</strong>g on amphibians, crayfish,<br />

freshwater clams, birds, bird eggs, and a variety <strong>of</strong><br />

fruits. Raccoons and opossums commonly den <strong>in</strong><br />

hollow trees <strong>in</strong> swamps, while otters and m<strong>in</strong>k<br />

generally excavate dens along stream channels or<br />

lakeshores.<br />

Gray squirrels (Sciurus cuml<strong>in</strong>emis) and red<br />

squirrels (~miasciurus hudsonicus) both <strong>in</strong>habit red<br />

maple swamps, but <strong>the</strong> former species is more common<br />

<strong>in</strong> <strong>the</strong>se predom<strong>in</strong>antly deciduous habitats.<br />

?"heir arboreal habits generally <strong>in</strong>sulate squirrels<br />

from <strong>the</strong> effeds <strong>of</strong> seasonal high water. Both eastem<br />

cottontails and New England cottontails (Sylvi2agus<br />

tnznsitioruzlis) are aremmon <strong>in</strong> deciduous and evergreen<br />

forested wetlands, particularly dw<strong>in</strong>g <strong>the</strong><br />

w<strong>in</strong>ter, when surface water is frozen and travel<br />

throughout <strong>the</strong> swamps is unrestricted. <strong>Red</strong> maple<br />

swamps <strong>of</strong>fer both cover and browse for rabbits.<br />

<strong>Red</strong> maple swamps are also highly significant<br />

habitats for white-tailed deer (Fig. 7.8), particularly<br />

<strong>in</strong> urban areas <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>ast, where<br />

swamps frequently are <strong>the</strong> wildest, most <strong>in</strong>accessible<br />

habitats rema<strong>in</strong><strong>in</strong>g. <strong>Swamps</strong> provide refuge<br />

for deer from dogs and from humans. Forested<br />

wetlands along watercourses commonly serve as<br />

major travel corridors for deer and o<strong>the</strong>r large<br />

mammals through areas <strong>of</strong> o<strong>the</strong>rwise unsuitable<br />

habitat (Elowe 1984; Brown and Schaefer 1987).<br />

Fig. 7.8, I4 'hite-tailed deer (& mi&<br />

uirg<strong>in</strong>iar; us), <strong>the</strong> most comnnor I large<br />

mammal <strong>in</strong> nor<strong>the</strong>astern red maple<br />

swamps. Pbto by W Byrne.


Vertebrates <strong>of</strong> Special Concern<br />

Nor<strong>the</strong>astern red maple swamps have no<br />

truly endemic vertebrate species; even those<br />

species that exhibit a strong aff<strong>in</strong>ity for red<br />

maple swamps may be found <strong>in</strong> forested wetlands<br />

dom<strong>in</strong>ated by o<strong>the</strong>r trees. However, red<br />

maple swamps provide habitat for numerous<br />

rare, threatened, or endangered animals. Appendix<br />

D lists 103 vertebrates <strong>of</strong> special concern<br />

known to occur <strong>in</strong> nor<strong>the</strong>astern red maple<br />

swamps, along with <strong>the</strong>ir status <strong>in</strong> each state <strong>in</strong><br />

<strong>the</strong> region. Thirty percent <strong>of</strong> <strong>the</strong> animals listed<br />

<strong>in</strong> AppendixD are considered <strong>of</strong> rare, threatened,<br />

or endangered status by agencies <strong>in</strong> five or more<br />

nor<strong>the</strong>asternstates.<br />

As noted for plants <strong>of</strong> special concern (Appendix<br />

B), Appendix D should be regarded simply<br />

as a potential list <strong>of</strong> vertebrates <strong>of</strong> concern. All<br />

<strong>of</strong> <strong>the</strong> species listed have been observed <strong>in</strong><br />

nor<strong>the</strong>astern red maple swamps, but many<br />

have not been documented <strong>in</strong> that habitat <strong>in</strong><br />

states where <strong>the</strong>y are considered rare or endangered.<br />

The majority <strong>of</strong> animals <strong>in</strong> <strong>the</strong> list are<br />

most frequently found <strong>in</strong> upland habitats or <strong>in</strong><br />

wetlands o<strong>the</strong>r than red maple swamps.


Chapter 8. Values, Impacts, and<br />

Management<br />

hnctions sand Values <strong>of</strong> <strong>Red</strong><br />

<strong>Maple</strong> <strong>Swamps</strong><br />

As previous chapters have shown, relatively<br />

little research has been conducted on <strong>the</strong> hydrologic,<br />

edaphic, or ecological characteristics <strong>of</strong> red<br />

maple swamps, despite <strong>the</strong>ir abundance <strong>in</strong> <strong>the</strong><br />

glaciated Nor<strong>the</strong>ast. Similarly, few publications<br />

have directly addressed <strong>the</strong> societal values <strong>of</strong> <strong>the</strong>se<br />

swamps. Many <strong>of</strong> <strong>the</strong> functions and values currently<br />

recognized for wetlands (e.g., Greeson et al.<br />

1979; Richardson 1981; Adamus and Stockwell<br />

1983; T<strong>in</strong>er 1984; Adamus et al. 1987) are nearly<br />

universal; that is, <strong>the</strong>y are evident <strong>in</strong> a wide variety<br />

<strong>of</strong> wetland types, regardless <strong>of</strong> dom<strong>in</strong>ant vegetation<br />

or water regime. Despite <strong>the</strong> lack <strong>of</strong> documentation,<br />

red maple swamps clearly perform<br />

many functions that bear directly on public safety,<br />

health, and welfare. The great abundance <strong>of</strong> red<br />

maple swamps <strong>in</strong> <strong>the</strong> Nor<strong>the</strong>ast suggests that <strong>the</strong><br />

social significance <strong>of</strong> <strong>the</strong>se functions may be great<br />

both locally and regionally.<br />

This section reviews <strong>the</strong> most obvious functions<br />

and values <strong>of</strong> red maple swamps, not<strong>in</strong>g documentation<br />

where it exists, but rely<strong>in</strong>g on more general<br />

<strong>in</strong>formation when necessary. Functions are considered<br />

to be processes or actions that <strong>the</strong> swanlps<br />

perform; values are <strong>the</strong> benefits <strong>of</strong> those functions<br />

to society.<br />

Flood Abatement<br />

The ability to reduce <strong>the</strong> peak level <strong>of</strong> floods and<br />

to delay <strong>the</strong> flood crest is one <strong>of</strong> <strong>the</strong> most widely<br />

recognized functions <strong>of</strong> <strong>in</strong>land wetlands (Carter<br />

et al. 1979; Novitzki 1979b; T<strong>in</strong>er 1984). This function<br />

is accomplished chiefly through (1) <strong>the</strong> storage<br />

<strong>of</strong> surface water <strong>in</strong> wetland bas<strong>in</strong>s after snowmelt<br />

and major precipitation events, and (2) <strong>the</strong> reduction<br />

<strong>in</strong> floodflow velocity as water passes through<br />

wetland vegetation and over <strong>the</strong> soil surface. The<br />

social significance <strong>of</strong> <strong>the</strong> flood abatement function<br />

is enormous, particularly if areas downstream<br />

from major wetlands are urbanized and vulnerable<br />

to flood damage. After a 5-year study <strong>of</strong> flood<br />

control alternatives <strong>in</strong> <strong>the</strong> Charles River bas<strong>in</strong> <strong>of</strong><br />

eastern Massachusetts, <strong>the</strong> U.S. Army Corps <strong>of</strong><br />

Eng<strong>in</strong>eers (1972) concluded that <strong>the</strong> least expensive,<br />

most effective means <strong>of</strong> flood control was <strong>the</strong><br />

preservation <strong>of</strong> all 3,400 ha <strong>of</strong> wetlands <strong>in</strong> <strong>the</strong><br />

watershed as "natural valley storage areas." Many<br />

<strong>of</strong> those wetlands are red maple swamps. By <strong>the</strong><br />

late 1980's, all Charles River wetlands had been<br />

protected for flood control through ei<strong>the</strong>r public<br />

acquisition or easements (E W. Colrnan, U.S. Army<br />

Corps <strong>of</strong> Eng<strong>in</strong>eers, Waltham, Mass., personal<br />

communication).<br />

The relative contribution <strong>of</strong> an <strong>in</strong>dividual red<br />

maple swamp to flood abatement is heavily <strong>in</strong>fluenced<br />

by its geomorphic sett<strong>in</strong>g and land use<br />

with<strong>in</strong> its watershed. <strong>Swamps</strong> with <strong>the</strong> greatest<br />

potential value for flood abatement are those that<br />

(I) are located <strong>in</strong> a well-def<strong>in</strong>ed bas<strong>in</strong> capable <strong>of</strong><br />

stor<strong>in</strong>g floodwater, (2) have a relatively large watershed<br />

or one that has been extensively altered<br />

by humans, and (3) receive floodwaters directly<br />

from an overflow<strong>in</strong>g stream or lake (see Ogawa<br />

and Male 1983 for a discussion <strong>of</strong> o<strong>the</strong>r factors<br />

affect<strong>in</strong>g flood abatement). Hillside seepage<br />

swamps, for example, have relatively low floodcontrol<br />

value compared with temporarily or seasonally<br />

flooded bas<strong>in</strong> swamps or swamps associated<br />

with lower perennial rivers. Trees, shrubs,<br />

and herbaceous plants grow<strong>in</strong>g <strong>in</strong> swamps fur<strong>the</strong>r<br />

aid <strong>in</strong> flood abatement by physically imped<strong>in</strong>g <strong>the</strong><br />

flow <strong>of</strong> floodwaters. In this regard, swamps are<br />

more effective than open water or nonpersisbnt<br />

emergent wetlands.<br />

Groundwater hnctions<br />

As shown earlier, red maple swamps may be<br />

isolated from underly<strong>in</strong>g groundwater aquifers or<br />

<strong>in</strong>timately connected to <strong>the</strong>m. <strong>Swamps</strong> l<strong>in</strong>ked to<br />

groundwater aquifers may be groundwater recharge<br />

areas, groundwater discharge areas, or<br />

both. By collect<strong>in</strong>g precipitation and overland flow<br />

and recharg<strong>in</strong>g <strong>the</strong> underly<strong>in</strong>g groundwater sys-


tern, swamps may augment domestic and municipal<br />

water supplies. Hydrogeologic studies have<br />

shown that heavy pump<strong>in</strong>g <strong>of</strong> wells located <strong>in</strong><br />

stratified drift; aquifers may <strong>in</strong>duce recharge <strong>of</strong><br />

water from <strong>the</strong> surface, or from <strong>the</strong> soils, <strong>of</strong> overly<strong>in</strong>g<br />

wetlands (Motts and O'Brien 1981; OzbiXg<strong>in</strong><br />

1982). While this ga<strong>in</strong> <strong>of</strong> groundwater may be<br />

beneficial from an eng<strong>in</strong>eer<strong>in</strong>g standpo<strong>in</strong>t, <strong>the</strong><br />

loss <strong>of</strong> water from <strong>the</strong> wetland may be detrimental<br />

to fish and wildlife, recreation, and o<strong>the</strong>r wetland<br />

functions and values.<br />

Except for surface-water depression wetlands<br />

that are perched above <strong>the</strong> regional groundwater<br />

table, natural recharge <strong>in</strong> most red maple swamps<br />

is likely to be a relatively brief seasonal phenomenon<br />

(OBrien 1977). It occurs ma<strong>in</strong>ly dur<strong>in</strong>g <strong>the</strong> late<br />

summer or early fall when, due to cumulative evapotranspiration<br />

losses, groundwater levels have<br />

dropped below <strong>the</strong> wetland surface, and groundwater<br />

discharge has ceased. OBrien calculated that<br />

one red maple swamp <strong>in</strong> eastern Massachusetts<br />

recharged <strong>the</strong> regional groundwater body with<br />

7 million gallons <strong>of</strong> water dur<strong>in</strong>g a 6-week period <strong>in</strong><br />

<strong>the</strong> fall; he noted that recharge could be significant<br />

dur<strong>in</strong>g dry periods. In most cases, however, <strong>the</strong><br />

volume <strong>of</strong> groundwater recharge <strong>in</strong> red maple<br />

swamps probably is far less than <strong>in</strong> <strong>the</strong> surround<strong>in</strong>g<br />

uplands--depend<strong>in</strong>g on <strong>the</strong> slope and soil permeability<br />

<strong>of</strong> <strong>the</strong> uplands-particularly 011 an annual<br />

basis.<br />

RRd maple swamps ly<strong>in</strong>g on slopes or <strong>in</strong> bas<strong>in</strong>s<br />

that <strong>in</strong>tersect <strong>the</strong> regional groundwater table are<br />

predom<strong>in</strong>antly areas <strong>of</strong> groundwater discharge.<br />

These swamps exist precisely because groundwater<br />

is emerg<strong>in</strong>g at <strong>the</strong> surface <strong>in</strong> <strong>the</strong> form <strong>of</strong> spr<strong>in</strong>gs or<br />

seeps. The discharge <strong>of</strong> groundwater is important<br />

<strong>in</strong> itself because this water supplements public<br />

surface-water supplies, ma<strong>in</strong>ta<strong>in</strong>s fish and wildlife<br />

habitats, and improves <strong>the</strong> water quality <strong>of</strong> lakes<br />

wrd strew degraded by excess nutrient loads,<br />

toxic chemicals, or <strong>the</strong>rmal discharges (Adamus<br />

1984;). Groundwater discharge ma<strong>in</strong>tab base flow<br />

<strong>of</strong> streams and keeps stream and lake temperatures<br />

low dur<strong>in</strong>g <strong>the</strong> late summer, when both <strong>of</strong><br />

<strong>the</strong>se conditions are critical to aquatic <strong>in</strong>vertebrates<br />

and cold-water fishes. Note, however, that<br />

evaptranspiration losses from swamps may lower<br />

base flow <strong>of</strong> streams dur<strong>in</strong>g dry periods @%Her<br />

1965).<br />

Aside from recharge and discharge considerations,<br />

<strong>the</strong> spatial association <strong>of</strong> wetlands and<br />

groundwater aquifers is <strong>of</strong> great significance.<br />

Motts and O'Brien (1981) determ<strong>in</strong>ed that, on an<br />

area basis, about two-thirds <strong>of</strong> Massachusetts<br />

wetlands overlie potential high-yield aquifers,<br />

and that at least 60 communities <strong>in</strong> that state<br />

obta<strong>in</strong> water from wells located <strong>in</strong> or near wetlands.<br />

Ekcause <strong>the</strong> best location for municipal<br />

wells, from a purely hydrologic standpo<strong>in</strong>t, is<br />

<strong>of</strong>ten near wetlands, and because wetlands are<br />

<strong>of</strong>ten hydrologically l<strong>in</strong>ked to underly<strong>in</strong>g aquifers,<br />

Motts and O'Brien concluded that <strong>the</strong> protection<br />

<strong>of</strong> wetlands and <strong>the</strong>ir surround<strong>in</strong>gs from pollution<br />

should be a <strong>in</strong>tegral part <strong>of</strong> any groundwater<br />

management program.<br />

Water Quality lmprouement<br />

S<strong>in</strong>ce <strong>the</strong> mid-1970's <strong>the</strong>re has been a great<br />

deal <strong>of</strong> research on <strong>the</strong> pollution-abatement potential<br />

<strong>of</strong> wetlands (e.g., Tilton et al. 1976; Kadlec<br />

and Kadlec 1979; Godfrey et al. 1985; Nixon and<br />

Lee 1986). This research has shown that many<br />

types <strong>of</strong> wetlands reta<strong>in</strong>, remove, or transform<br />

pollutants and thus improve <strong>the</strong> quality <strong>of</strong> surface<br />

water. This pollution-abatement function is accomplished<br />

through physical settl<strong>in</strong>g, plant uptake,<br />

adsorption by soil particles, complex<strong>in</strong>g with<br />

o<strong>the</strong>r chemicals <strong>in</strong> <strong>the</strong> soil, and microbial transformation<br />

(Burton 1981; Nixon and Lee 1986).<br />

Most <strong>of</strong> <strong>the</strong> research on <strong>the</strong> water quality improvement<br />

function <strong>of</strong> forested wetlands has occurred<br />

outside <strong>of</strong> <strong>the</strong> glaciated Nor<strong>the</strong>ast. Hardwood<br />

swamps <strong>in</strong> various parts <strong>of</strong> <strong>the</strong> United<br />

States have been shown to significantly reduce<br />

concentrations <strong>of</strong> nitrogen and phosphorus <strong>in</strong> surface<br />

water dur<strong>in</strong>g periods <strong>of</strong> <strong>in</strong>undation (Kitchens<br />

et al. 1975; Mitsch et al. 1979; Br<strong>in</strong>son et al.<br />

1981b), and <strong>the</strong> potential capacity <strong>of</strong> forested wetlands<br />

for remov<strong>in</strong>g pesticides and heavy metals is<br />

believed to be high (W<strong>in</strong>ger 1986). Only two papers<br />

have reported on <strong>the</strong> water quality improvement<br />

capacity <strong>of</strong> nor<strong>the</strong>astern red maple swamps.<br />

In a comparison <strong>of</strong> grass- and forest-vegetated<br />

filter strips <strong>in</strong> Rhode Island, Gr<strong>of</strong>fman et al.<br />

(1991) demonstrated that denitrification rates<br />

were significantly greater (P < 0.05) <strong>in</strong> poorly<br />

dra<strong>in</strong>ed soils <strong>of</strong> red maple swamps than <strong>in</strong> well<br />

dra<strong>in</strong>ed soils <strong>of</strong> adjacent upland forests. In a second<br />

Rhode Island study, Gold and Simmons (1990)<br />

found that removal <strong>of</strong> nitrate from groundwater<br />

generally exceeded 80% <strong>in</strong> both poorly dra<strong>in</strong>ed<br />

and very poorly dra<strong>in</strong>ed soils <strong>of</strong> red maple swamps<br />

throughout <strong>the</strong> year. In almost all cases, nitrate<br />

attenuation was significantly higher (P < 0.05) <strong>in</strong><br />

<strong>the</strong> swamps than <strong>in</strong> <strong>the</strong> moist (somewhat poorly<br />

dra<strong>in</strong>ed and moderately well dra<strong>in</strong>ed) forest soils


<strong>of</strong> <strong>the</strong> border<strong>in</strong>g upland. Both studies concluded<br />

that forested wetlands are likely to be more effective<br />

than upland forests as s<strong>in</strong>ks for nitrate. Prolonged<br />

anaerobic soil conditions and high soil organic<br />

matter content appear to be ma<strong>in</strong>ly<br />

responsible for <strong>the</strong> greater denitrification potential<br />

<strong>of</strong> <strong>the</strong> swamp soils; at <strong>the</strong> same time, high<br />

water tables br<strong>in</strong>g groundwater contam<strong>in</strong>ants<br />

closer to <strong>the</strong> surface where <strong>the</strong>y may be picked up<br />

by plant roots.<br />

<strong>Red</strong> maple swamps are so abundant <strong>in</strong> <strong>the</strong><br />

Nor<strong>the</strong>ast, particularly <strong>in</strong> more urbanized sections<br />

such as nor<strong>the</strong>rn New Jersey, sou<strong>the</strong>astern New<br />

York and sou<strong>the</strong>rn New England, that both po<strong>in</strong>t<br />

and nonpo<strong>in</strong>t discharges <strong>of</strong> a wide variety <strong>of</strong> pollutants<br />

<strong>in</strong>to <strong>the</strong>se wetlands have been common occurrences.<br />

The most widespread problems are stormwater<br />

run<strong>of</strong>f and result<strong>in</strong>g goundwater<br />

contam<strong>in</strong>ation &om residential subdivisions, highways,<br />

commercial and <strong>in</strong>dustrial sites, farms, and<br />

construction sites, as well as discharge <strong>of</strong> effluent<br />

from belowground sewage disposal systems <strong>in</strong>to<br />

soils border<strong>in</strong>g wetlands. Judg<strong>in</strong>g from <strong>the</strong> prelim<strong>in</strong>ary<br />

fmd<strong>in</strong>gs <strong>in</strong> mode Island swamps and research<br />

results from wetland forests <strong>in</strong> o<strong>the</strong>r regions,<br />

it is reasonable to assume that red maple<br />

swamps receiv<strong>in</strong>g such pollutants perform a water<br />

quality improvement function <strong>of</strong> value to society.<br />

Given <strong>the</strong> abundance <strong>of</strong> <strong>the</strong>se wetlands, <strong>the</strong> overall<br />

<strong>in</strong>fluence on water quality <strong>in</strong> <strong>the</strong> region may be<br />

significant.<br />

Wildlife Habitat<br />

The importance <strong>of</strong> red maple swamps as wildlife<br />

habitat was addressed <strong>in</strong> detail <strong>in</strong> Chapter 7.<br />

These swamps are important as breed<strong>in</strong>g areas,<br />

seasonal feed<strong>in</strong>g areas, and year-round habitat for<br />

a wide variety <strong>of</strong> birds, mammals, and amphibians;<br />

<strong>the</strong>y may also provide important habitat for<br />

certa<strong>in</strong> reptiles and <strong>in</strong>vertebrates, but little research<br />

has been done on those taxa. The value <strong>of</strong><br />

<strong>in</strong>dividual red maple swamps for particular wildlife<br />

species and for <strong>the</strong> entire wildlife community<br />

depends on several factors, <strong>in</strong>clud<strong>in</strong>g vegetation<br />

structure, water regime, surround<strong>in</strong>g habitat<br />

types, degree <strong>of</strong> human activity <strong>in</strong> or near <strong>the</strong><br />

swamp, wetland size, and proximity to open water<br />

bodies and o<strong>the</strong>r wetland types (Golet l976)*<br />

While red maple swamps are essential habitat<br />

for wetland-dependent species such as <strong>the</strong> nor<strong>the</strong>rn<br />

waterthrush, <strong>the</strong>y are also <strong>of</strong> great importance<br />

to facultative species, which are <strong>of</strong>ten considered<br />

upland wildlife. Examples <strong>in</strong>clude<br />

white-tailed deer, ruffed grouse (Boma umbellus),<br />

crows, American woodcock (Scolopm m<strong>in</strong>or),<br />

several species <strong>of</strong> hawks and owls, raccoons, opossums,<br />

cottontails, squirrels, and a host <strong>of</strong> songbirds.<br />

In some urban areas, red maple swamps<br />

constitute <strong>the</strong> most significant natural habitat<br />

still available to <strong>the</strong>se types <strong>of</strong> wildlife. The importance<br />

<strong>of</strong> <strong>the</strong>se swamps to upland wildlife will<br />

undoubtedly <strong>in</strong>crease as urbanization cont<strong>in</strong>ues.<br />

The social value <strong>of</strong> <strong>the</strong> wildlife habitat function<br />

<strong>of</strong> red maple swamps stems from wildlife-related<br />

activities such as hunt<strong>in</strong>g, birdwatch<strong>in</strong>g, nature<br />

study, and wildlife photography. The opportunity<br />

to observe wildlife <strong>in</strong> a natural sett<strong>in</strong>g is a vital<br />

part <strong>of</strong> <strong>the</strong> natural heritage value <strong>of</strong> wetlands.<br />

These pursuits are discussed later <strong>in</strong> this section.<br />

Wood Products<br />

In <strong>the</strong> north-central states and <strong>in</strong> <strong>the</strong> South,<br />

wetland forests are <strong>of</strong> great commercial value for<br />

lumber and pulpwood (Johnson 1979). In <strong>the</strong><br />

Nor<strong>the</strong>ast, <strong>the</strong> commercial harvest <strong>of</strong> wood products<br />

<strong>in</strong> wetlands is less <strong>in</strong>tensive, because <strong>of</strong> both<br />

<strong>the</strong> lower quality <strong>of</strong> <strong>the</strong> wood <strong>in</strong> many wetland<br />

forest trees and <strong>the</strong> greater availability <strong>of</strong> highquality<br />

upland forest species. Black spruce, nor<strong>the</strong>rn<br />

white cedar, and tamarack are species with<br />

significant commercial value, particularly where<br />

<strong>the</strong>y occur <strong>in</strong> large stands. In Ma<strong>in</strong>e, black ash<br />

and red maple also are considered important timber<br />

species <strong>in</strong> wetlands (Wid<strong>of</strong>f 1988).<br />

6e energy crisis <strong>of</strong> <strong>the</strong> 1970's <strong>in</strong> <strong>the</strong> United<br />

States prompted a reassessment <strong>of</strong> <strong>the</strong> value <strong>of</strong><br />

many natural sources <strong>of</strong> fuel, <strong>in</strong>clud<strong>in</strong>g cordwood.<br />

Braiewa et al. (1985) demonstrated <strong>in</strong> Rhode Island<br />

that average annual biomass production <strong>of</strong><br />

red maple on moderately well dra<strong>in</strong>ed to very<br />

poorly dra<strong>in</strong>ed sites (2,382 k&a) closely paralleled<br />

production <strong>of</strong> mixed hardwoods on moderately<br />

well dra<strong>in</strong>ed sites (2,316 kg/ha), and greatly<br />

exceeded <strong>the</strong> production <strong>of</strong> mixed oaks on well<br />

dra<strong>in</strong>ed sites (1,630 kg/ha). They estimated total<br />

cordwwd production to be 105 cords/ha <strong>in</strong> a 55-<br />

year-old, seed-orig<strong>in</strong> stand <strong>of</strong> red maple, and<br />

50 cordfia <strong>in</strong> a 46-year-old, sprout-orig<strong>in</strong> stand.<br />

The authors concluded that sou<strong>the</strong>rn New England<br />

red maple stands on imperfectly dra<strong>in</strong>ed soils<br />

have high biomass production potential and<br />

should not be overlooked as a wood resource.<br />

Large-scale cornmercial hawest<strong>in</strong>g <strong>of</strong> wood<br />

products from nor<strong>the</strong>astern red maple swamps is<br />

h<strong>in</strong>dered by <strong>the</strong> relatively smalf. size <strong>of</strong> many<br />

swamps, <strong>the</strong> complex pattern1 <strong>of</strong> private owner-


ships, and state and federal wetland probction<br />

laws. The impacts <strong>of</strong> logg<strong>in</strong>g on o<strong>the</strong>r functions<br />

and values <strong>of</strong> <strong>the</strong>se wetlands, such as wildlife<br />

habitat, open space, and recreation, must be carefully<br />

considered.<br />

Sociocul tural Values<br />

h d maple swamps are also valuable Lo society<br />

for <strong>the</strong>ir scenic beauty, <strong>the</strong>ir contribution to biotic<br />

diversity, and <strong>the</strong>ir use as recreation and openspace<br />

areas. This collection <strong>of</strong> wetland values has<br />

been variously referred to as socioculturd or heritage<br />

values Wier<strong>in</strong>g 1979) and aes<strong>the</strong>tic, recreational,<br />

and landscape values (Smardon 1988).<br />

The scenic or aes<strong>the</strong>tic value <strong>of</strong> red maple<br />

swamps is most obvious at <strong>the</strong> landscape level<br />

dur<strong>in</strong>g early fall when <strong>the</strong> brilliant ello ow, red, and<br />

orange foliage <strong>of</strong> <strong>the</strong> swamps provides strik<strong>in</strong>g contrast<br />

to <strong>the</strong> upland vegetation whose foliage has not<br />

yet changed from <strong>the</strong> predom<strong>in</strong>antly green shades<br />

<strong>of</strong> summer, Although red maple has <strong>the</strong> greatest<br />

visual affect becausc <strong>of</strong> its predom<strong>in</strong>ance, o<strong>the</strong>r<br />

spies such as black gun and ashes may also be<br />

strik<strong>in</strong>g. Mixed stands <strong>of</strong> hardwoods and conifers<br />

<strong>of</strong>fer a uxsique contrast <strong>in</strong> fall foliage <strong>in</strong> some<br />

swamps. Rad maple swamps border major highways<br />

throughout <strong>the</strong> Nor<strong>the</strong>ast, and each fall <strong>the</strong>se<br />

bright auturml colors are seen daily by thousands<br />

<strong>of</strong> motorist. h d maple swamps clearly are a dis<strong>the</strong>tive<br />

partz <strong>of</strong> <strong>the</strong> scenic beauty that characterizes<br />

this region.<br />

'I'he aes<strong>the</strong>tic value <strong>of</strong> red maple swamps can<br />

be appreciabd on a more subtle level as well: <strong>in</strong><br />

tbe flowers <strong>of</strong> <strong>the</strong> spicebush, which form a yellow<br />

haze <strong>in</strong> <strong>the</strong> ur~derstory <strong>of</strong> hillside seepage swamps<br />

and along upland dra<strong>in</strong>ageways <strong>in</strong> early spr<strong>in</strong>g;<br />

<strong>in</strong> <strong>the</strong> curious hoodlike <strong>in</strong>florescence and broad<br />

green leave8 <strong>of</strong> <strong>the</strong> skunk cabbage; <strong>in</strong> <strong>the</strong> lush<br />

growth <strong>of</strong> c<strong>in</strong>namon ferns <strong>in</strong>terspersed with dark<br />

psals <strong>of</strong> wator, <strong>in</strong>vok<strong>in</strong>g images <strong>of</strong> <strong>the</strong> pri~nevd<br />

forest (Fig. 2.1); <strong>in</strong> <strong>the</strong> fragrant aroma <strong>of</strong> sweet<br />

pepperbush flowers (Fig. 8.1) <strong>in</strong> late summer; or<br />

<strong>in</strong> <strong>the</strong> bright red fruits <strong>of</strong> <strong>the</strong> common w<strong>in</strong>terberry<br />

throughout fail and w<strong>in</strong>ter. These also are common<br />

sights along nor<strong>the</strong>astern roads and hik<strong>in</strong>g<br />

trails; <strong>the</strong>y are <strong>the</strong> detaiIs that create visual diversity<br />

In a predom<strong>in</strong>antly forested landscape.<br />

The public engages ih a variety <strong>of</strong> forms <strong>of</strong><br />

recreation <strong>in</strong> red maple swamps. Depend<strong>in</strong>g upon<br />

<strong>the</strong> water regime and <strong>the</strong> pro&ity <strong>of</strong> <strong>the</strong> swamps<br />

open water, hunters nay pursue watedowl,<br />

deer, ruffed Gouse, rabbits, squirPels, or even<br />

r<strong>in</strong>g-necked pheasants (Phcrsknus ahhicus) <strong>in</strong><br />

<strong>the</strong>se habitats. <strong>Red</strong> maple swamps are frequented<br />

by birdwakhers as well, especially dur<strong>in</strong>g late<br />

spr<strong>in</strong>g when migrat<strong>in</strong>g warblers and o<strong>the</strong>r songbirds<br />

feed on <strong>in</strong>sects attracted to <strong>the</strong> flowers and<br />

break<strong>in</strong>g leaf buds <strong>of</strong> red maple trees. Canoe<strong>in</strong>g,<br />

hik<strong>in</strong>g, and photograph<strong>in</strong>g nature art, o<strong>the</strong>r forms<br />

<strong>of</strong> recreation that may be pursued <strong>in</strong> and along <strong>the</strong><br />

edges <strong>of</strong> red maple swamps. Pick<strong>in</strong>g native highbush<br />

blueberries is ano<strong>the</strong>r activity that is part <strong>of</strong><br />

<strong>the</strong> cultural heritage associated with <strong>the</strong>se forested<br />

wetlands.<br />

Biotic diversity, particularly <strong>the</strong> presence <strong>of</strong> rare,<br />

threatened, unique, or unusual plants axad animals,<br />

is itself an aspect <strong>of</strong> our natural heritage to which<br />

red maple swamps contribute. As noted previously,<br />

many species <strong>of</strong> plants and animals found <strong>in</strong> red<br />

maple swamps are classified <strong>in</strong> threatened or endangered<br />

conservation status categories by state<br />

agencies (see Appendixes B and D). Still, documentation<br />

<strong>of</strong> <strong>the</strong> flora and fauna (especially <strong>in</strong>vertebrates)<br />

<strong>in</strong> red maple swamps has been limited;<br />

more detailed surveys are needed throughout <strong>the</strong><br />

Nor<strong>the</strong>ast.<br />

Pollen preserved for thousands <strong>of</strong> years <strong>in</strong> <strong>the</strong><br />

sediments beneath red maple swamps provides<br />

tangible evidence <strong>of</strong> <strong>the</strong> changes <strong>in</strong> climate and<br />

plant communities that have occurred <strong>in</strong> <strong>the</strong><br />

Nor<strong>the</strong>ast s<strong>in</strong>ce <strong>the</strong> retreat <strong>of</strong> <strong>the</strong> glaciers<br />

(Beetham and Nier<strong>in</strong>g 1961). Thus, some red maple<br />

swamps may have considerable value for research<br />

and education.<br />

In highly urbanized areas <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>ast, red<br />

maple swamps also provide a natural, low-cost<br />

form <strong>of</strong> open space. Frequently, <strong>the</strong> term open<br />

space is limited to aes<strong>the</strong>tics and recreational<br />

value, but <strong>in</strong> many cases its chief value may be <strong>in</strong><br />

reduc<strong>in</strong>g <strong>the</strong> visual and psychological impacts <strong>of</strong><br />

urbanization on humans m d <strong>the</strong>ir quality <strong>of</strong> life.<br />

Public parks, athletic fields, agricultural land,<br />

and o<strong>the</strong>r undeveloped uplands also provide open<br />

space, but wetlands are particularly well suited to<br />

this purpose for several reasons: (1) <strong>the</strong>y perform<br />

a variety <strong>of</strong> o<strong>the</strong>r functions, such as flood storage<br />

and water quality improvement, that are highly<br />

valued by society; (2) <strong>the</strong>y are unsuitable for most<br />

o<strong>the</strong>r land uses because <strong>of</strong> <strong>the</strong>ir wetness; and (3)<br />

<strong>the</strong>y are frequently distributed <strong>in</strong> a l<strong>in</strong>ear pattern,<br />

paraiieiir~g watercourses, which maximizes human<br />

contact with undeveloped parts <strong>of</strong> <strong>the</strong> landscape.<br />

<strong>Red</strong> maple swamps are especially effective<br />

open-space areas (Fig. 8.2); <strong>the</strong> trees and shrubs<br />

provide a tall, visual screen between developed<br />

areas and help to reduce noise emanat<strong>in</strong>g from


Fig. 8.1. ST<br />

folia) <strong>in</strong><br />

pel<br />

fer.<br />

.bush (Cb<br />

major highways or commercial and <strong>in</strong>dustrial<br />

zones. For all <strong>of</strong> <strong>the</strong> above reasons, <strong>the</strong> argument<br />

to preserve red maple swamps as open-space areas<br />

is both logical and compell<strong>in</strong>g.<br />

Human Impacts<br />

S<strong>in</strong>ce European settlement <strong>of</strong> <strong>the</strong> glaciated<br />

Nor<strong>the</strong>ast began over 350 years ago, thousands <strong>of</strong><br />

hectares <strong>of</strong> wetlands have been filled, dra<strong>in</strong>ed, impounded,<br />

_DoIluted, or o<strong>the</strong>rwise altered. In <strong>the</strong> core<br />

<strong>of</strong> urban centers such as New York City, Boston,<br />

Providence, and Hartford, most natural wetlands<br />

probably had been elim<strong>in</strong>ated prior to <strong>the</strong> late<br />

n<strong>in</strong>eteenth century. Except for agricdtural effects,<br />

which were highly significant <strong>in</strong> certa<strong>in</strong> parts <strong>of</strong> <strong>the</strong><br />

reg-ion, wetland losses <strong>in</strong> most rural areas were less<br />

severe until <strong>the</strong> rapid <strong>in</strong>crease <strong>in</strong> urbanization that<br />

began <strong>in</strong> <strong>the</strong> mid-1900's. Passage <strong>of</strong> state and federal<br />

wetlands protection laws and regulations has<br />

slowed <strong>the</strong> rate <strong>of</strong> conversion, but weak enforcement,<br />

m<strong>in</strong>imum legal size limits, and o<strong>the</strong>r exemptions<br />

have allowed certa<strong>in</strong> wetlands to be altered<br />

without a permit. For <strong>the</strong>se reasons, losses <strong>of</strong> <strong>in</strong>land<br />

wetlands are still occurr<strong>in</strong>g at a significant rate <strong>in</strong><br />

many areas <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>ast.<br />

Documentation <strong>of</strong> <strong>the</strong> extent and causes <strong>of</strong> <strong>in</strong>land<br />

wetland losses is lack<strong>in</strong>g for most <strong>of</strong> this<br />

region. Statistics are available only for sou<strong>the</strong>astern<br />

Massachusetts (Larson et al. 1980; T<strong>in</strong>er and<br />

Z<strong>in</strong>ni 1988)) sou<strong>the</strong>rn mode Island (Golet and<br />

Paskhurst 1981)) central Connecticut (T<strong>in</strong>er et al.<br />

1989), and Pemsy~vania O\<strong>in</strong>er and F<strong>in</strong>n 1986).


Fig. 8.2 <strong>Red</strong> maple swamp provid<strong>in</strong>g open space arnidst residential and <strong>in</strong>dustrial development. Such urban<br />

swamps also are important for recreation, nature study, flood storage, water quality improvement, and wildlife<br />

habitat. Outl<strong>in</strong>ed areas labelled "u" represent upland habitats.


Table 8.1. Emrnpks <strong>of</strong>gmss loss rates for <strong>in</strong>land vegetated wetlands <strong>in</strong> <strong>the</strong>gtaciated Nor<strong>the</strong>ast. Losses<br />

<strong>in</strong>clude changes from wetland to mnwetland, wetland to open watel; and wetland to farmlad<br />

(<strong>in</strong>clud<strong>in</strong>g cranberry bog).<br />

-- -- --- - Location Percent loss Study period Source<br />

-- - - -<br />

--<br />

Pennsylvania<br />

Nor<strong>the</strong>rn Poconos 15 1950's - 70's T<strong>in</strong>er and F<strong>in</strong>n (1986)<br />

Northwestern region 5 1950's - 70's T<strong>in</strong>er and F<strong>in</strong>n (1986)<br />

New Jersey<br />

Passaic County 15 1940-78 T<strong>in</strong>er (1985)<br />

Central Passaic River bas<strong>in</strong> 50 1940-78 T<strong>in</strong>er (1985)<br />

Rhode Island<br />

South K<strong>in</strong>gstown 1 1939-72 Golet and Parkhumt (1981)<br />

Massachusetts<br />

Bristol Countya 7 1951-71 Larson et al. (1980)<br />

plymouth countyb 2 1977-86 T<strong>in</strong>er and Z<strong>in</strong>ni (1988)<br />

15 communitiesC 4 1951-77 Organ (1983)<br />

Connecticut<br />

Central regiod 0.6 1980-86 T<strong>in</strong>er et al. (1989)<br />

-- ---<br />

aOnly nonforested wetlands were <strong>in</strong>cluded <strong>in</strong> this study.<br />

b~tudy area <strong>in</strong>cluded most <strong>of</strong> Plymouth County and small sections <strong>of</strong> Norfolk, Rristol, and Barnstable counties.<br />

CCommunities were scattered across <strong>the</strong> state, and repwsented a wide range <strong>of</strong> physiographlr characteristics and population<br />

densities.<br />

d~tudy area <strong>in</strong>cluded two-thirds <strong>of</strong> Hartford County and smaller portions <strong>of</strong> New IIaven, Tolland, and Middlesex counties.<br />

Information on losses <strong>of</strong> forested wetlands is even<br />

more scarce. Because forested wetlands predom<strong>in</strong>ate<br />

throughout <strong>the</strong> Nor<strong>the</strong>ast, <strong>the</strong> loss <strong>of</strong> <strong>the</strong>se<br />

wetlands is assumed to be at least as great as that<br />

for o<strong>the</strong>r types <strong>of</strong> <strong>in</strong>land wetlands. With m<strong>in</strong>or<br />

exceptions, such as timber harvest<strong>in</strong>g, <strong>the</strong> causes<br />

<strong>of</strong> forested wetland alteration also are similar to<br />

those for o<strong>the</strong>r <strong>in</strong>land wetland types.<br />

Rates <strong>of</strong> Wetland Loss<br />

Loss rates reported for <strong>in</strong>land vegetated wetlands<br />

<strong>in</strong> <strong>the</strong> glaciated Nor<strong>the</strong>ast vary widely with<br />

geographic location and with <strong>the</strong> geographic scope<br />

<strong>of</strong> <strong>in</strong>dividual studies (Table 8.1). The greatest<br />

losses have occurred near major metropolitan areas.<br />

For example, nearly 50% <strong>of</strong> <strong>the</strong> wetland area<br />

<strong>in</strong> <strong>the</strong> central Passaic River bas<strong>in</strong> <strong>of</strong> nor<strong>the</strong>rn New<br />

Jersey was destroyed between 1940 and 1978;<br />

losses <strong>in</strong> Passaic County as a whole approached<br />

15% dur<strong>in</strong>g that period ('ISner 1985). The 4% loss<br />

<strong>of</strong> pdustr<strong>in</strong>e vegetated wetlandbetween 1951 and<br />

1977 <strong>in</strong> 15 communities scattered across <strong>the</strong> state<br />

<strong>of</strong> Massachusetts (Organ 1983) is probably an<br />

average figure for sou<strong>the</strong>rn New England over<br />

that period. In Bristol County, Mass., however, 7%<br />

<strong>of</strong> <strong>the</strong> <strong>in</strong>land nonforested wetlands were lost over<br />

roughly <strong>the</strong> same period (1951-71). Recent studies<br />

show that <strong>the</strong> rate <strong>of</strong> wetland conversion <strong>in</strong><br />

sou<strong>the</strong>astern Massachusetts-and undoubtedly<br />

<strong>in</strong> o<strong>the</strong>r areas <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>ast as well-rema<strong>in</strong>s<br />

significant even after implementation <strong>of</strong> state and<br />

federal regulatory programs. T<strong>in</strong>er and Z<strong>in</strong>ni<br />

(1988), for example, found that over 2% (513 ha) <strong>of</strong><br />

<strong>the</strong> palustr<strong>in</strong>e vegetated wetland <strong>in</strong> <strong>the</strong> Plymouth<br />

County area <strong>of</strong> Massachusetts was converted to<br />

upland, to open water, or to managed cranberry bogs<br />

between 1977 and 1986. More than 260 ha <strong>of</strong> forested<br />

wetlands were lost dur<strong>in</strong>g that 9-year period.<br />

Pr<strong>in</strong>cipal Causes <strong>of</strong> Wetland Loss<br />

Although documentation is lack<strong>in</strong>g, conversion<br />

<strong>of</strong> wetlands for agriculture, <strong>the</strong> construction <strong>of</strong><br />

impoundments for hydropower and water supply,<br />

and <strong>the</strong> cutt<strong>in</strong>g <strong>of</strong> swamp timber for lumber, fence<br />

posts, and fuelwood were probably <strong>the</strong> dom<strong>in</strong>ant<br />

fom <strong>of</strong> <strong>in</strong>land wetland alteration <strong>in</strong> <strong>the</strong> Nor<strong>the</strong>ast<br />

prior t.o <strong>the</strong> mid-18Ws. S<strong>in</strong>ce that time, m d<br />

especially s<strong>in</strong>ce World War 11, urbanization has<br />

emerged as <strong>the</strong> predom<strong>in</strong>ant force impact<strong>in</strong>g wetlands<br />

<strong>in</strong> most parts <strong>of</strong> this region. The extent and<br />

causes <strong>of</strong> wetland loss have been documented <strong>in</strong><br />

several areas <strong>of</strong> sou<strong>the</strong>rn New England (Table 8.2).


Table 8.2. Relative importance (% <strong>of</strong> total loss) <strong>of</strong> various causes <strong>of</strong> <strong>in</strong>land wetktnd loss <strong>in</strong> sou<strong>the</strong>rn New<br />

England. Losses <strong>in</strong>clude changes from wetland to nonwetland, wetland to open water; and wethnd to<br />

farmland (<strong>in</strong>clud<strong>in</strong>g cranberry bog).<br />

- -- -- --<br />

15 communities, Brisbl Count~ Plymouth County, Sou<strong>the</strong>rn Central<br />

Massachusettsa ass.^ Mass: Rhode Islandd Connecticute<br />

Cause (1951-77) (1951-71) (1977-86) (1939-72) (1977-86)<br />

Agriculture<br />

Impoundments<br />

Highway construction<br />

Residential development<br />

Commercial development<br />

Recreational facilities<br />

Public facilities<br />

Dumps and landfills<br />

Industry<br />

M<strong>in</strong>eral extraction<br />

Peat harvest<strong>in</strong>g<br />

Dam removal<br />

O<strong>the</strong>r and undeterm<strong>in</strong>ed<br />

Total loss (ha) dur<strong>in</strong>g<br />

study period 442 244 513 28 99<br />

Size <strong>of</strong> study area (km2) 1,300 1,435 1,641<br />

159 1,997<br />

-- -- - - - - --- - - - - --- -- - -<br />

aSt~dy by Organ (1983); comn~unities varied widely <strong>in</strong> physiography and population density.<br />

'only nonforestcd wetlands were <strong>in</strong>ventoried @,arson et al. 1980).<br />

Study area <strong>in</strong>cluded most <strong>of</strong> I'lymouth County and small sections <strong>of</strong> Norfolk, Bristol, and Banlstable counties fl<strong>in</strong>er and Z<strong>in</strong>ni<br />

1988).<br />

d~ata from Sotlth K<strong>in</strong>gstown, R.I. (Golet and Parklrurst 1981).<br />

Study by T<strong>in</strong>er et ai. (1989).<br />

Value <strong>in</strong>cludes conlmercial and <strong>in</strong>dustrial cleve~opmcnt.<br />

"noluded <strong>in</strong> data for commercial development.<br />

A brief review <strong>of</strong> <strong>the</strong> most significant causes <strong>of</strong><br />

wetland loss follows. All <strong>of</strong> <strong>the</strong>se agents <strong>of</strong> change<br />

affect red maple swamps throughout <strong>the</strong> Nor<strong>the</strong>ast,<br />

but <strong>the</strong> relative importance <strong>of</strong> each varies<br />

geographically.<br />

Agridture<br />

Conversion <strong>of</strong> wetlands for agriculture was a<br />

major cause <strong>of</strong> <strong>in</strong>land wetland loss <strong>in</strong> many areas<br />

<strong>of</strong> <strong>the</strong> Nor<strong>the</strong>ast historically, and it is still an<br />

important factor May, most notably <strong>in</strong> New York,<br />

New Jersey, and parts <strong>of</strong> sou<strong>the</strong>rn New England.<br />

As <strong>of</strong> 1968, <strong>the</strong> State <strong>of</strong> New York had more than<br />

14,000 ha <strong>of</strong> dra<strong>in</strong>ed mucklands-farmed wetlands<br />

with organic soils or m<strong>in</strong>eral soils high <strong>in</strong><br />

argaxxe matter content (T<strong>in</strong>er 1988). The bulk <strong>of</strong><br />

<strong>the</strong>se dra<strong>in</strong>ed wetlands are located <strong>in</strong> <strong>the</strong> Lake<br />

Ontario bas<strong>in</strong> and <strong>in</strong> sou<strong>the</strong>astern New York.<br />

MucMand farm<strong>in</strong>g and dra<strong>in</strong>age for pasturage<br />

have been significant causes <strong>of</strong> wetIand loss <strong>in</strong><br />

Middlesex, Sussex, and Wmen counties <strong>in</strong> nor<strong>the</strong>rn<br />

New Jersey as well mner 1985).<br />

Most <strong>of</strong> <strong>the</strong> managed cranberry bogs <strong>in</strong> <strong>the</strong><br />

Nor<strong>the</strong>ast have been developed <strong>in</strong> former palustr<strong>in</strong>e<br />

vegetated wetlands. Larson et al. (1980)<br />

found a net <strong>in</strong>crease <strong>of</strong> 28 ha <strong>of</strong> cranberry bogs <strong>in</strong><br />

Bristol County, Mass., between 1951 and 1971. In<br />

nearby Plymouth County, 172 ha <strong>of</strong> vegetated<br />

wetlands were converted to cranberry bogs between<br />

1977 and 1986 (T<strong>in</strong>er and Z<strong>in</strong>ni 1988).<br />

Nearly 100 ha <strong>of</strong> those new bogs were produced<br />

from forested wetlands, <strong>the</strong> majority <strong>of</strong> which<br />

were red maple swamps (Fig. 8.3). O<strong>the</strong>r forested<br />

wetlands <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity were impounded to provide<br />

irrigation water for <strong>the</strong> cranberry bogs.<br />

Overall, conversion to agriculture (cranberry<br />

bogs or cropland) was responsible for 64% <strong>of</strong> <strong>the</strong><br />

wetland loss measured by T<strong>in</strong>er and ZIrrni Fable<br />

8.2). In some areas <strong>of</strong> New England, where<br />

agricultural practices have been abandoned, <strong>the</strong><br />

lack <strong>of</strong> ma<strong>in</strong>tenance <strong>of</strong> dra<strong>in</strong>age ditches has<br />

caused <strong>the</strong> land to revert to wetland (Office <strong>of</strong><br />

Technology Assessment 1984).


Fig. 8.3. Sou<strong>the</strong>rn New England red mapIe swamp cIeared for cranberry bog expansion.<br />

Construction <strong>of</strong> Impoundments<br />

Major impacts to vegetated wetlands occurred<br />

when thousands <strong>of</strong> dams were constructed on<br />

nor<strong>the</strong>astern streams for hydropower, <strong>in</strong>dustrial<br />

and public water supply, flood control, and recreation.<br />

Where impoundments were small, and associated<br />

streams were high-gradient, <strong>the</strong> losses <strong>of</strong><br />

wetland probably were small at any s<strong>in</strong>gle site,<br />

but <strong>the</strong> cumulative impacts <strong>of</strong> <strong>the</strong>se darns must<br />

have been considerable. Where constructed lakes<br />

were large, such as Flagstaff Lake <strong>in</strong> Ma<strong>in</strong>e, thousands<br />

<strong>of</strong> hectares <strong>of</strong> swamp were <strong>in</strong>undated (Wid<strong>of</strong>f<br />

1988). Wid<strong>of</strong>f estimated that losses <strong>of</strong> vegetated<br />

wetland to impoundments <strong>in</strong> Ma<strong>in</strong>e may<br />

exceed 12,000 ha, nearly 30% <strong>of</strong> <strong>the</strong> total wetland<br />

loss-second only to wetland losses from urbanization.<br />

T<strong>in</strong>er (1985) listed reservoir construction<br />

as a major cause <strong>of</strong> wetland loss <strong>in</strong> New Jersey as<br />

well. In trend analysis studies <strong>of</strong> wetlands <strong>in</strong><br />

sou<strong>the</strong>astern Massachusetts (Larson et al. 1980;<br />

T<strong>in</strong>er and Z<strong>in</strong>ni 19881, construction <strong>of</strong> impoundments<br />

was found to be responsible for about 15%<br />

<strong>of</strong> vegetated wetland losses. The pr<strong>in</strong>cipal functions<br />

<strong>of</strong> <strong>the</strong>se water bodies were municipal water<br />

supply and water storage for irrigation <strong>of</strong> cranberry<br />

bogs.<br />

Nighway Construction<br />

Although road construction can be considered<br />

one facet <strong>of</strong> urbanization (see below), it is treated<br />

separately here because <strong>of</strong> its importance. Highway<br />

construction represents one <strong>of</strong> <strong>the</strong> most significant<br />

causes <strong>of</strong> wetland alteration <strong>in</strong> <strong>the</strong> Nor<strong>the</strong>ast, both<br />

directly through wetland fill<strong>in</strong>g and dra<strong>in</strong><strong>in</strong>g, and<br />

<strong>in</strong>directly by improv<strong>in</strong>g access to formerly isolated<br />

areas and thus stimulat<strong>in</strong>g secondary <strong>in</strong>cursions<br />

<strong>in</strong>to wetlands. Construction <strong>of</strong> <strong>in</strong>terstate highways<br />

through nor<strong>the</strong>rn New Jersey, for example, bas<br />

filled large areas <strong>of</strong> wetland and, at <strong>the</strong> same time,<br />

fragmented major wetland complexes, permitt<strong>in</strong>g<br />

<strong>the</strong> cont<strong>in</strong>ued expansion <strong>of</strong> <strong>the</strong> New Yorkmetropolitan<br />

area (Tmer 1985). This same phenomenon can<br />

be observed <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> any <strong>of</strong> <strong>the</strong> major urban<br />

areas <strong>in</strong> <strong>the</strong> Nor<strong>the</strong>ast.<br />

In rural areas, fill<strong>in</strong>g due to highway construction<br />

may represent one <strong>of</strong> <strong>the</strong> primary causes <strong>of</strong><br />

wetland loss. Road-build<strong>in</strong>g was <strong>the</strong> most frequent<br />

type <strong>of</strong> impact identified <strong>in</strong> a random survey<br />

<strong>of</strong> 100 Vermont wetlands (Wanner 1979). Between<br />

1951 and 1971, nearly 30 ha <strong>of</strong> <strong>in</strong>land wetland<br />

were directly lost to road construction <strong>in</strong> Bristol<br />

County, Mass.; ano<strong>the</strong>r 36 ha <strong>of</strong> wetland were<br />

converted from one wetland type to ano<strong>the</strong>r as <strong>the</strong><br />

new roads altered wetland water regimes (Larson<br />

et al. 1980). In South K<strong>in</strong>gstown, R.I., road construction<br />

accounted for almost 4@/0 <strong>of</strong> <strong>the</strong> wetland<br />

loss between 1939 and 1972 (Golet and Parkhurst<br />

1981). In Ma<strong>in</strong>e, Wid<strong>of</strong>f (1988) estimated that<br />

roads were responsible for about 1@!o <strong>of</strong> <strong>the</strong> state's<br />

total wetland loss.


Urbanization<br />

In most areas <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>ast, urbanization<br />

(<strong>in</strong>clud<strong>in</strong>g highway construction) is now responsible<br />

for more <strong>in</strong>land wetland losses than all o<strong>the</strong>r<br />

causes comb<strong>in</strong>ed. In major metropolitan areas, it<br />

has been <strong>the</strong> pr<strong>in</strong>cipal factor for decades. The<br />

impact <strong>of</strong> urbanization on wetlands <strong>in</strong> any geographic<br />

area usually is closely related to <strong>the</strong><br />

population density <strong>of</strong> that area. Once aga<strong>in</strong>,<br />

nor<strong>the</strong>rn New Jersey is a prime example. The<br />

Office <strong>of</strong> Technology Assessment (1984) reported<br />

that 20-50% <strong>of</strong> Troy Meadows and three large<br />

swamps (Great Piece, Little Piece, and Hatfield)<br />

<strong>in</strong> <strong>the</strong> Passaic River bas<strong>in</strong> have been destroyed as<br />

a result <strong>of</strong> highway construction and subsequent<br />

commercial, <strong>in</strong>dustrial, and residential development.<br />

The effects <strong>of</strong> urbanization are noticeable<br />

even <strong>in</strong> <strong>the</strong> most rural parts <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>ast.<br />

Construction <strong>of</strong> <strong>in</strong>terstate highways has spawned<br />

a series <strong>of</strong> resort communities <strong>in</strong> areas such as<br />

<strong>the</strong> Poconos <strong>of</strong> nor<strong>the</strong>astern Pennsylvania (T<strong>in</strong>er<br />

1984), upstate New York, and <strong>the</strong> White Mounta<strong>in</strong>s<br />

<strong>of</strong> New Hampshire. Significant wetland<br />

losses have occurred <strong>in</strong> some <strong>of</strong> those areas as a<br />

result.<br />

Data ga<strong>the</strong>red <strong>in</strong> sou<strong>the</strong>rn New England trend<br />

analysis studies (Table 8.2) suggest that residential<br />

and commercial development and <strong>the</strong> development<br />

<strong>of</strong> recreational facilities such as golf<br />

courses and athletic fields frequently contribute<br />

heavily to wetland losses <strong>in</strong> rural and suburban<br />

areas undergo<strong>in</strong>g rapid population <strong>in</strong>creases.<br />

Once aga<strong>in</strong>, road construction is an <strong>in</strong>tegral part<br />

<strong>of</strong> such urbanization. In Ma<strong>in</strong>e, as <strong>in</strong> much <strong>of</strong> <strong>the</strong><br />

Nor<strong>the</strong>ast, <strong>the</strong> impacts <strong>of</strong> urbanization were historically<br />

greatest <strong>in</strong> coastal wetlands and along<br />

major rivers (Wid<strong>of</strong>f 1988). Current losses are<br />

most common <strong>in</strong> small (less than 4 ha) <strong>in</strong>land<br />

wetlands <strong>in</strong> sou<strong>the</strong>rn Ma<strong>in</strong>e where population<br />

growth has been most dramatic. Wid<strong>of</strong>f ranked<br />

residential and commercial development as <strong>the</strong><br />

s<strong>in</strong>gle most important cause <strong>of</strong> vegetated wetland<br />

loss <strong>in</strong> Ma<strong>in</strong>e; she estimated that urbanization<br />

has been responsible for nearly 4096 (more than<br />

16,000 ha) <strong>of</strong> <strong>the</strong> totaI losses.<br />

Peat Harvest<strong>in</strong>g<br />

One additional agent oi wetland deskruetion <strong>in</strong><br />

some areas <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>ast is <strong>the</strong> harvest<strong>in</strong>g <strong>of</strong><br />

peat, primarily for horticultural use. Peat harvest<strong>in</strong>g<br />

is a major <strong>in</strong>dustry <strong>in</strong> states such as M<strong>in</strong>nesota<br />

and North Carol<strong>in</strong>a, but it has been practiced to<br />

some degree <strong>in</strong> several <strong>of</strong> <strong>the</strong> nor<strong>the</strong>astern states<br />

as well. It is an important cause <strong>of</strong> wetland loss <strong>in</strong><br />

<strong>the</strong> Poconos <strong>of</strong> nor<strong>the</strong>astern Pemylvania ('I'<strong>in</strong>er<br />

1984). In Ma<strong>in</strong>e, this <strong>in</strong>dustry peaked dur<strong>in</strong>g <strong>the</strong><br />

1930's and 1940'9, but most operations closed down<br />

for economic reasons (Wid<strong>of</strong>f 1988). Wid<strong>of</strong>f estimated<br />

that 2% (910 ha) <strong>of</strong> Ma<strong>in</strong>e's vegetated wetland<br />

loss may be due to peat harvest<strong>in</strong>g.<br />

Peat harvest<strong>in</strong>g for horticulture generally is<br />

carried out <strong>in</strong> Sphagnum bogs, which conta<strong>in</strong><br />

large quantities <strong>of</strong> poorly decomposed fibric peat.<br />

This type <strong>of</strong> peat has <strong>the</strong> highest moisture retention<br />

capacity and so is most valuable as a soil<br />

conditioner. S<strong>in</strong>ce red maple swamps have m<strong>in</strong>eral<br />

soils or well-decomposed (sapric) to moderately<br />

well-decomposed (hemic) organic soils, <strong>the</strong>y<br />

are <strong>of</strong> little value as a source <strong>of</strong> horticultural peat.<br />

Dur<strong>in</strong>g <strong>the</strong> 19'70'9, when <strong>the</strong> United States experienced<br />

a brief, but severe, shortage <strong>of</strong> fossil fuels,<br />

considerable attention was focused on <strong>the</strong> possible<br />

use <strong>of</strong> peat as a supplementary energy source. The<br />

uncerta<strong>in</strong>ty <strong>of</strong> cont<strong>in</strong>ued fossil fuel availability<br />

suggests that pressures to harvest peat from<br />

nor<strong>the</strong>astern wetlands for energy production may<br />

<strong>in</strong>crease. Sapric and hemic peats generally have<br />

higher energy value per unit <strong>of</strong> weight than fibric<br />

peat (F'arnharn 1979). For this reason, red maple<br />

swamps and o<strong>the</strong>r types <strong>of</strong> forested wetlands with<br />

organic soils may be seriously considered as potential<br />

sources <strong>of</strong> energy-produc<strong>in</strong>g peat <strong>in</strong> future<br />

years.<br />

O<strong>the</strong>r Forrns <strong>of</strong> Wetland Alteration<br />

Although direct losses clearly have <strong>the</strong> greatest<br />

impact on <strong>the</strong> wetland resource, o<strong>the</strong>r alterations<br />

beside total destruction may also significantly affect<br />

<strong>the</strong> structure and functions <strong>of</strong> wetlands and <strong>the</strong>ir<br />

value to society. The follow<strong>in</strong>g paragraphs identify<br />

some <strong>of</strong> <strong>the</strong>se additional forms <strong>of</strong> alteration.<br />

Tree Cutt<strong>in</strong>g<br />

Cutt<strong>in</strong>g <strong>of</strong> wetland trees for fuel and fence posts<br />

was common <strong>in</strong> <strong>the</strong> Nor<strong>the</strong>ast prior to <strong>the</strong> decl<strong>in</strong>e<br />

<strong>of</strong> agriculture <strong>in</strong> <strong>the</strong> late n<strong>in</strong>eteenth century. Wid<strong>of</strong>f<br />

(1988) noted that timber harvest<strong>in</strong>g is still<br />

widespread <strong>in</strong> Ma<strong>in</strong>e wetlands dur<strong>in</strong>g <strong>the</strong> w<strong>in</strong>ter.<br />

In sou<strong>the</strong>rn Rhode Island (Golet and Parkhurst<br />

1981) and <strong>in</strong> New Jersey (T<strong>in</strong>er 1985), selective<br />

cutt<strong>in</strong>g <strong>of</strong> Atlantic white cedar has converted some<br />

mixed wetland forests to predom<strong>in</strong>antly red maple.<br />

Larson et al. (1980) speculated that much <strong>of</strong><br />

<strong>the</strong> shrub swamp and shallow marsh <strong>in</strong> <strong>the</strong>ir<br />

sou<strong>the</strong>astern Massachusetts study area was formerly<br />

forested wetland that had been cleared for


Fig. 8.4. Electric utility l<strong>in</strong>es pass<strong>in</strong>g through a former red maple swamp. Forested swamp flanks <strong>the</strong><br />

pwerl<strong>in</strong>e on ei<strong>the</strong>r side while shrub swamp dom<strong>in</strong>ates <strong>the</strong> right-<strong>of</strong>-way.<br />

agricultural purposes. In nor<strong>the</strong>astern Connecticut,<br />

red maple swamps were sometimes clear-cut<br />

for fuelwood dur<strong>in</strong>g <strong>the</strong> first half <strong>of</strong> <strong>the</strong> twentieth<br />

century (Grace 1972).<br />

Clear<strong>in</strong>g <strong>of</strong> forested wetland for utility rights-<strong>of</strong>way<br />

is a major form <strong>of</strong> alteration that is grow<strong>in</strong>g <strong>in</strong><br />

importance throughout <strong>the</strong> Nor<strong>the</strong>ast (Fig. 8.4). In<br />

a sample <strong>of</strong> 100 Vermont wetlands surveyed <strong>in</strong><br />

1974,14% had been affected by transmission l<strong>in</strong>es<br />

(Wanner 1979). The impacts <strong>of</strong> cutt<strong>in</strong>g usually are<br />

compounded by wetland fa<strong>in</strong>g for <strong>the</strong> construction<br />

<strong>of</strong> power l<strong>in</strong>e ma<strong>in</strong>tenanm roads.<br />

The degree <strong>of</strong> impact <strong>of</strong> timber removal on<br />

wetland functions and values depends on <strong>the</strong> <strong>in</strong>tensity<br />

<strong>of</strong> cutt<strong>in</strong>g. Clear-cuts radically alter habitat<br />

values and may result <strong>in</strong> slightly higher water<br />

levels dur<strong>in</strong>g <strong>the</strong> summer because <strong>of</strong> reduced transpiration<br />

losses; selective cutt<strong>in</strong>g may have far<br />

less impact. Timber harvest<strong>in</strong>g for wood products<br />

is not currently a major form <strong>of</strong> alteration <strong>in</strong> red<br />

maple swamps, but <strong>in</strong>creas<strong>in</strong>g energy costs and<br />

elim<strong>in</strong>ation <strong>of</strong> upland forests by urbanization may<br />

heighten <strong>the</strong> importance <strong>of</strong> this activity <strong>in</strong> <strong>the</strong><br />

future.<br />

Water Level Manipulation<br />

Human-<strong>in</strong>duced changes <strong>in</strong> <strong>the</strong> water regime <strong>of</strong><br />

a red maple swamp may have major impacts on <strong>the</strong><br />

floristic composition and structure <strong>of</strong> <strong>the</strong> plant community,<br />

its habitat values, and its scenic and recreational<br />

values. Prior to <strong>the</strong> passage <strong>of</strong> wetland<br />

protection regulations, changes <strong>in</strong> wetland water<br />

regimes were a common consequence <strong>of</strong> highway<br />

construction. Culverts that were <strong>in</strong>wmt1y designed,<br />

improperly <strong>in</strong>stalled, or omitted altoge<strong>the</strong>r<br />

fkequently resulted <strong>in</strong> impoundment <strong>of</strong> water on<br />

<strong>the</strong> upstream side <strong>of</strong> <strong>the</strong> road and a reduction <strong>in</strong><br />

surface-water flow to <strong>the</strong> downstream side. Such<br />

impoundment commonly converted red maple<br />

swamps to marshes or shrub swamps. These impacts<br />

are less common today where wetland regulations<br />

are strictly enforced; however, sediment accumulation<br />

<strong>in</strong> culverts under roads may cause<br />

gradual changes <strong>in</strong> wah~egimes <strong>the</strong> same<br />

ultimate result (Golet and Parkhurst 1981). Nearly<br />

Wh <strong>of</strong> <strong>the</strong> human-<strong>in</strong>duced changes <strong>in</strong> <strong>in</strong>land wetlands<br />

<strong>of</strong> South K<strong>in</strong>gstown, R.I., between 1939 and<br />

1972 were retrogressive; raised water levels were<br />

<strong>the</strong> eause <strong>in</strong> most cases.<br />

+%


Groundwater withdrawal by large municipal<br />

wells has been a suspected cause <strong>of</strong> water level<br />

decl<strong>in</strong>es <strong>in</strong> a number <strong>of</strong> swamps <strong>in</strong> sou<strong>the</strong>rn New<br />

England @. Albro, Rhode Island Department <strong>of</strong><br />

Environmental Management, Providence, personal<br />

communication; E Golet, personal observation),<br />

but none <strong>of</strong> <strong>the</strong>se cases has been documented<br />

through field measurement. Heavy<br />

withdrawal <strong>of</strong> surface water from streams and<br />

lakes for irrigation <strong>of</strong> crops also may lower water<br />

levels <strong>in</strong> adjacent swamps, particularly <strong>in</strong> dry<br />

summers. <strong>Red</strong>uctions <strong>in</strong> surface-water hydroperiods<br />

<strong>in</strong> both <strong>in</strong>stances could adversely affect <strong>the</strong><br />

habitat value <strong>of</strong> forested swamps for amphibians,<br />

waterfowl, and wetland-dependent songbirds<br />

such as <strong>the</strong> nor<strong>the</strong>rn waterthrush. In some south-<br />

ern New England communities, extensive metworks<br />

<strong>of</strong> ditches have been constructed <strong>in</strong> red<br />

maple swamps for <strong>the</strong> purpose <strong>of</strong> mosquito control.<br />

Stormwater and Wastewater Disckassrges<br />

The addition <strong>of</strong> stormwater run<strong>of</strong>f and wastewater<br />

effluent to red maple swamps may alter<br />

both <strong>the</strong> hydrologic regime and water quality<br />

(Fig. 8.5). The volume <strong>of</strong> storm water run<strong>of</strong>f enter<strong>in</strong>g<br />

wetlands from surround<strong>in</strong>g upland areas may<br />

<strong>in</strong>crease dramatically as those areas are urbanized.<br />

The <strong>in</strong>crease <strong>in</strong> impervious surface area<br />

(highways, park<strong>in</strong>g lots, ro<strong>of</strong>tops) that accompanies<br />

urbanization decreases groundwater recharge<br />

and <strong>in</strong>creases run<strong>of</strong>f. Increased run<strong>of</strong>f can<br />

Fig. 8.5. Stormwater discharge <strong>in</strong> a red<br />

maple swamp. Such discharger s may<br />

alter both water regime and water<br />

quality <strong>in</strong> <strong>the</strong>se wetlands.


e expected to cause more drastic fluctuations <strong>in</strong><br />

wetland surface-water levels, especially where<br />

<strong>the</strong> wetlands are located <strong>in</strong> isolated bas<strong>in</strong>s with<br />

restricted outlets. The greater fluctuation and<br />

generally greater volume <strong>of</strong> surface water enter<strong>in</strong>g<br />

<strong>the</strong> wetland may reduce plant productivity<br />

and eventually change both <strong>the</strong> structure and<br />

species composition <strong>of</strong> <strong>the</strong> plant community; wildlife<br />

habitat values may be seriously affected as<br />

well. Without proper management <strong>of</strong> run<strong>of</strong>f <strong>in</strong><br />

major land development projects, swamps receiv<strong>in</strong>g<br />

such waters may become little more than<br />

detention bas<strong>in</strong>s.<br />

Stonnwater run<strong>of</strong>f may <strong>in</strong>troduce a wide variety<br />

<strong>of</strong> pollutants <strong>in</strong>to wetlands. Highways, park<strong>in</strong>g<br />

lots, cropland, animal feedlots, landfills, and<br />

sludge disposal sites are some <strong>of</strong> <strong>the</strong> land uses that<br />

may contribute significantly to surface-water pollution<br />

<strong>of</strong> wetlands. Among <strong>the</strong> various pollutants<br />

are road salt; oil, grease, gasol<strong>in</strong>e, and o<strong>the</strong>r petroleum<br />

products; suspended sediment; fertilizers;<br />

pesticides; heavy metals; and chlor<strong>in</strong>ated hydrocarbons.<br />

Run<strong>of</strong>f from landfills may conta<strong>in</strong> a<br />

variety <strong>of</strong> hazardous wastes. The effects <strong>of</strong> many<br />

<strong>of</strong> <strong>the</strong>se pollutants on red maple swamps is unknown,<br />

but it is highly likely that <strong>the</strong> accumulation<br />

<strong>of</strong> such substances <strong>in</strong> wetland soils adversely<br />

affects plant growth, <strong>in</strong>vertebrate life <strong>in</strong> <strong>the</strong> soil<br />

and <strong>in</strong> surface waters, amphibians, and o<strong>the</strong>r<br />

forms <strong>of</strong> wildlife higher <strong>in</strong> <strong>the</strong> food cha<strong>in</strong>. Ehrenfeld<br />

(1983) demonstrated <strong>in</strong>creased flood<strong>in</strong>g and<br />

si&icant changes <strong>in</strong> plant species composition<br />

and water chemistry <strong>in</strong> sou<strong>the</strong>rn New Jersey<br />

swamps receiv<strong>in</strong>g run<strong>of</strong>f from urbanized areas.<br />

Discharges <strong>of</strong> wastewater from sewage treatment<br />

facilities or from various <strong>in</strong>dustries may<br />

have major adverse effects on wetlands. The effects<br />

on wetland hydrology and water quality are<br />

similar to those from stoqnwater run<strong>of</strong>f, but <strong>of</strong>ten<br />

much more pronounced because <strong>of</strong> <strong>the</strong> greater<br />

volume <strong>of</strong> water discharged, <strong>the</strong> greater concentration<br />

<strong>of</strong> pollutants <strong>in</strong> <strong>the</strong> water, and more susta<strong>in</strong>ed<br />

discharge.<br />

Alteration <strong>of</strong> Surround<strong>in</strong>g Uplands<br />

Human activities <strong>in</strong> upland areas immediately<br />

adjacent to red maple swamps (Fig. 8.2) also may<br />

adversely affect <strong>the</strong> functions and values <strong>of</strong> those<br />

wetlands. Clear<strong>in</strong>g <strong>of</strong> natural vegetation, reduction<br />

<strong>of</strong> groundwater recharge through pav<strong>in</strong>g, and<br />

<strong>in</strong>stallation <strong>of</strong> belowground sewage disposal systems<br />

are common examples.<br />

Natural, undisturbed surround<strong>in</strong>gs may meet<br />

some <strong>of</strong> <strong>the</strong> habitat requirements <strong>of</strong> wildlife resid<strong>in</strong>g<br />

<strong>in</strong> wetlands. They may help to buffer <strong>the</strong> direct<br />

impacts <strong>of</strong> human activity (e.g., noise) on wetland<br />

wildlife, and may serve as <strong>the</strong> primary habitat for<br />

species such as salamanders, which use swamps<br />

for breed<strong>in</strong>g. Clear<strong>in</strong>g <strong>of</strong> vegetation and o<strong>the</strong>r<br />

land disturbance near <strong>the</strong> wetland edge may have<br />

a major adverse effect on <strong>the</strong> value <strong>of</strong> <strong>the</strong> wetland<br />

to wildlife. Unless provisions are made to artificially<br />

recharge <strong>the</strong> groundwater system when<br />

large tracts <strong>of</strong> land are paved, local water tables<br />

may drop <strong>in</strong> <strong>the</strong> developed area, which, <strong>in</strong> turn,<br />

may reduce <strong>the</strong> quantity and duration <strong>of</strong> groundwater<br />

flow to adjacent wetlands, lower<strong>in</strong>g wetland<br />

water levels as well. Despite <strong>in</strong>creases <strong>in</strong> surfacewater<br />

run<strong>of</strong>f reach<strong>in</strong>g <strong>the</strong> wetland, average summer<br />

water levels may drop below normal if<br />

groundwater <strong>in</strong>flow formerly was an important<br />

component <strong>of</strong> <strong>the</strong> wetland's water budget.<br />

F<strong>in</strong>ally, <strong>the</strong> <strong>in</strong>stallation <strong>of</strong> belowground septic<br />

systems near <strong>the</strong> wetland edge may degrade<br />

water quality <strong>in</strong> wetlands and associated water<br />

bodies, particularly if upland soils are low <strong>in</strong> permeability<br />

or have high water tables. Ei<strong>the</strong>r <strong>of</strong><br />

<strong>the</strong>se conditions may cause effluent to discharge<br />

<strong>in</strong> <strong>the</strong> wetland. Septic systems sited close to wetlands<br />

<strong>in</strong> soils with excessively high permeability<br />

also represent a significant water-quality threat<br />

because <strong>of</strong> <strong>the</strong> speed with which effluent can flow<br />

toward <strong>the</strong> wetland, even if <strong>the</strong> system is properly<br />

ma<strong>in</strong>ta<strong>in</strong>ed.<br />

Key Management Issues<br />

Through <strong>the</strong> regulation <strong>of</strong> land use <strong>in</strong> and<br />

around nor<strong>the</strong>astern <strong>in</strong>land wetlands, federal,<br />

state, and local regulatory agencies and commissions<br />

have assumed <strong>the</strong> role <strong>of</strong> wetland resource<br />

managers. It is <strong>the</strong>ir responsibility to ma<strong>in</strong>ta<strong>in</strong><br />

<strong>the</strong> natural functions and values <strong>of</strong> wetlands, to<br />

prevent wetland loss and degradation, to protect<br />

<strong>the</strong> public from <strong>the</strong> hazards <strong>of</strong> development <strong>in</strong><br />

wetlands, and, <strong>in</strong> some cases, to mandate restoration<br />

<strong>of</strong> wetlands that have been altered. The task<br />

<strong>of</strong> safeguard<strong>in</strong>g <strong>the</strong> public <strong>in</strong>terest <strong>in</strong> wetlands is<br />

beset with practical, technical, and philosophical<br />

problems. ResoluLiorl <strong>of</strong> <strong>the</strong>se problems is h<strong>in</strong>dered<br />

not only by agency staff and budget limitations,<br />

but also by a dearth <strong>of</strong> scientific data on<br />

wetland characteristics and values, and a lack <strong>of</strong><br />

standard procedures for address<strong>in</strong>g tasks such as<br />

wetland identification and del<strong>in</strong>eation, <strong>the</strong> as-


sessment <strong>of</strong> wetland functions and values, impact facultative species along <strong>the</strong> entire length <strong>of</strong> most<br />

assessment, and mitigation. The follow<strong>in</strong>g discus- wetland-to-upland transects obscured moiatnresion<br />

highlights some <strong>of</strong> <strong>the</strong> key management is- related gradients <strong>in</strong> vegetation. For thia reason,<br />

sues affect<strong>in</strong>g red maple swamps <strong>in</strong> <strong>the</strong> glaciated <strong>the</strong> shrub layers were found to be <strong>of</strong> little value <strong>in</strong><br />

Nor<strong>the</strong>ast.<br />

locat<strong>in</strong>g a wetland-upland vegetation break. hal<br />

variations <strong>in</strong> surface elevation and soil properties<br />

Boundary Del<strong>in</strong>eat ion<br />

<strong>of</strong>ten caused <strong>the</strong> status (wetland vs. upland) <strong>of</strong><br />

contiguous sample plots to alternate, even <strong>in</strong> <strong>the</strong><br />

Wetland identification and del<strong>in</strong>eation are a<br />

herb layer; <strong>in</strong> such <strong>in</strong>atanees, <strong>the</strong> boundcritical<br />

first step <strong>in</strong> <strong>the</strong> regulatory process. This<br />

ary was more aptly represented as a zone, ra<strong>the</strong>r<br />

step determ<strong>in</strong>es which parcels <strong>of</strong> land are subject<br />

than a l<strong>in</strong>e. Boundary zones derived from herb<br />

to regulation and def<strong>in</strong>es <strong>the</strong> area with<strong>in</strong> which<br />

layer data ranged <strong>in</strong> width from to 46<br />

values and environmental effects will be assessed.<br />

The development <strong>of</strong> standard hydrologic criteria<br />

In some <strong>in</strong>stances, <strong>the</strong> transition from wetland to<br />

for wetland del<strong>in</strong>eation is probably unfeasible beupland<br />

is abmpt? <strong>the</strong> changes <strong>in</strong> vegetation<br />

cause <strong>of</strong> <strong>the</strong> complex variability <strong>in</strong> hyhlogic mnsoils<br />

are obvious, and <strong>the</strong> location <strong>of</strong> <strong>the</strong> wetland<br />

ditions over time and <strong>the</strong> lack <strong>of</strong> long-tem<br />

boundary is subject to little debate. In o<strong>the</strong>r cases,<br />

urements at specific sites. As already noted,<br />

where <strong>the</strong> slope <strong>of</strong> <strong>the</strong> moisture gradient is gradboundary<br />

determ<strong>in</strong>ation us<strong>in</strong>g only vegetation<br />

ual, no well-def<strong>in</strong>ed break may be The may difficult to achieve <strong>in</strong> mw red maple<br />

task <strong>of</strong> boundary location is especially difficult <strong>in</strong><br />

swamps because <strong>of</strong> <strong>the</strong> high proportion <strong>of</strong> facultamany<br />

red map1e swamps because <strong>the</strong> dom<strong>in</strong>ant<br />

tive species. For <strong>the</strong>se reasom, it see- appropnplants<br />

<strong>in</strong> <strong>the</strong> swamps are usually facultative speate<br />

to major emphasis on <strong>the</strong><br />

ties FACW FAC, or FAcU) that also grow <strong>in</strong> <strong>the</strong><br />

<strong>of</strong> soil <strong>in</strong> <strong>the</strong> del<strong>in</strong>eation <strong>of</strong> red maple swamps<br />

adjacent uplands. <strong>Swamps</strong> located on hillsides or<br />

(Allen 1989). This conclusion is consistent with <strong>the</strong><br />

over perched groundwater Pose a particu- hierarchy <strong>of</strong> decisions <strong>in</strong> <strong>the</strong> fihral Manual for<br />

lar problem because changes <strong>in</strong> surface elevation<br />

and Del<strong>in</strong>wt<strong>in</strong>g Jurisdictional Wetmay<br />

not directly correspond to variations <strong>in</strong> soil lands (Federal Interagency Committee for Wetmoisture.<br />

land Del<strong>in</strong>eation 1989). In <strong>the</strong> Nor<strong>the</strong>ast, most<br />

"Multiparameter" approaches to wetland de- hy&ic soils are very poorly dra<strong>in</strong>ed or poorly<br />

l<strong>in</strong>eation (e.g., Environmental Laboratory 1987;<br />

dra<strong>in</strong>ed (T<strong>in</strong>er and Veneman 1987). Consistent<br />

Federal Inkragency CoKUnittee for Dc- <strong>in</strong>clusioIl <strong>of</strong> <strong>the</strong>se two dra<strong>in</strong>age classes <strong>of</strong><br />

l<strong>in</strong>eation 1989) generally assume that vegetation, with<strong>in</strong> regulated wetlands is logical also from<br />

soils, and hydrologic criteria are perfectly corre- <strong>of</strong> functions and values and<br />

lated. Actually, empirical data on relations among hazards to development.<br />

<strong>the</strong>se three classes <strong>of</strong> variables are lack<strong>in</strong>g for most<br />

wetland types (Allen et al. 1989). Even if <strong>the</strong> crite- Mitigation by Replacement or<br />

ria set forth <strong>in</strong> a particular method are strongly<br />

Enhancement<br />

correlated, <strong>the</strong> accuracy <strong>of</strong> <strong>the</strong> method will be<br />

limited, if only because <strong>the</strong> criteria <strong>the</strong>mselves are S<strong>in</strong>ce <strong>the</strong> mid-1980's, <strong>the</strong> term "wetland mitigagross<br />

simplifications <strong>of</strong> nature (Scott et al. 1989). tion" has become synonymous with wetland re-<br />

Allen et al. (1989) tested <strong>the</strong> agreement between placement or enhancement (Golet 1986). Replace<strong>the</strong><br />

hydric status <strong>of</strong> soils, as determ<strong>in</strong>ed from <strong>the</strong> ment entails <strong>the</strong> creation <strong>of</strong> new wetland from<br />

national hydric soils list (U.S. Soil Conservation upland to compensate for <strong>the</strong> wetland destroyed <strong>in</strong><br />

Service 1987), and <strong>the</strong> average wetiand i~ldicator a particular project. Enhancement proposals genstatus<br />

(Reed 1988) <strong>of</strong> plants grow<strong>in</strong>g <strong>in</strong> <strong>the</strong> transi- erally seek to compensate for wetland losses by<br />

tion zones <strong>of</strong> three Rhode I sland red maple chang<strong>in</strong>g a rema<strong>in</strong><strong>in</strong>g part <strong>of</strong> <strong>the</strong> wetland that is to<br />

swamps. They found that herb layer vegetation be altered, or chang<strong>in</strong>g a nearby wetland, <strong>in</strong> a<br />

exhibited <strong>the</strong> most clearly defied moisture gradi- manner that enhances certa<strong>in</strong> functions or values.<br />

ent, correlated best with hydric soil status, and For example, conversion <strong>of</strong> one area <strong>of</strong> forested<br />

permitted <strong>the</strong> most precise discrim<strong>in</strong>ation be- wetland to marsh by artificially rais<strong>in</strong>g <strong>the</strong> water<br />

tween upland and wetlad. A moisture-related level might be proposed as a means <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g<br />

gradient was reflected <strong>in</strong> <strong>the</strong> tree layer also, but it <strong>the</strong> wetland's value for waterfowl and cornpensat-<br />

was not as consistent as <strong>in</strong> <strong>the</strong> herb layer, In <strong>the</strong> <strong>in</strong>g for <strong>the</strong> fiii<strong>in</strong>g <strong>of</strong> a second area <strong>of</strong> wetland for<br />

two shrub layers exam<strong>in</strong>ed, <strong>the</strong> predom<strong>in</strong>ance <strong>of</strong> development purposes. Mitigation by replacement


and enhancement has been a highly controversial<br />

topic <strong>in</strong> recent years, for both scientific and philosophical<br />

reasons (Golet 1986; Larson and Neill<br />

1987; Thompson and Williams-Dawe 1988). Kusler<br />

et al. (1988) presented a comprehensive review <strong>of</strong><br />

mitigation issues, approaches, and policies. Important<br />

issues surround<strong>in</strong>g this topic are outl<strong>in</strong>ed below.<br />

The scientific standard for determ<strong>in</strong><strong>in</strong>g whe<strong>the</strong>r<br />

mitigation is truly replac<strong>in</strong>g <strong>the</strong> lost wetland<br />

should be functional performance (Larson and Neill<br />

1987); that is, <strong>the</strong> replacement wetland should be<br />

able to perform <strong>the</strong> same functions as <strong>the</strong> wetland<br />

destroyed. Adamus (1988) took <strong>the</strong> additional step<br />

<strong>of</strong> recommend<strong>in</strong>g that replacement wetlands have<br />

<strong>the</strong> same or higher rat<strong>in</strong>gs for every function. To<br />

fully restore lost habitat values, replacement wetlands<br />

should be <strong>of</strong> <strong>the</strong> same type as <strong>the</strong> wetland<br />

destroyed, and should be located as near <strong>the</strong> orig<strong>in</strong>al<br />

wetland as possible so that <strong>the</strong> benefits <strong>of</strong> <strong>the</strong><br />

orig<strong>in</strong>al wetland are still enjoyed locally.<br />

In <strong>the</strong> nor<strong>the</strong>astern United States, proposals for<br />

mitigation <strong>of</strong> forested wetland habitat losses usually<br />

<strong>in</strong>volve ei<strong>the</strong>r <strong>the</strong> creation <strong>of</strong> new wetland<br />

habitats, most commonly ponds or marshes, or <strong>the</strong><br />

conversion <strong>of</strong> exist<strong>in</strong>g shrub or forested wetland to<br />

marsh through manipulation <strong>of</strong> water levels. Applicants,<br />

and sometimes regulatory agencies as<br />

well, have attempted to justify such out-<strong>of</strong>-k<strong>in</strong>d<br />

replacement and enhancement by stat<strong>in</strong>g that<br />

<strong>the</strong>se practices result <strong>in</strong> greater wildlife habitat<br />

diversity, and that marshes are less abundant than<br />

swamps and more valuable to wetland-dependent<br />

wildlife such as waterfowl. In actuality, out-<strong>of</strong>-k<strong>in</strong>d<br />

replacement and enhancement are <strong>the</strong> only alternatives<br />

available <strong>in</strong> such cases because it has not<br />

been demonstrated that viable forested wetlands<br />

can be created from upland. The development <strong>of</strong> a<br />

mature forested wetland would take at least 40-<br />

50 years, even under natural conditions where<br />

wetland soils were already established. For this<br />

reason, both <strong>the</strong> technical feasibility and <strong>the</strong> practicality<br />

<strong>of</strong> swamp replacement must be questioned.<br />

Net losses <strong>of</strong> wetland are characteristic <strong>of</strong> habitat<br />

mitigation projects <strong>in</strong>volv<strong>in</strong>g wetland enhancement,<br />

because <strong>the</strong> goal <strong>of</strong> <strong>the</strong>se projects is to compensate<br />

for outright bsses <strong>of</strong> wetland by alter<strong>in</strong>g or<br />

improv<strong>in</strong>g <strong>the</strong> habitat characteristics <strong>of</strong> exist<strong>in</strong>g<br />

wetlands. The use <strong>of</strong> enhancement methods to miti-<br />

g& losses <strong>of</strong> forested wetland habitat is <strong>of</strong>ten<br />

doubly damag<strong>in</strong>g because forested habitat is lost<br />

both dur<strong>in</strong>g <strong>the</strong> proposed development project and<br />

dur<strong>in</strong>g <strong>the</strong> enhancement process (e.g., as wetland<br />

forest is converted to marsh).<br />

Protection <strong>of</strong> Buffer Zones<br />

Regulation <strong>of</strong> land use <strong>in</strong> upland areas border<strong>in</strong>g<br />

wetlands is critical to <strong>the</strong> ma<strong>in</strong>tenance <strong>of</strong> wetland<br />

functions and values (Clark 1977; Roman and<br />

Good 1986; Brown and Schaefer 1987). Natural,<br />

undisturbed surround<strong>in</strong>gs reduce <strong>the</strong> adverse effects<br />

<strong>of</strong> development on wetlands and contribute<br />

directly to certa<strong>in</strong> wetland functions such as wildlife<br />

habitat. Where land use <strong>in</strong> adjacent uplands is<br />

restricted by wetland regulatory agencies, <strong>the</strong>se<br />

areas are commonly referred to as wetland buffer<br />

zones. A wide variety <strong>of</strong> functions and values have<br />

been recognized for wetland buffer zones; some <strong>of</strong><br />

<strong>the</strong> major ones are outl<strong>in</strong>ed below.<br />

Functions and Values <strong>of</strong> Buffer Zones<br />

Surround<strong>in</strong>g uplands are essential habitat for<br />

both wetland wildlife species, which reside primarily<br />

<strong>in</strong> <strong>the</strong> wetland, and upland species, which use<br />

<strong>the</strong> wetland on an occasional basis or for breed<strong>in</strong>g<br />

(Golet and Larson 1974; Golet 1976; Porter 1981;<br />

Brown and Schaefer 1987). Wood ducks, for example,<br />

sometimes nest <strong>in</strong> <strong>the</strong> cavities <strong>of</strong> trees that are<br />

located <strong>in</strong> adjacent upland forests. Upland spies<br />

such as white-tailed deer and ruffed grouse are commonly<br />

observed along <strong>the</strong> upland edge <strong>of</strong> forested<br />

wetlands where cover is dense. Wetland-dependent<br />

upland species, <strong>in</strong>clud<strong>in</strong>g certa<strong>in</strong> salamanders and<br />

toads, reside <strong>in</strong> upland habitats near swamps most <strong>of</strong><br />

<strong>the</strong> year, but require <strong>the</strong> wetlands for breed<strong>in</strong>g. In<br />

addition to provid<strong>in</strong>g wildlife habitat directly, undisturbed<br />

surround<strong>in</strong>g uplands also reduce <strong>the</strong> impact<br />

<strong>of</strong> noise and o<strong>the</strong>r human activity on wetland wildlife.<br />

Natural buffer zones may provide a refuge for<br />

wildlife dur<strong>in</strong>g periods <strong>of</strong> exceptionally high water<br />

as well (Brown and Schaefer 1987).<br />

Only Husband and Eddleman (1990) have exam<strong>in</strong>ed<br />

wildlife use <strong>in</strong> upland habitats directly adjacent<br />

to red maple swamps. Between March and<br />

November <strong>in</strong> 1989, and March and August <strong>in</strong> 1990,<br />

selected groups <strong>of</strong> vertebrates were eensused <strong>in</strong> <strong>the</strong><br />

transition zone extend<strong>in</strong>g from red maple swamps<br />

<strong>in</strong>to <strong>the</strong> adjacent upland forest at four sites <strong>in</strong><br />

sou<strong>the</strong>rn Rhode Island. Dur<strong>in</strong>g <strong>the</strong>se periods,<br />

14 spies <strong>of</strong> amphibians, 3 species <strong>of</strong>replires, and<br />

14 species <strong>of</strong> mammals were captured (Table 8.3).<br />

The most remote, least disturbed site had <strong>the</strong> highest<br />

number and diversity <strong>of</strong> reptiles and amphibians,<br />

while <strong>the</strong> most disturbed sites had <strong>the</strong> highest<br />

nunher and diversity <strong>of</strong> mammals. Three species


<strong>of</strong> mammals classified as "state-rare" were captured:<br />

water shrew, smoky shrew (Sorex fumeus),<br />

and sou<strong>the</strong>rn bog lemm<strong>in</strong>g (Synaptomys cooperi).<br />

Forty-n<strong>in</strong>e species <strong>of</strong> birds were observed dur<strong>in</strong>g<br />

June and July; <strong>of</strong> <strong>the</strong>se, 19 were Neotropical migrants<br />

<strong>of</strong> potential concern to wildlife management<br />

(Table 8.3).<br />

Undisturbed buffer zones perform several important<br />

hydrologic functions. They may reduce <strong>the</strong><br />

velocity <strong>of</strong> storm-water run<strong>of</strong>f, <strong>the</strong>reby allow<strong>in</strong>g<br />

<strong>of</strong> water <strong>in</strong>to <strong>the</strong> soil and reduc<strong>in</strong>g <strong>the</strong><br />

volume <strong>of</strong> run<strong>of</strong>f enter<strong>in</strong>g wetlands dur<strong>in</strong>g major<br />

storm events. This storm water abatement function<br />

prevents <strong>the</strong> drastic fluctuations <strong>in</strong> wetland water<br />

levels that may be hazardous to ground-nest<strong>in</strong>g<br />

birds and o<strong>the</strong>r wildlife. As noted above, large-scale<br />

pav<strong>in</strong>g <strong>of</strong> upland areas surround<strong>in</strong>g wetlands re-<br />

duces groundwater recharge, which, <strong>in</strong> turn, may<br />

lower summer water levels <strong>in</strong> wetlands where<br />

groundwater was a major <strong>in</strong>flow component prior<br />

to development. Thus, buffer zones may play an<br />

important role <strong>in</strong> wetland hydrology. Upland areas<br />

directly adjacent to wetlands may also serve as<br />

supplementary flood storage areas.<br />

While wetlands <strong>the</strong>mselves frequently play an<br />

important role <strong>in</strong> <strong>the</strong> removal, retention, and<br />

transformation <strong>of</strong> a wide variety <strong>of</strong> surface-water<br />

pollutants, <strong>the</strong>re is undoubtedly a limit to <strong>the</strong><br />

amount <strong>the</strong>y can process without adverse effects<br />

on wildlife, <strong>the</strong> plant community, and o<strong>the</strong>r ecosystern<br />

components. For this reason, every attempt<br />

should be made to m<strong>in</strong>imize <strong>the</strong> <strong>in</strong>flow <strong>of</strong> pollutants<br />

to wetlands. Establishment <strong>of</strong> natural, undisturbed<br />

buffer zones around wetlands helps greatly<br />

Table 8.3. Bids and mamntals observed <strong>in</strong> <strong>the</strong> transition zone between red maple swamp and upland<br />

forest <strong>in</strong> Rhode Island (from I-Iusband and Eddlcman 1990). See Table 7.2 for amphibians and reptiles.<br />

--- --.--- -.- - - - -- -<br />

Birds<br />

American crow<br />

American goldf<strong>in</strong>ch<br />

American redstart'<br />

American rob<strong>in</strong><br />

Belted k<strong>in</strong>gfisher<br />

Black-and-white warblerA<br />

Black-capped chickadee<br />

Black-bated green warblerH<br />

Blue jay<br />

Blue-w<strong>in</strong>ged warblera<br />

Brown creeper<br />

Brown-headed cowbird<br />

Canada warblera<br />

Carol<strong>in</strong>a wren<br />

Chestnut-sided warblerA<br />

Chipp<strong>in</strong>g sparrow<br />

Common yellowthroat<br />

Downy woodpecker<br />

Eastern k<strong>in</strong>gbirda<br />

Eastern phoebe<br />

Eastern wo~d-~ewee~<br />

European starl<strong>in</strong>g<br />

Gray catbirds<br />

Great crested flycatcherA<br />

Hairy woodpecker<br />

Hedt thrush<br />

House wren<br />

Nor<strong>the</strong>rn card<strong>in</strong>al<br />

Nor<strong>the</strong>m flicker<br />

Nor<strong>the</strong>rn mock<strong>in</strong>gbird<br />

Nor<strong>the</strong>rn waterthrusha<br />

Ovenbirda<br />

P<strong>in</strong>e warbler<br />

Auple f<strong>in</strong>ch<br />

<strong>Red</strong>-eyed vireoa<br />

<strong>Red</strong>-w<strong>in</strong>ged blackbird<br />

Rose-breasted grosbeaka<br />

Ruby-crowned k<strong>in</strong>glet<br />

Ruffed grouse<br />

Rufous-sided towhee<br />

Scarlet tanagera<br />

Song sparrow<br />

Swamp sparrow<br />

Tufted titmouse<br />

Veerya<br />

White-breasted nuthatch<br />

White-eyed vireoa<br />

Wood thrusha<br />

Yellow warblerR<br />

Mammals<br />

Eastern cottontail<br />

Long-tailed weasel<br />

Masked shrew<br />

Meadow jump<strong>in</strong>g mouse<br />

Meadow vole<br />

Nor<strong>the</strong>rn short-tailed shrew<br />

Smoky shrew<br />

Sou<strong>the</strong>rn bog lemm<strong>in</strong>g<br />

Sou<strong>the</strong>rn red-backed vole<br />

Star-nosed mole<br />

Virg<strong>in</strong>ia opposum<br />

Water shrew<br />

White-footed mouse<br />

Woodland jump<strong>in</strong>g mouse<br />

_____-----_ _ --<br />

aNeotropic~l migrant.


y captur<strong>in</strong>g sediment, reduc<strong>in</strong>g nutrient loads,<br />

and fdter<strong>in</strong>g o<strong>the</strong>r pollutanb before <strong>the</strong>y reach <strong>the</strong><br />

wetland (Brown and Schaefer 1987).<br />

A considerable body <strong>of</strong> experience has developed<br />

on pollution attenuation <strong>in</strong> artificial buffer strips<br />

(Clark 1977). Research on natural systems is more<br />

limited, but recent f<strong>in</strong>d<strong>in</strong>gs are encourag<strong>in</strong>g. For<br />

example, forested buffer zones <strong>in</strong> Maryland and<br />

North Carol<strong>in</strong>a have been shown to remove as<br />

much as W / o <strong>of</strong> <strong>the</strong> excess nitrogen and phosphorus<br />

from agricultural run<strong>of</strong>f (Hall et al. 1986). In a<br />

2-year study conducted <strong>in</strong> sou<strong>the</strong>rn Rhode Island,<br />

Gold and Simmons (1990) <strong>in</strong>jected a "spike" <strong>of</strong><br />

nitrate, copper, and a tracer <strong>in</strong>to <strong>the</strong> ground upgradient<br />

from forested upland and red maple<br />

swamp monitor<strong>in</strong>g stations at three sites. They<br />

found complete attenuation <strong>of</strong> copper <strong>in</strong> <strong>the</strong> groundwater<br />

at all stations. Nitrate removal ranged from<br />

14 to 87% <strong>in</strong> <strong>the</strong> forested upland, where soils were<br />

moderately well dra<strong>in</strong>ed or somewhat poorly<br />

dra<strong>in</strong>ed; <strong>in</strong> <strong>the</strong> swamp, it was almost complete <strong>in</strong><br />

both poorly dra<strong>in</strong>ed and very poorly dra<strong>in</strong>ed soils.<br />

The highest attenuation occurred where groundwater<br />

levels were closest to <strong>the</strong> surface. The authors<br />

concluded that forested buffer zones can protect<br />

wetland and surface-water systems from water<br />

quality degradation throughout <strong>the</strong> year; however,<br />

long-term performance may vary because plant<br />

uptake and microbial immobilization <strong>of</strong> nitrate are<br />

temporary nutrient s<strong>in</strong>ks.<br />

One <strong>of</strong> <strong>the</strong> unique aspects <strong>of</strong> many buffer zones<br />

is <strong>the</strong> high species richness <strong>of</strong> both plants and<br />

animals porter 1981). As a transitional area between<br />

wetland and upland, <strong>the</strong> buffer zone commonly<br />

conta<strong>in</strong>s species that are representative <strong>of</strong><br />

both communities (Anderson et al. 1980; Davis<br />

1988). Moisture is characteristically abundant <strong>in</strong><br />

this zone, but not limit<strong>in</strong>g to plant growth; as a<br />

result, forest productivity is <strong>of</strong>ten higher <strong>the</strong>re<br />

than <strong>in</strong> more droughty upland soils (Braiewa et al.<br />

1985). Upland habitats along <strong>the</strong> wetland edge<br />

have also been cited as <strong>the</strong> ma<strong>in</strong> source for seeds<br />

contribut<strong>in</strong>g to <strong>the</strong> spatial heterogeneity <strong>of</strong> wetlands<br />

(Brown and Schaefer 1987).<br />

The Issue <strong>of</strong> Buffer Width<br />

One <strong>of</strong> <strong>the</strong> most vigorously contested issues <strong>in</strong><br />

public hear<strong>in</strong>g rooms throughout <strong>the</strong> Nor<strong>the</strong>ast <strong>in</strong><br />

recent years has been <strong>the</strong> m<strong>in</strong>imum width <strong>of</strong> buffer<br />

zone required to safeguard wetland ecosystems<br />

from <strong>the</strong> adverse impacts <strong>of</strong> development. Proposals<br />

have ranged widely, from as much at3 150 m to<br />

as little as 15 m. There has been so little research<br />

on <strong>the</strong> basic characteristics and functions <strong>of</strong> wetland<br />

buffer zones that <strong>the</strong> development <strong>of</strong> scientifically<br />

valid criteria for determ<strong>in</strong><strong>in</strong>g buffer zone<br />

width has been difficult (Jordan and Shisler 1988).<br />

As a result, buffer zone widths established by<br />

regulatory agencies <strong>of</strong>ten have been arbitrary.<br />

The Rhode Island Freshwater Wetlands Act<br />

(G.L., Chap. 2-1, Sect. 18 et seq.), passed <strong>in</strong> 1971,<br />

was <strong>the</strong> first <strong>in</strong>land wetlands law to <strong>in</strong>clude a<br />

buffer; all land with<strong>in</strong> 15 m <strong>of</strong> <strong>the</strong> edge <strong>of</strong> ponds,<br />

marshes, swamps, and bogs is considered part <strong>of</strong><br />

those wetlands and is regulated accord<strong>in</strong>gly New<br />

Jersey's Freshwater Wetlands Protection Act (NJ<br />

S.A. 13:9B-1 et seq.), which was passed <strong>in</strong> 1987,<br />

conta<strong>in</strong>s <strong>the</strong> most sophisticated treatment <strong>of</strong> buffer<br />

zones (termed transition areas m <strong>the</strong> law) to date.<br />

The act requires that all freshwater wetlands be<br />

classified as exceptional, <strong>in</strong>termediate, or ord<strong>in</strong>ary.<br />

Exceptional wetlands, which provide habitat for<br />

threatened or endangered species or which border<br />

trout production waters, have a 46-m transition<br />

area. Transition areas are not required for ord<strong>in</strong>ary<br />

wetlands, which <strong>in</strong>clude ditches, swales, detention<br />

bas<strong>in</strong>s, and isolated wetlands less than 465 m2 <strong>in</strong><br />

area with development along at least 50% <strong>of</strong> <strong>the</strong>ir<br />

borders. All o<strong>the</strong>r wetlands, which are considered<br />

to be <strong>of</strong> <strong>in</strong>termediate value, have 15-m transition<br />

areas.<br />

A major contribution toward <strong>the</strong> development <strong>of</strong><br />

buffer zone criteria was made by researchers <strong>in</strong> <strong>the</strong><br />

New Jersey p<strong>in</strong>elands (Roman and Good 1985). In<br />

<strong>the</strong>ir buffer del<strong>in</strong>eation model, buffer width is determ<strong>in</strong>ed<br />

by numerically rat<strong>in</strong>g both <strong>the</strong> natural<br />

quality, values, and functions <strong>of</strong> a wetland and <strong>the</strong><br />

potential for site-specific, cumulative, and watershed-wide<br />

impacts <strong>of</strong> development. Indices for relative<br />

wetland quality and relative environmental<br />

effects are averaged, and <strong>the</strong> result<strong>in</strong>g buffer <strong>in</strong>dex<br />

is translated <strong>in</strong>to a buffer width by us<strong>in</strong>g a conversion<br />

table. This is <strong>the</strong> only quantitative procedure<br />

that rates both wetland values and impacts.<br />

Work<strong>in</strong>g <strong>in</strong> <strong>the</strong> Wekiva River Bm<strong>in</strong> <strong>of</strong> central<br />

Florida, Brown and Sehaefer (1987) also developed<br />

quantitative criteria for buffer del<strong>in</strong>eation. Key<br />

functions addressed were water quality ma<strong>in</strong>tenance,<br />

water quantity ma<strong>in</strong>tenance, and wildlife<br />

habitat. Buffer width was determ<strong>in</strong>ed from exist<strong>in</strong>g<br />

scientii'ic data on soil erodibility, depth to <strong>the</strong> water<br />

table, and <strong>the</strong> habitat requirements <strong>of</strong> representative<br />

wildlife species known to <strong>in</strong>habit <strong>the</strong><br />

area. Buffer zone widths were calculated for each<br />

function, and <strong>the</strong> largest width was considered to<br />

be controll<strong>in</strong>g <strong>in</strong> any given area. Buffer widths


I<br />

Does <strong>the</strong> buffer meel m<strong>in</strong>imum<br />

habitat sulability guidel<strong>in</strong>es?<br />

E3uffer does not have sufficient value<br />

to wildlife; buffer restoration needed.<br />

Are <strong>the</strong>re threatened or endangered animal species <strong>in</strong> <strong>the</strong><br />

wetland or buffer area?<br />

I<br />

Calculate m<strong>in</strong>imum buffer requirements for noise<br />

attenuation. Range = 13 - 85 m.<br />

Fig. 8.6. Wetland buffer width model developed for wildlife habitat functions <strong>in</strong> Rhode Island red maple swamps<br />

(after Husband and Eddleman 1990).<br />

ranged from as little as 13 m for water quality ceed<strong>in</strong>g 100 m was recommended for swamps with<br />

ma<strong>in</strong>tenance <strong>in</strong> areas with low slope and low soil threatened or endangered species. Figure 8.6 outto<br />

much as 163 m for <strong>in</strong>dividual wet- l<strong>in</strong>es <strong>the</strong> decisions lead<strong>in</strong>g to a f<strong>in</strong>al buffer width<br />

lmd-depndent animals <strong>of</strong> most species liv<strong>in</strong>g <strong>in</strong> determ<strong>in</strong>ation In <strong>the</strong> Rhode Island model.<br />

<strong>the</strong> watershed.<br />

Husband and Eddteman (1990) developed a prelim<strong>in</strong>ary<br />

buffer width model for Rhode Island red<br />

maple swamps us<strong>in</strong>g four wildlife habitat factors<br />

outl<strong>in</strong>ed <strong>in</strong> <strong>the</strong> Wekiva River bas<strong>in</strong> study (Brown<br />

and Schaefer 1987): (1) habitat suitability, (2) wildlife<br />

spatial requirements, (3) access to upland or<br />

transitional habitats, and (4) noise impacts on wildlife<br />

life functions. Buffer widths calculated for <strong>the</strong>se<br />

four variables ranged from 13 m for noise attenuation<br />

under optimal conditions (i.e., forested buffer<br />

and residential noise) to 100 m for spatial requirements<br />

<strong>of</strong> forest Interior bird species, small mammals,<br />

and reptiles and amphibians. A buffer ex-<br />

Exempted Wetlands<br />

One additional problem h<strong>in</strong>der<strong>in</strong>g wetland protection<br />

is <strong>the</strong> wetland loss that results from exemptions<br />

on <strong>the</strong> basis <strong>of</strong> wetland size or type. As noted<br />

earlier <strong>in</strong> this report, several nor<strong>the</strong>astern states<br />

have size m<strong>in</strong>ima for protection. In Rhode Island,<br />

swamps smaller than 1.2 ha are not regulated as<br />

str<strong>in</strong>gently as larger swamps (G.L., Chap. 2-1, Sect.<br />

20). In New York, <strong>the</strong> m<strong>in</strong>imum size limit for all<br />

regulated wetIands is 5 ha unless <strong>the</strong> wetland can<br />

be shown to be <strong>of</strong> unusual local importance @%ex<strong>in</strong>ger<br />

1986). In Ma<strong>in</strong>e, <strong>in</strong>land wetlands are protected<br />

only if <strong>the</strong>y are 4 ha or larger mtle 38,


M.R.S.A., Sect. 480.A). Research by Merrow (1990)<br />

on breed<strong>in</strong>g-bird communities <strong>in</strong> red maple<br />

swamps demonstrated that swamps as small as<br />

0.5 ha support wetland-dependent species such as<br />

<strong>the</strong> nor<strong>the</strong>rn waterthrush. <strong>Swamps</strong> smaller than<br />

<strong>the</strong> size m<strong>in</strong>ima listed above clearly may have<br />

significant public value for flood storage, water<br />

quality improvement, wildlife habitat, scenic value,<br />

and open space, particularly <strong>in</strong> urban areas. And,<br />

although <strong>in</strong>dividual losses <strong>of</strong> small wetlands may<br />

seem m<strong>in</strong>or, <strong>the</strong> cumulative effects on flood levels,<br />

water quality, wildlife populations, and <strong>the</strong> quality<br />

<strong>of</strong> human life may be highly significant.<br />

Acknowledgments<br />

Many people contributed significantly to <strong>the</strong><br />

preparation <strong>of</strong> this report by provid<strong>in</strong>g unpublished<br />

data or shar<strong>in</strong>g personal knowledge <strong>of</strong> wetlands<br />

<strong>in</strong> various sections <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>ast. Special<br />

thanks go to R. T<strong>in</strong>er, U.S. Fish and Wildlife Service<br />

(FWS), who furnished statistics on wetland<br />

abundance throughout <strong>the</strong> region as well as field<br />

data on <strong>the</strong> species composition <strong>of</strong> red maple<br />

swamps <strong>in</strong> nor<strong>the</strong>rn New England and upstate<br />

New York. T Raw<strong>in</strong>ski, The Nature Conservancy,<br />

provided floristic data and personal observations<br />

on calcareous seepage swamps <strong>in</strong> sou<strong>the</strong>rn New<br />

England and New York. Lists <strong>of</strong> rare, threatened,<br />

or endangered plant and animal species were provided<br />

by Natural Heritage Program personnel <strong>in</strong><br />

all <strong>of</strong> <strong>the</strong> nor<strong>the</strong>astern states. J. Dowhan, FWS,<br />

reviewed <strong>the</strong> list <strong>of</strong> rare plants <strong>in</strong> Appendix B.<br />

E. Thompson and E. Marshall, Vermont Nongame<br />

and ~a&al Heritage Program, were especially<br />

helpful <strong>in</strong> characteriz<strong>in</strong>g <strong>the</strong> forested wetlands <strong>of</strong><br />

<strong>the</strong> state, and B. Sorrie, Massachusetts Natural<br />

Heritage Program, contributed personal observations<br />

on <strong>the</strong> occurrence <strong>of</strong> rare plants <strong>in</strong> Massachusetts<br />

swamps. Additional <strong>in</strong>sights <strong>in</strong>to red maple<br />

swamp ecology, distribution, or abundance were<br />

provided by K. Metzler, Connecticut Geological<br />

and Natural History Survey; H. Vogelmann, University<br />

<strong>of</strong> Vermont; W. Countryman, Northfield,<br />

Vt.; D. Dickson, U.S. Forest Service; L. Perry,<br />

FWS; and R. Cole, New York Department <strong>of</strong> Environmental<br />

Conservation (NYDEC).<br />

The thoughtful comments <strong>of</strong> <strong>in</strong>dividuals who<br />

reviewed various drafts <strong>of</strong> <strong>the</strong> manuscript are especially<br />

appreciated. Numerous helpful suggestions<br />

came from reviewers <strong>of</strong> <strong>the</strong> first draft: R. T<strong>in</strong>er) and<br />

E Reed, FWS; W. Nier<strong>in</strong>g, Connecticut College; and<br />

M. Schweisberg, U.S. Environmental Protection<br />

Agency. O<strong>the</strong>r reviewers <strong>in</strong>cluded FL Novitzki, U.S.<br />

Geological Survey; B. Swift, N'YDEC; J. Boothroyd,<br />

University <strong>of</strong> Rhode Island (URI) Geology Department;<br />

and W. Wright, J. Brown, and T! Gr<strong>of</strong>fman,<br />

URI Department <strong>of</strong> Natural Resources Science<br />

(NRS). M. Salerno and B. Brown, also <strong>of</strong> NRS,<br />

keyed numerous drafts <strong>of</strong> <strong>the</strong> manuscript and<br />

helped with preparation <strong>of</strong> figures; S. Golet and G.<br />

DeRagon assisted with pro<strong>of</strong>read<strong>in</strong>g. Their contributions<br />

are gratefully acknowledged.<br />

Figs. 1.2, 1.3, 2.10, and 3.10 were prepared by<br />

C. Baker, URI Environmental Data Center.<br />

R. Deegan, NRS, drafted Figs. 2.1,2.2,7.2, and 7.3.<br />

Fig. 7.1 was reproduced with permission <strong>of</strong> <strong>the</strong> U.S.<br />

Forest Service; it orig<strong>in</strong>ally appeared <strong>in</strong> Amphibians<br />

and Reptiles <strong>of</strong> New England by R. M. DeGraaf<br />

and D. D. Rudis (copyright 1983 by <strong>the</strong> University<br />

<strong>of</strong> Massachusetts Press). Fig. 7.7 orig<strong>in</strong>ally appeared<br />

<strong>in</strong> Mammals <strong>of</strong> Ontario by A. I. Dagg (copyright<br />

1974 by A. I. Dagg). Photographs appear<strong>in</strong>g<br />

<strong>in</strong> Figs. 7.6 and 7.8 were provided by W. Byrne,<br />

Massachusetts Division <strong>of</strong> Fisheries and Wildlife.<br />

FI Lockwood, <strong>of</strong> Greene, R.I., fwrnished <strong>the</strong> photograph<br />

<strong>in</strong> Fig. 8.3. The l<strong>in</strong>e draw<strong>in</strong>gs <strong>of</strong> plants <strong>in</strong><br />

Figs. 3.1-3.5 were provided by <strong>the</strong> FWS.<br />

Thanks are also extended to J. Allen, Project<br />

Officer, and o<strong>the</strong>r staff at <strong>the</strong> FWS National Wetlands<br />

Research Center, Slidell (presently Lafayette),<br />

La., for <strong>the</strong>ir guidance and assistance<br />

throughout <strong>the</strong> preparation <strong>of</strong> this report. This<br />

publication is Contribution No. 2613 <strong>of</strong> <strong>the</strong> Rhode<br />

Island Agricultural Experiment Station.<br />

References<br />

Abernethy, Y., and R. E. Turner. 1987. U.S. forested<br />

wetlands: 1940-1980. BioScience 37:721-727.<br />

Adamus, I? R. 1986. The cumulative impacts <strong>of</strong> development<br />

<strong>in</strong> sou<strong>the</strong>rn Ma<strong>in</strong>e: wetlands: <strong>the</strong>ir locations,<br />

functions, and value. Ma<strong>in</strong>e State Plann<strong>in</strong>g Office,<br />

Augusta. 69 pp.<br />

Adamus, F! R. 1988. Criteria for created or restored<br />

wetlands. Pages 369-372 <strong>in</strong> D. D. Hook, W. H. NlcKee,<br />

Jr., H. K. Smith, J. Gregory, I? 6. Burrell, Jr., M. R<br />

DeVoe, R. E. Sojka, S. Gilbert, R Banks, L. H. Stolzy,<br />

C. Brooks, 'I! D. Mat<strong>the</strong>ws, and T H. Shear, editors.<br />

The emlogy and management <strong>of</strong> wetlands. Vol. 2.<br />

Management, use and values <strong>of</strong> wetlands. Timber<br />

Press, Portland, Oreg.<br />

Adamus, F? R., E. J. Claira<strong>in</strong>, Jr., R D. Smith, and R E.<br />

Young. 1987. Wetland evaluation technique (WET),<br />

Vol. 2. Methodology. U.S. Anny Eng. Waterways Exp.<br />

Stn. Draft Tech. Rep. Y-87.206 pp. + appendixes.


Adamus, I? R., and L. 'I! Stockwell. 1983. A method for<br />

wetland functional assessment, Vol. 1. U.S. Dep.<br />

Transport. Fed. Highway Adm<strong>in</strong>. Rep. FHWA-IP-82-<br />

23.176 pp.<br />

Allen, S. D. 1989. Relationships among hydrology, vegetation,<br />

and soils <strong>in</strong> transition zones <strong>of</strong> &ode Island<br />

red maple swamps. M.S. <strong>the</strong>sis, University <strong>of</strong> Rhode<br />

Island, K<strong>in</strong>gston. 109 pp.<br />

Allen, S. D., E C. Golet, A. E Davis, and T. E. Sokoloski.<br />

1989. Soil-vegetation correlations <strong>in</strong> transition zones<br />

<strong>of</strong> Rhode Island red maple swamps. U.S. Fish Wildl.<br />

Serv. Biol. Rep. 89(8). 47 pp.<br />

Alt, G. L. 1984. Black bear cub mortality due to flood<strong>in</strong>g<br />

<strong>of</strong> natal dens. J. Wildl. Manage. 48:1432-1434.<br />

American Ornithologists' Union. 1983. Check-list <strong>of</strong><br />

North American birds. 6th ed. Allen Press, Lawrence,<br />

Kans. 877 pp.<br />

Anderson, K. H., and H. K. Mdield. 1962. Sampl<strong>in</strong>g<br />

passer<strong>in</strong>e birds <strong>in</strong> a wooded swamp <strong>in</strong> sou<strong>the</strong>astern<br />

Massachusetts. Wilson Bull. 74:381-385.<br />

Anderson, I? H., M. W LeFor, and W C. Kennard. 1978.<br />

Transition zones <strong>of</strong> forested <strong>in</strong>land wetlands <strong>in</strong> nor<strong>the</strong>astem<br />

Connecticut. University <strong>of</strong> Connecticut Institute<br />

<strong>of</strong> Water Resources, Storrs. 92 pp.<br />

Anderson, E H., M. W. LeFor, and W. C. Kennard. 1980.<br />

Forested wetlands <strong>in</strong> eastern Connecticut: <strong>the</strong>ir transition<br />

zones and del<strong>in</strong>eation. Water Resour. Bull.<br />

16:248-255.<br />

Anderson, S. PI., and H. H. Shugart. 1974. Habitat<br />

selection <strong>of</strong> breed<strong>in</strong>g birds <strong>in</strong> an east Tennessee deciduous<br />

forest. <strong>Ecology</strong> 55:828-837.<br />

Baldw<strong>in</strong>, H. I. 1961. Succession <strong>in</strong> a black gum-red<br />

maple swamp-a twenty-five year record. Fox For.<br />

Notes 86.2 pp.<br />

Batema, D. L., G. D. Henderson, and L. H. Fredrickson.<br />

1985. Wetland <strong>in</strong>vertebrate distribution <strong>in</strong> bottomland<br />

hardwoods as <strong>in</strong>fluenced by forest type and<br />

flood<strong>in</strong>g regimes. Pages 196-202 <strong>in</strong> J.O. Dawson and<br />

K.A. Majerus, editors. Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> Fifth Central<br />

Hardwood Forest Conference, Department <strong>of</strong><br />

Forestry, University <strong>of</strong> Ill<strong>in</strong>ois, Champaign-Urbana.<br />

Batzli, G. 0. 1977. Population dynamics <strong>of</strong> <strong>the</strong> whitefooted<br />

mouse <strong>in</strong> floodpla<strong>in</strong> and upland forests. Am.<br />

Midl. Nat. 97:18-32.<br />

Bay, R R 1967. Groundwater and vegetation <strong>in</strong> two peat<br />

bogs <strong>in</strong> nor<strong>the</strong>rn M<strong>in</strong>nesota. <strong>Ecology</strong> 48:308-310.<br />

Beatty, S. W. 1984. Influence <strong>of</strong> microtopography and<br />

canopy species on spatial patterns <strong>of</strong> forest understory<br />

plants. <strong>Ecology</strong> 65: 1406-1419.<br />

Beecher, W, J. 1942, Nest<strong>in</strong>g birds and <strong>the</strong> vegetation<br />

substrate. Chicago Ornithological Society, Chicago,<br />

Ill. 69 pp.<br />

Beetham, N., and W. A. Nier<strong>in</strong>g. 1961. A pollen diagram<br />

from sou<strong>the</strong>astern Connecticut. Am. J. Sci.<br />

25969-75.<br />

Bell, D. 'I! 1974. Tree stratum composition and distribution<br />

<strong>in</strong> <strong>the</strong> streamside forest. Am. Midl. Nat.<br />

92:35-46.<br />

Bellrose, E C. 1976. Ducks, geese and swans <strong>of</strong> North<br />

America. 2nd ed. Stackple Books, Harrisburg, Pa.<br />

540 PP.<br />

Bent, A. C. 1948. Life histories <strong>of</strong> North American nuthakhes,<br />

wrens, thrashers, and <strong>the</strong>ir allies. Dover<br />

Publications, New York. 475 pp.<br />

Bent, A. C. 1953. Life histories <strong>of</strong> North American wood<br />

warblers. Parts 1 and 2. Dover Publications, New<br />

York. 734 pp.<br />

Bergman, H. E 1920. The relation <strong>of</strong> aeration to <strong>the</strong><br />

growth and activity <strong>of</strong> roots and its <strong>in</strong>fluences on <strong>the</strong><br />

ecesis <strong>of</strong> plants <strong>in</strong> swamps. Ann. Bot. (Lond.)<br />

34:13-33.<br />

Berry, E H. 1977. Decay <strong>in</strong> yellow-poplar, maple, black<br />

gum, and ash <strong>in</strong> <strong>the</strong> central hardwood region. U.S.<br />

For. Serv. Nor<strong>the</strong>ast. For. Exp. Stn. Res. Note NE-242.<br />

4 PP.<br />

Bert<strong>in</strong>, R. I. 1977. Breed<strong>in</strong>g habitats <strong>of</strong> <strong>the</strong> wood thrush<br />

and veery. Condor 79303-31 1.<br />

Black, I. H., and G. M. Seeley. 1953. Breed<strong>in</strong>g bird census<br />

no. 12: wet deciduous forest. Audubon Field Notes<br />

7:340-341.<br />

Bowden, W. R. 1987. The biogeochemistry <strong>of</strong> nitrogen <strong>in</strong><br />

freshwater wetlands. Biogeochemistry 4313-348.<br />

Boyd, C. E. 1970. Losses <strong>of</strong> m<strong>in</strong>eral nutrients dur<strong>in</strong>g<br />

decomposition <strong>of</strong> nphu latifolia. Arch. Hydrobiol.<br />

6651 1-517.<br />

Braiewa, M. A. 1983. Biomass and fuelwood production<br />

<strong>of</strong> red maple (Acer rubrum) stands <strong>in</strong> mode Island.<br />

M.S. <strong>the</strong>sis, University <strong>of</strong> Rhode Island, K<strong>in</strong>gston.<br />

134 PP.<br />

Braiewa, M. A., J. H. Brown, Jr., and W. I? Gould. 1985.<br />

Biomass and cordwood production <strong>of</strong> red maple<br />

stands <strong>in</strong> Rhode Island. J. For. 83633-685.<br />

Bray, J. R., and E. Gorham. 1964. Litter production <strong>in</strong><br />

forests <strong>of</strong> <strong>the</strong> world. Adv. Ecol. Res. 2:101-157.<br />

Bray, W. L. 1915. The development <strong>of</strong> <strong>the</strong> vegetation <strong>of</strong><br />

New York state. Tech. Publ. New York State Coll. For.<br />

3. 186 pp.<br />

Breidl<strong>in</strong>g, E E., E 13 Day, Jr., and R. K. Rose. 1983. An<br />

evaluation <strong>of</strong> small rodents <strong>in</strong> four Dismal Swamp<br />

plant communities. Va. J. Sci. 34:14-28.<br />

Br<strong>in</strong>son, M. M. 1977. Decomposition and nutrient exchange<br />

<strong>of</strong> litter <strong>in</strong> an alluvial swamp forest. <strong>Ecology</strong><br />

58:601-609.<br />

Br<strong>in</strong>son, M. M., A. E. Lugo, and S. Brown. 1981a. Primary<br />

productivity, decomposition, and consumer activity<br />

<strong>in</strong> freshwater wetlands. Annu. Rev. h l. Syst.<br />

12:123-161.<br />

Br<strong>in</strong>son, M. M., H. D. Bradshaw, and E. S. Kane. 1981b.<br />

Nitrogen cycl<strong>in</strong>g and assimilative capacity <strong>of</strong> nitrogen<br />

and phosphorus by river<strong>in</strong>e wetland forests.<br />

UNV. N.C. Water Resour. Res. Inst. Publ. UNC-<br />

WRRI-81-167. 90 pp.<br />

Br<strong>in</strong>son, M. M., B. L. Swift, R. C. Plantico, and J. S.<br />

Barclay. 1981c. Riparian ecosystems: <strong>the</strong>ir ecology<br />

and status. U.S. Fish Wildl. Serv. Biol. Sew. Program<br />

FWS-OBS 8V17.155 pp.


Broadfoot, W. M., and H. L. Williston. 1973. Flood<strong>in</strong>g<br />

effecta on sou<strong>the</strong>rn forests. J. For. 71584-587.<br />

Brooks, R F?, D. E. Arnold, and E. D. Bellis. 1987.<br />

Wildlife and plant communities <strong>of</strong> selected wetlands<br />

<strong>in</strong> <strong>the</strong> b n o region <strong>of</strong> Pennsylvania. U.S. Fish Wild.<br />

Sew. Natl. Wetlands Res. Cent. Open File Rep. 87-<br />

02.41 pp.<br />

Brooks, R E, and R W. T<strong>in</strong>er, Jr. 1989. Vascular plant<br />

communities <strong>in</strong> wetlands <strong>of</strong> Pennsylvania. Pages<br />

114-123 <strong>in</strong> S. K. Majumdar, R. E Brooks, E J. Brenner,<br />

and R. W. T<strong>in</strong>er, Jr., editors. Wetlands ecology and<br />

conservation: emphasis <strong>in</strong> Pennsylvania. Pennsylvania<br />

Academy <strong>of</strong> Science, Philadelphia.<br />

Brown, M. 'I!, and J. M. Schaefer. 1987. Buffer zones for<br />

water, wetlands and wildlife. Center for Wetlands,<br />

University <strong>of</strong> Florida, Ga<strong>in</strong>esville. 163 pp.<br />

Brown, S., M. M. Br<strong>in</strong>son, and A. E. Lugo. 1979. Structure<br />

and function <strong>of</strong> riparian wetlands. Pages 17-31<br />

<strong>in</strong> R R Johnson and J. E McCormick, editors. Strategies<br />

for protection and management <strong>of</strong> floodpla<strong>in</strong><br />

wetlands and o<strong>the</strong>r riparian ecosystems. U.S. Forest<br />

Service, Wash<strong>in</strong>gton, D.C.<br />

Bucholz, K. 1981. Effects <strong>of</strong> m<strong>in</strong>or dra<strong>in</strong>ages on woody<br />

species distributions <strong>in</strong> a successional floodpla<strong>in</strong> forest.<br />

Can. J. For. Res. 11:671-676.<br />

Buell, M. E, and W. A. Wistendahl. 1955. Flood pla<strong>in</strong><br />

forests <strong>of</strong> <strong>the</strong> Raritan River. Bull. Torrey Bot. Club<br />

82:463-472.<br />

Burton, 'I! M. 1981. The effecta <strong>of</strong> river<strong>in</strong>e marshes on<br />

water quality. Pages 139-151 <strong>in</strong> B. Richardson, editor.<br />

Selected proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> Midwest Conference<br />

on Wetland Values and Management. Freshwater<br />

Society, Navarre, M<strong>in</strong>n.<br />

Burton, 'I! M., and G. E. Likens. 1975. Salamander<br />

populations and biomass <strong>in</strong> <strong>the</strong> Hubbard Brook Experimental<br />

Forest, New Hampshire. Copeia<br />

1975:Ml-546.<br />

Ca<strong>in</strong>, S. A., and W.'I! Penfound. 1938. Acereturn rubri:<br />

<strong>the</strong> red maple swamp forest <strong>of</strong> central Long Island.<br />

Am. Midl. Nat. 19:390-416.<br />

Carter, V, M. S. Bed<strong>in</strong>ger, R. I? Novitzki, and W. 0. Wilen.<br />

1979. Water resources and wetlands. Pages 344-376<br />

<strong>in</strong> I? E. Greeson, J. R Clark, and J. E. Clark, editors.<br />

Wetland functions and values: <strong>the</strong> state <strong>of</strong> our understand<strong>in</strong>g.<br />

American Water Resources Association,<br />

M<strong>in</strong>neapolis, Mim.<br />

Clark, J. E. 1979. Fresh water wetlands: habitats for<br />

aquatic <strong>in</strong>vertebrates, amphibians, reptiles, and fish.<br />

Pages 330-343 <strong>in</strong> F? E. Greeson, J. R Clark, and J. E.<br />

Clark, editors. Wetland functions and values: <strong>the</strong><br />

state <strong>of</strong> our understand<strong>in</strong>g. American Water Resources<br />

Association, M<strong>in</strong>neapolis, M<strong>in</strong>n.<br />

Clark, J. R 1977. Coastal ecosystem management. John<br />

Wiley & Sons, New York. 928 pp.<br />

Clemants, S. E., editor. 1989. New Yorkrare plant status<br />

list. New York Natural Heritage Program, Department<br />

<strong>of</strong> Environmental Conservation, Latham.<br />

26 PP.<br />

Clements, E E. 1916. Plant succession. Carnegie Inst.<br />

Wash. Publ. 212. 612 pp.<br />

Coll<strong>in</strong>s, J. T, editor. 1990. Standard common and current<br />

scientific names for North American amphibians<br />

and reptiles. 3rd ed. Soc. Study Amphib. Reptiles<br />

Herpetol. Circ. 19.41 pp.<br />

Conant, R 1975. A field guide to reptiles and arnphibians<br />

<strong>of</strong> eastern and central North America. 2nd ed.<br />

Houghton Miffl<strong>in</strong>, Boston, Mass. 429 pp.<br />

Conard, H. S. 1935. The plant associations <strong>of</strong> central<br />

Long Island. Am. Mid. Nat. 16:433-516.<br />

Conner, W H., and E l? Day, Jr. 1976. Productivity and<br />

composition <strong>of</strong> a baldcypress-water tupelo site and a<br />

bottomland hardwood site <strong>in</strong> a Louisiana swamp.<br />

Am. J. Bot. 6413.54-1264.<br />

h e r , W H., and J. W. Day, Jr. 1982. The ecology <strong>of</strong><br />

forested wetlands <strong>in</strong> <strong>the</strong> sou<strong>the</strong>astern United States.<br />

Pages 69-87 <strong>in</strong> B. Gopal, R. E. Turner, R. G. Wetzel,<br />

and D. E Whigham, editors. Wetlands: ecology and<br />

management. National Institute <strong>of</strong> <strong>Ecology</strong> and International<br />

Scientific Publications, Jaipur, India.<br />

Conner, W. H., J. G. Gossel<strong>in</strong>k, and R. T Parrondo. 1981.<br />

Comparison <strong>of</strong> <strong>the</strong> vegetation <strong>of</strong> three Louisiana<br />

swamp sites with different flood<strong>in</strong>g regimes. Am. J.<br />

Bot. 68:320-331.<br />

Coulter, M. W., and H. L. Mendall. 1968. Nor<strong>the</strong>astern<br />

states. Pages 90-101 <strong>in</strong> E Barske, editor. The black<br />

duck; evaluation, management and research: a symposium.<br />

Atlantic Waterfowl Council and Wildlife<br />

Management Institute, Wash<strong>in</strong>gton, D.C.<br />

Coward<strong>in</strong>, L. M. 1965. Annotated list <strong>of</strong> <strong>the</strong> vascular<br />

plants <strong>of</strong> <strong>the</strong> Montezuma National Wildlife Refuge,<br />

Seneca Falls, N.Y. F<strong>in</strong>al Report, New York Cooperative<br />

Wildlife Research Unit, Cornell University, Ithaca.<br />

60 pp.<br />

Coward<strong>in</strong>, L. M., V Carter, E C. Golet, and E. 'I! LaRoe.<br />

1979. Classification <strong>of</strong> wetlands and deepwater habitats<br />

<strong>of</strong> <strong>the</strong> United States. U.S. Fish Wildl. Sew. Biol.<br />

Sen. Program FWS-OBS 79/31.103 pp.<br />

Coward<strong>in</strong>, L. M., G. E. Cumrn<strong>in</strong>gs, and E B. Reed, Jr.<br />

1967. Stump and tree nest<strong>in</strong>g by mallards and black<br />

ducks. J. Wildl. Manage. 31:2!29-235.<br />

Craig, R. J. 1984. Comparative forag<strong>in</strong>g ecology <strong>of</strong> Louisiana<br />

and nor<strong>the</strong>rn waterthrushes. Wilson Bull.<br />

96:173-183.<br />

Cronan, J. M., and A. Brooks. 1968. The mammals <strong>of</strong><br />

Rhode Island. R.I. Dep. Nat. Resour. Wildl. Pamphlet<br />

6. 133 pp.<br />

Crum, H. A., and L. E. Anderson. 1981. Mosses <strong>of</strong> eastern<br />

North America. Vols. 1 and 2. Columbia University<br />

Press, New York. 1,328 pp.<br />

Cunn<strong>in</strong>gham, R. L., and E. J. Ciolkosz. 1984. Soils <strong>of</strong> <strong>the</strong><br />

nor<strong>the</strong>astern United States. Fa. State Univ. b e .<br />

Exp. Stn. Bull. 848.47 pp. + 1 map.<br />

Dabel, C. V, and E FT Day, Jr. 1977. Stsuctwd comparisons<br />

<strong>of</strong> four plant communities <strong>in</strong> <strong>the</strong> Great Dismal<br />

Swamp, Virg<strong>in</strong>ia. Bull. Tomy Bot. Club 104:352-<br />

360.


Damman, A. W. H. 1964. Some forest types <strong>of</strong> central<br />

Newfoundland and <strong>the</strong>ir relation to environmental<br />

factors. For. Sci. Monogr. 8.62 pp.<br />

Damman, A. W, H. 1979. Mobilization and accumulation<br />

<strong>of</strong> heavy metals <strong>in</strong> freshwater wetlands. Research<br />

Project Technical Report A-073-CONN. Water Resources<br />

Scientific Information Center, Wash<strong>in</strong>gton,<br />

D.G. 14 pp.<br />

Damman, A. W. H., and 'I! W. French. 1987. The ecology<br />

<strong>of</strong> peat bogs <strong>of</strong> <strong>the</strong> glaciated nor<strong>the</strong>astern United<br />

States: a community pr<strong>of</strong>ile. U.S. Fish Wildl. Serv.<br />

Biol. Rep. 85 (7.16). 100 pp.<br />

Damman, A. W. H., and B. Kershner. 1977. Floristic<br />

composition and topographical distribution <strong>of</strong> <strong>the</strong><br />

forest communities <strong>of</strong> <strong>the</strong> gneiss area <strong>of</strong> western<br />

Connecticut. Nat. Can. (Ott.) 104:23-45.<br />

Daubenmire, R 1968. Plant communities: a textbook <strong>of</strong><br />

plant synecology. Harper & Row, New York. 300 pp.<br />

Davis, A. E 1988. Hydrologic and vegetation gradients<br />

<strong>in</strong> <strong>the</strong> transition zone <strong>of</strong> Rhode Island red maple<br />

swamps. M.S. <strong>the</strong>sis, University <strong>of</strong> Rhode Island,<br />

K<strong>in</strong>gston. 269 pp.<br />

Davis, C. B., and A. G. van der Valk. 1978. Litter decomposition<br />

<strong>in</strong> prairie glacial marshes. Pages 99-114 <strong>in</strong><br />

R. E. Good, D. E Whigham, and R. L. Simpson,<br />

editors. Freshwater wetlands: ecological processes<br />

and management potential. Academic Press, New<br />

York.<br />

Day, E I? 1982. Litter decomposition rates <strong>in</strong> <strong>the</strong> seasonally<br />

flooded Great Dismal Swamp. <strong>Ecology</strong> 63:670-<br />

678.<br />

Day, E F? 1983. Effects <strong>of</strong> flood<strong>in</strong>g on leaf litter decomposition<br />

<strong>in</strong> microcosms. Oecologia 56: 180-184.<br />

DeGraaf, R. M., and D. D. Rudis. 1986. New England<br />

wildlife: habitat, natural history, and distribution.<br />

U.S. For. Serv. Nor<strong>the</strong>ast. For. Exp. Stn. Gen. Tech.<br />

Rep. NE-10s. 491 pp.<br />

DeGraaf, R. M., and D. D. Rudis. 1990. Herpet<strong>of</strong>aunal<br />

species wmposition and relative abundance among<br />

three New England forest types. For, Ecol. Manage.<br />

32:155-165.<br />

Deland, M. R. 1986. Recommendation <strong>of</strong> <strong>the</strong> Regional<br />

Adm<strong>in</strong>istrator (Region I) concern<strong>in</strong>g <strong>the</strong> Sweeden's<br />

Swamp site <strong>in</strong> Attlebaro, Massachusetts pursuant to<br />

Section 404(c) <strong>of</strong> <strong>the</strong> Clean Water Act. U.S. Environmental<br />

Proteetion Agency, Boston. 69 pp. + appendixes.<br />

Diefenbach, D. R., and R. B, Owen, Jr. 1989. A model <strong>of</strong><br />

habitat use by breed<strong>in</strong>g American black ducks. J.<br />

Wildl. Manage. 53:383-389.<br />

Dowler, R. C., N. M. Katz, actd A. fit. Katz. 1985. Cornpmison<br />

<strong>of</strong> live trapp<strong>in</strong>g methods for survey<strong>in</strong>g small<br />

mammal populations, Nor<strong>the</strong>ast. Environ. Sci.<br />

4165-171.<br />

Dueser, R. D., and H. H. Shugart. 1978. Microhabitats<br />

<strong>in</strong> a forest-floor small mammal fauna. <strong>Ecology</strong><br />

59:89-98.<br />

Dunn, 6. P, and E Stearns. 1987a. A comparison <strong>of</strong><br />

vegetation and soils <strong>in</strong> floodpla<strong>in</strong> and bas<strong>in</strong> forested<br />

wetiands <strong>of</strong> sou<strong>the</strong>ash Wiscons<strong>in</strong>. Am. ?&dl. Nat.<br />

118:375-384.<br />

Dunn, 6. l?, and E Stearns. 1987b. Relationship <strong>of</strong> vegetation<br />

layers to soils <strong>in</strong> sou<strong>the</strong>astern Wiscons<strong>in</strong> forested<br />

wetlands. Am. Mid. Nat. 118:366-374.<br />

Eaton, R. J. 1969. Gor<strong>in</strong>gs Swamp, Massachusetts.<br />

Audubon 53:31-34.<br />

Egler, E E. 1947. Arid southwest Oahu vegetation, Hawaii.<br />

Ecol. Monogr. 17:393-435.<br />

Egler, E E., and W. A. Nier<strong>in</strong>g. 1967. The vegetation <strong>of</strong><br />

Connecticut natural areas, No. 3. The natural areas<br />

<strong>of</strong> <strong>the</strong> McLean Game Refuge. Connecticut Geological<br />

and Natural History Survey, Hartford. 36 pp.<br />

Egler, E E., and W. A. Nier<strong>in</strong>g. 1971. Lucious Pond<br />

Ordway Preserve-Devil's Den, 1967-68. 111. Vegetation.<br />

Contr. Nature Conservancy 3. 19 pp.<br />

Ehrenfeld, J. G. 1983. The effects <strong>of</strong> changes <strong>in</strong> land-use<br />

on swamps <strong>of</strong> <strong>the</strong> New Jersey P<strong>in</strong>e Barrens. Biol.<br />

Conserv. 25:353-375.<br />

Ehrenfeld, J. G. 1986. Wetlands <strong>of</strong> <strong>the</strong> New Jersey P<strong>in</strong>e<br />

Barrens: <strong>the</strong> role <strong>of</strong> species composition <strong>in</strong> wmmunity<br />

function. Am. Mid. Nat. 115:301-311.<br />

Ehrenfeld, J. G., and M. Gulick. 1981. Structure and<br />

dynamics <strong>of</strong> hardwood swamps <strong>in</strong> <strong>the</strong> New Jersey<br />

P<strong>in</strong>e Barrens. Am. J. Bot. 68:471-481.<br />

Ellis, H. K. 1980. <strong>Ecology</strong> and breed<strong>in</strong>g biology <strong>of</strong> <strong>the</strong><br />

swamp sparrow (Melospiut georgiana) <strong>in</strong> a sou<strong>the</strong>rn<br />

Rhode Island peatland. M.S. <strong>the</strong>sis, University <strong>of</strong><br />

Rhode Island, K<strong>in</strong>gston. 167 pp.<br />

Elowe, K. D. 1984. Home range, movements, and habitat<br />

preferences <strong>of</strong> black bear (Ursus americanus) <strong>in</strong> western<br />

Massachusetts. M.S. <strong>the</strong>sis, University <strong>of</strong> Massachusetts,<br />

Arnherst. 112 pp.<br />

Environmental Laboratory. 1987. Corps <strong>of</strong> Eng<strong>in</strong>eers<br />

wetlands del<strong>in</strong>eationmanual. U.S. Army Eng. Waterways<br />

Exp. Stn. Tech. Rep. Y-87-1. 116 pp.<br />

Evans, C. V, and D. I? Franzmeier. 1986. Saturation,<br />

aeration, and color patterns <strong>in</strong> a toposequence <strong>of</strong><br />

soils <strong>in</strong> north-central Indiana. Soil Sci. Soc. Am. J.<br />

50:975-980.<br />

Eyre, E fit., editor. 1980. Forest cover types <strong>of</strong> <strong>the</strong> United<br />

States and Canada. Society <strong>of</strong> American Foresters,<br />

Wash<strong>in</strong>gton, D.C. 148 pp. + map.<br />

Farnham, R. S. 1979. Wetlands as energy sources. Pages<br />

661-672 <strong>in</strong> F? E. Greeson, J. R. Clark, and J. E. Clark,<br />

editors. Wetland functions and values: <strong>the</strong> state <strong>of</strong> our<br />

understand<strong>in</strong>g. American Water Resources Association,<br />

M<strong>in</strong>neapolis, M<strong>in</strong>n.<br />

Federal Interagency Committee for Wetland %heation.<br />

1989. Federal manual for identify<strong>in</strong>g and del<strong>in</strong>eat<strong>in</strong>g<br />

jurisdictional wetlands. U.S. Army Corps <strong>of</strong><br />

Eng<strong>in</strong>eers, U.S. Environmental Protection Agency,<br />

U.S. Fish and Wildlife Service, and U.S. Department<br />

<strong>of</strong> Agriculture Soil Comervation Senrice. Wash<strong>in</strong>gton,<br />

D.C. 76 pp. + appendixes.


Fefer, S. I. 1980. me palushe system. hges 1-34<br />

(Chapter 8) <strong>in</strong> S. I. Fefer and I? A. Schettig, editom.<br />

An -logical characterization <strong>of</strong> coastal Ma<strong>in</strong>e. Val.<br />

2. U.S. Fish Wild. Sew. Biol. Serv. Program WS-<br />

OBS 8c)p29.<br />

Feweman, N. M. 1938. Physiography <strong>of</strong> <strong>the</strong> eastern<br />

united States. McGraw-Hill, New York. 714 pp.<br />

Fl<strong>in</strong>t, R E 1971. Glacial and Quaternary geology. John<br />

Wiley & Sons, New York. 892 pp.<br />

Fosberg, E R, and T. Blunt. 1970. Vernon black gum<br />

swam,. Rhodora 72:280-282.<br />

Fowells, H. A. 11965. Silvics <strong>of</strong> forest trees <strong>of</strong> <strong>the</strong> United<br />

States. U.S. Dep. Agric. Handb. 271. 762 pp.<br />

Frayer, W. E., T J. Monahan, D. C. Bowden, and E A.<br />

Graybill. 1983. Status and trends <strong>of</strong> wetlands and<br />

deepwater habitats <strong>in</strong> <strong>the</strong> conterm<strong>in</strong>ous United<br />

States, 1950's to 1970's. Colorado State University<br />

Department <strong>of</strong> Forest and Wood Science, Fort Coll<strong>in</strong>s,<br />

Colo. 32 pp.<br />

Fredrickson, L. H., and T S. Taylor. 1982. Management<br />

<strong>of</strong> seasonally flooded impoundments for wildlife. U.S.<br />

Fish Wildl. Sew. Resow. Fubl. 148.29 pp.<br />

Frieswyk, T S., and A. M. Malley. 1985. Forest statistics<br />

for New Hampshire-1973 and 1983. U.S. For. Serv.<br />

Nor<strong>the</strong>ast. For. Exp. Stn. Resour. Bull. ME-88.100 pp.<br />

Frye, R. J., and J. A. Qu<strong>in</strong>n. 1979. Forest development<br />

<strong>in</strong> relation to topography and soils on a floodpla<strong>in</strong> <strong>of</strong><br />

<strong>the</strong> Raritan River, New Jersey Bull. Torrey Bot. Club<br />

106:334-345.<br />

Fuller, M. R, and J. A. Mosher. 1981. Methods <strong>of</strong> deted<strong>in</strong>g<br />

and count<strong>in</strong>g raptors: a review. Stud. Avian Biol.<br />

6235-246.<br />

Getz, L. L. 1961a. Fadors <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> local distribution<br />

<strong>of</strong> shrews. Am. Midl. Nat. 6567-88.<br />

Getz, L. L. 1961b. Notes on <strong>the</strong> local distribution <strong>of</strong><br />

Rromyscw leuopus and Zapus hudsonius. Am.<br />

Midl. Nat. 65:486-500.<br />

Getz, L. L. 1967. Responses <strong>of</strong> selected small mammale<br />

to water. Univ. Conn. Biol. Sci. Ser. Occas.<br />

Pap. 1:71-81.<br />

Getz, L. L. 1968. Influence <strong>of</strong> water balance and microclimate<br />

on <strong>the</strong> local distribution <strong>of</strong> <strong>the</strong> redback vole<br />

and white-footed mouse. <strong>Ecology</strong> 49:276-286.<br />

Gill, C. J. 1970. The flood<strong>in</strong>g tolerance <strong>of</strong> woody species-a<br />

review. For. Abstr. 31671-688.<br />

w y , J., E. R. Kaynor, S. Pelczarski, and J. Benforado.<br />

1985. Ecological considerations <strong>in</strong> wetlands<br />

treatment <strong>of</strong> municipal wastewaters. Van Nostrand<br />

Re<strong>in</strong>hold, New York. 473 pp.<br />

Go&, A. J. 1977. Wild mammals <strong>of</strong> New England. Globe<br />

Pequot has, Chester, Conn. 207 pp.<br />

Whalk, G. L., and R. G. Wetzel. 1978. Decomposition<br />

<strong>in</strong> <strong>the</strong> littoral zone <strong>of</strong> lakes. Pages 131-144 <strong>in</strong> R. E.<br />

w, D. I? Whigh-, and R. L. Simpson, editors.<br />

Freshwater wetlanh: ecological processes and management<br />

potential. Academic Press, New York.<br />

Gold, J., and R* C. s<strong>in</strong>unons. 1990. Groundwater<br />

studies. Wges 29-78 <strong>in</strong> EM. ~r<strong>of</strong>f<strong>in</strong>an, A J. Gold, T.<br />

E Husband, R. c. Simmons, and W. R Eddleman. An<br />

<strong>in</strong>vestigation <strong>in</strong>to multiple uses <strong>of</strong> vegetated buffer<br />

strips. Narragansett Bay Project, Providence, RI.<br />

Golet, I? C. 1969. Growth <strong>of</strong> muck-hardwoods <strong>in</strong> a New<br />

York waterfowl impoundment. M.S. <strong>the</strong>sis, Cornell<br />

University, Ithaca, N.Y. 70 pp.<br />

Golet, E C. 1973. Freshwater wetlands as wildlife habitat.<br />

Pages 84-103 <strong>in</strong> M. W. LeFor, W. C. Kennard, and<br />

T B. Helfgott, editors. Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> Third Wetlands<br />

Conference. Univ. Conn. Inst. Water Resow.<br />

Rep. 26.<br />

Golet, I? C. 1976. Wildlife wetland evaluation model.<br />

Pages 13-34 <strong>in</strong> J. S. Larson, editor. Models for assessment<br />

<strong>of</strong> freshwater wetlands. Univ. Mass. Water Resour.<br />

&s. Cent. Publ. 32.<br />

Golet, E C. 1986. Critical issues <strong>in</strong> wetland mitigation:<br />

a scientific perspective. National Wetlands Newsletter<br />

-.. 8:3-6. .<br />

Golet, E C., and J. S. Larson. 1974. Classification <strong>of</strong><br />

freshwater wetlands <strong>in</strong> <strong>the</strong> glaciated Nor<strong>the</strong>ast. U.S.<br />

Fish Wildl. Serv. %sour. Publ. 116. 56 pp.<br />

Golet, I? C., and D. J. Lowry. 1987. Water regimes and<br />

tree growth <strong>in</strong> Rhode Island Atlantic white cedar<br />

swamps. Pages 91-110 <strong>in</strong> A.D. Lademan, editor.<br />

Atlantic white cedar wetlands. Westview Press, Boulder,<br />

Colo.<br />

Golet, E C., and J. A. Parkhurst. 1981. Freshwater<br />

wetland dynamics <strong>in</strong> South K<strong>in</strong>gstown, Rhode Island,<br />

1939-1972. Environ. Manage. 5245-251.<br />

Gomez, M. M., and E E Day 1982. Litter nutrient content<br />

and production <strong>in</strong> <strong>the</strong> Great Dismal Swamp. Am.<br />

J. Bot. 69:1314-1321.<br />

Goodw<strong>in</strong>, R. H. 1942. The flora <strong>of</strong> Mendon Pond's Park.<br />

Proc. Rochester Acad. Sci. 8:233-298.<br />

Goodw<strong>in</strong>, R. H., and W. A. Nier<strong>in</strong>g. 1975. Inland wetlands<br />

<strong>of</strong> <strong>the</strong> United States. Natl Park Sew. Nat. Hist.<br />

Theme Stud. 2.550 pp.<br />

Gossel<strong>in</strong>k, J. G., and R. E. Turner. 1978. The role <strong>of</strong><br />

hydrology <strong>in</strong> freshwater wetland ecosystems. Pages<br />

63-78 <strong>in</strong> R. E. Good, D. E Whighanr, and R. L.<br />

Simpson, editors. Freshwater wetlands: ecological<br />

processes and management potential. Academic<br />

Press, New York.<br />

Grace, J. R. 1972. Vegetation and management <strong>of</strong> wetland<br />

forests <strong>of</strong> nor<strong>the</strong>astern Connecticut. Connecticut<br />

Forest and Park Association and Connecticut<br />

Department <strong>of</strong> Environmental Protection, Hartford.<br />

42 PP.<br />

Green, W E. 1947. Effect <strong>of</strong> water impoundment on tree<br />

mortality and growth. J. For. 45:118-120.<br />

Greeson, EE., J. R. Clark, and J. E. Clark, editors. 1979.<br />

Wetland functions and values: <strong>the</strong> state <strong>of</strong> our understand<strong>in</strong>g.<br />

American Water Resources Association,<br />

M<strong>in</strong>neapolis, M<strong>in</strong>n. 674 pp.<br />

Greller, A. M. f 977. A classification <strong>of</strong> mature foresta on<br />

Long Island, New Uork. Bull. Torrey Bot. Club<br />

104:376-382.


Grice, D., and J. E Rogers. 1965. The wood duck <strong>in</strong><br />

Massachusetts. F<strong>in</strong>al report, Federal Aid <strong>in</strong> Wildlife<br />

Restoration Project W-19-R. Massachusetts Division<br />

<strong>of</strong> Fisheries and Game, Boston. 96 pp.<br />

Gr<strong>of</strong>fman, I? M., E. A. Axelrod, J. L. Lemunyon, and W.<br />

M. Sullivan. 1991. Denitrification <strong>in</strong> grass and forest<br />

vegetated filter strips. J. Environ. Qual. 20:671-674.<br />

Hale, M. E., Jr. 1965. Vertical distribution <strong>of</strong> cryptogams<br />

<strong>in</strong> a red maple swamp <strong>in</strong> Connecticut. Bryologist<br />

68:193-197.<br />

Hall, T, C. Jones, I? Meckley, and L. Wrabel. 1986. A<br />

proposal to adopt forest buffers as an agricultural<br />

best management practice. Maryland Department <strong>of</strong><br />

Natural Resources, Annapolis. (mimeo)<br />

Hall, TE, and G.E. Smith. 1955. Effects <strong>of</strong> flood<strong>in</strong>g on<br />

woody plants, West Sandy Dewater<strong>in</strong>g Project, Kentucky<br />

Reservoir. J. For. 53281-285.<br />

Hanks, J. I? 1985. Plant communities and ground-water<br />

levels <strong>in</strong> sou<strong>the</strong>rn Nassau County, Long Island, New<br />

York. Bull. Torrey Bot. Club 112:79-86.<br />

Haramis, G. M. 1975. Wood duck (Aix sponsa) ecology<br />

and management with<strong>in</strong> <strong>the</strong> green-timber impoundments<br />

at Montezuma National Wildlife Refuge. M.S.<br />

<strong>the</strong>sis, Cornell University, Ithaca, N.Y. 153 pp.<br />

Haramis, G. M., and D. Q. Thompson. 1985. Densityproduction<br />

characteristics <strong>of</strong> box-nest<strong>in</strong>g wood ducks<br />

<strong>in</strong> a nor<strong>the</strong>rn greentree impoundment. J. Wildl. Manage.<br />

49:429-436.<br />

Hard<strong>in</strong>, E. D., and W. A. Wistendahl. 1983. The effects<br />

<strong>of</strong> floodpla<strong>in</strong> trees on herbaceous vegetation patterns,<br />

microtopography, and litter. Bull. Torrey Bot. Club<br />

110:23-30.<br />

Hardy, E. E., and C. A. Johnston. 1975. New York State<br />

Wetlands Inventory: technical report. Cornell IJniversity<br />

Department <strong>of</strong> Natural Resources, Ithaca,<br />

N.Y. 144 pp.<br />

Harms, W. R., H. T Schreuder, D. D. Hook, C, L. Brown,<br />

and E W. Shrapshire. 1980. The effects <strong>of</strong> flood<strong>in</strong>g on<br />

<strong>the</strong> swamp forest <strong>in</strong> Lake Oklawaha, Florida. &ology<br />

61:1412-1421.<br />

Harper, R. M. 1917. The natural vegetation <strong>of</strong> western<br />

Long Island south <strong>of</strong> <strong>the</strong> term<strong>in</strong>al mora<strong>in</strong>e. Torreya<br />

17:l-13.<br />

Heatwole, H. 1961. Habitat selection and activity <strong>of</strong> <strong>the</strong><br />

wood frog, Ram sylvatica (LeConte). Am. Nidl. Nat.<br />

66:301-313.<br />

Heatwole, H. 1962. Environmental factors <strong>in</strong>fluenc<strong>in</strong>g<br />

loeal distribution and activity <strong>of</strong> <strong>the</strong> salamander,<br />

Plethodon c<strong>in</strong>eneus. <strong>Ecology</strong> 43460-472.<br />

HeeIey, R. W. 193. Hydrogeology <strong>of</strong> wetlands <strong>in</strong> Massachusetts.<br />

M.S. <strong>the</strong>sis, University <strong>of</strong> Massachusetts,<br />

Amherst. 129 pp.<br />

He<strong>in</strong>selman, M. L. 1970. Landscape evolution, peatland<br />

types, and <strong>the</strong> environment <strong>in</strong> <strong>the</strong> M e Agassiz Peatlands<br />

Natural Area, M<strong>in</strong>nesota. Ecol. Monogr.<br />

40255-261.<br />

Hellgren, E. C,, and M. R. Vaughan. 1989. hnn<strong>in</strong>g<br />

ecology <strong>of</strong> black bears <strong>in</strong> a sou<strong>the</strong>astern wetland. J.<br />

Wildl. Manage. 53:347-353.<br />

Henny, C. J., E C. Schmid, E. M. Mart<strong>in</strong>, and L. L. Hood.<br />

1973. Territorial behavior, pesticides, and <strong>the</strong> population<br />

ecology <strong>of</strong> red-shouldered hawks <strong>in</strong> central<br />

Maryland. <strong>Ecology</strong> 54:545-554.<br />

Hodgdon, K. W., and J. H. Hunt. 1966. Beaver management<br />

<strong>in</strong> Ma<strong>in</strong>e. Ma<strong>in</strong>e Dep. Inland Fish. Game Game<br />

Div. Bull. 3. 102 pp.<br />

Holland, M. M., and J. C. Burk. 1984. The herb strata <strong>of</strong><br />

three Connecticut River oxbow swamp forests. Rhodora<br />

86:397-415.<br />

Hollands, G. G., and W. S. Mulica. 1978. Application <strong>of</strong><br />

morphological sequence mapp<strong>in</strong>g <strong>of</strong> surficial geologic<br />

deposits to water resource and wetland <strong>in</strong>vestigations<br />

<strong>in</strong> eastern Massachusetts. Geol. Soc. Am.<br />

Nor<strong>the</strong>ast. Sect. Abstr. 10:470.<br />

Howard, R. J., and J. S. Larson. 1985. A stream habitat<br />

classification system for beaver. J. Wildl. Manage.<br />

49: 19-25.<br />

Huenneke, L. E 1982. Wetland forests <strong>of</strong> Tompk<strong>in</strong>s<br />

County, New York. Bull. Torrey Bot. Club 109:51-63.<br />

Huffman, T, and S. W. Forsy<strong>the</strong>. 1981. Bottomland hardwood<br />

forest communities and <strong>the</strong>ir relation to anaerobic<br />

soil conditions. Pages 187-196 <strong>in</strong> J. R Clark and<br />

J. Benforado, editors. Wetlands <strong>of</strong> bottomland hardwood<br />

forests. Elsevier, New York.<br />

Husband, T E, and W. R. Eddleman. 1990. Wildlife<br />

studies. Pages 98-149 <strong>in</strong> I? M. Gr<strong>of</strong>fman, A. J. Gold,<br />

T E Husband, R. C. Simmons, and W. R Eddleman.<br />

An <strong>in</strong>vestigation <strong>in</strong>to multiple uses <strong>of</strong> vegetated buffer<br />

strips. Narragansett Bay Project, Providence, RI.<br />

Hutton, I? Z., Jr. 1972. Soil survey <strong>of</strong> Seneca County, New<br />

York. U.S. Department <strong>of</strong> Agriculture Soil Conservation<br />

Service. Wash<strong>in</strong>gton, D.C. 143 pp.<br />

James, E C., and N. 0. Wamer. 1982. Relationships<br />

between forest bird communities and vegetation<br />

structure. <strong>Ecology</strong> 63: 159-171.<br />

Johnsgard, I? A. 1975. Waterfowl <strong>of</strong> North America.<br />

Indiana University Press, Bloom<strong>in</strong>gton. 575 pp.<br />

Johnson, R L. 1979. Timber harvests from wetlands.<br />

Pages 598-605 <strong>in</strong> PE. Greeson, J. R. Clark, and J. E.<br />

Clark, editors. Wetland functions and values: <strong>the</strong><br />

state <strong>of</strong> our understand<strong>in</strong>g. American Water Resources<br />

Association, M<strong>in</strong>neapolis, M<strong>in</strong>n.<br />

Jones, J. K., Jr., D. C. Carter, H. H. Genoways, R S.<br />

H<strong>of</strong>fman, D. W. Rice, and C. Jones. 1986. Revised<br />

checklist <strong>of</strong> North American mammals north <strong>of</strong> Mexico,<br />

1986. Texas Technological University Museum<br />

Occasional Paper 107.22 pp.<br />

Jordan, R A., and J. K. Shisler. 1988. Research nee&<br />

for <strong>the</strong> use <strong>of</strong> buffer zones for wetland protection.<br />

Pages 433-435 <strong>in</strong> J. A. Kusler, M. L. Quammen, and<br />

G. Brooks, editors. Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> National Wetlands<br />

Symposium: mitigation impacts and losses.<br />

Assoc. State Wetland Manage. Tech. Rep. 3.


Jordan, R J. 1978. Glacial geology and wetland occurrenee<br />

on <strong>the</strong> Tug Hill F'lateau, New York. Doctoral<br />

dissertation, Syracuse University, Syracuse, N.Y.<br />

282 PP.<br />

Kadlec, J. A. 1962. The effects <strong>of</strong> a drawdown on a<br />

waterfowl impoundment. <strong>Ecology</strong> 43:267-281.<br />

Kadlec, R H., and Kadlec, J. A. 1979. Wetlands and<br />

water quality. Pages 436-456 <strong>in</strong> E E. Greeson, J. R<br />

Clark, and J. E. Clark, editors. Wetland functions and<br />

values: <strong>the</strong> state <strong>of</strong> our understand<strong>in</strong>g. American<br />

Water Resources Association, M<strong>in</strong>neapolis, M<strong>in</strong>n.<br />

Karr, J. R. 1968. Habitat and avian diversity on stripm<strong>in</strong>ed<br />

land <strong>in</strong> east-central Ill<strong>in</strong>ois. Condor<br />

70:348-357.<br />

Kenk, R 1949. The animal life <strong>of</strong> temporary and permanent<br />

ponds <strong>in</strong> sou<strong>the</strong>rn Michigan. Univ. Mich. Mus.<br />

Zool. Misc. Publ. 71.66 pp.<br />

Kershner, B. 1975. The distribution <strong>of</strong> plant communities<br />

<strong>of</strong> f<strong>in</strong>d Mount Natural Area, Kent, Connecticut,<br />

and <strong>the</strong>ir relation to environmental factors. M.S.<br />

<strong>the</strong>sis, University <strong>of</strong> Connecticut, Stom. 94 pp.<br />

Kirby, R E. 1988. American black duck breed<strong>in</strong>g habitat<br />

enhancement <strong>in</strong> <strong>the</strong> nor<strong>the</strong>astern United States: a<br />

review and syn<strong>the</strong>sis. U.S. Fish Wildl. Serv. Biol. Rep.<br />

88(4). 50 PP.<br />

Kirkland, G. L., Jr., and T L. Serfass. 1989. Wetland<br />

mammals <strong>of</strong> Pennsylvania. Pages 216-230 <strong>in</strong> S. K.<br />

Majumdar, R FIBrooks, E J. Brenner, and R. W. T<strong>in</strong>er,<br />

Jr., editom. Wetlands ecology and conservation: emphasis<br />

<strong>in</strong> Pennsylvania. hnnsylvania Academy <strong>of</strong><br />

Science, Philadelphia.<br />

Kitchens, W. M., Jr., J. M. Dean, L. H. Stevenson, and J.<br />

H. Cooper. 1975. The Santee Swamp as a nutrient<br />

s<strong>in</strong>k. Pages 349-366 <strong>in</strong> E G. Howell, J. I? Gentry, and<br />

M. H. Smith, editors. M<strong>in</strong>eral cycl<strong>in</strong>g <strong>in</strong> sou<strong>the</strong>astern<br />

ecosystems. Energy Research and Development Adm<strong>in</strong>istration<br />

ERDA CONF-740513.<br />

Kitch<strong>in</strong>gs, J. T, and D. J. Levy. 1981. Habitat patterns <strong>in</strong><br />

a small mammal community. J. Mammal. 62:814-820.<br />

Kivisalu, E., L. W. VanDruff, and D. Q. Thompson. 1970.<br />

Waterfowl nest<strong>in</strong>g <strong>in</strong> a green-timber impoundment.<br />

Trans. Nor<strong>the</strong>ast. Sect. Wildl. Soc. 27:151-166.<br />

Koteff, C. 1974. The morphological sequence concept and<br />

deglaciation <strong>of</strong> sou<strong>the</strong>rn New England. Pages 121-<br />

144 <strong>in</strong> D. R. Coates, editor. Glacial geomorphology: a<br />

proceed<strong>in</strong>gs volume <strong>of</strong> <strong>the</strong> 5th Annual Geomorphology<br />

Symposia Series held at B<strong>in</strong>ghamton, N.Y., September<br />

26-28, 1974. State University <strong>of</strong> New York<br />

Publications <strong>in</strong> Geomorphology, B<strong>in</strong>ghamton.<br />

Krull, J. N. 1!369. Seasonal occurrence <strong>of</strong> macro<strong>in</strong>vertebrates<br />

<strong>in</strong> a green-tree reservoir. N.Y. Fish Game J.<br />

16:119-124.<br />

Kusler, J. A., M. L. Quamrnen, and G. Brooks, editors.<br />

1988. Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> National Wetlands Symposium:<br />

mitigation impacts and losses. Assoc. State<br />

Wetland Manage. Tech. Rep. 3.460 pp.<br />

Laderman, A. D., editor. 1987. Atlantic white cedar<br />

wetlands. Westview Press, Boulder, Colo. 401 pp.<br />

Laderman, A. D. 1989. The ecology <strong>of</strong> Atlantic white<br />

cedar wetlands: a community pr<strong>of</strong>ile. U.S. Fish Wildl.<br />

Serv. Biol. Rep. 8R7.21). 114 pp.<br />

Laderman, A. D., E C. Golet, B. A. Sorrie, and H. L.<br />

Woolsey. 1987. Atlantic white cedar <strong>in</strong> <strong>the</strong> glaciakd<br />

nor<strong>the</strong>ast. Pages 19-33 <strong>in</strong> A. D. Laderman, editor.<br />

Atlantic white cedar wetlands. Westview Press, Boulder,<br />

Colo.<br />

Larson, J. S., and E: C. Golet. 1982. Models <strong>of</strong> freshwater<br />

wetland change <strong>in</strong> sou<strong>the</strong>astern New England. Pages<br />

181-185 <strong>in</strong> B. Gopal, R. E. Turner, R G. Wetzel, and<br />

D. E Wugham, editors. Wetlands: ecology and management.<br />

National Institute <strong>of</strong> <strong>Ecology</strong> and International<br />

Scientific Publications, Jaipur, India.<br />

Larson, J. S., A. J. Mueller, and W; P MacConnell. 1WO.<br />

A model <strong>of</strong> natural and man-<strong>in</strong>duced changes <strong>in</strong> open<br />

freshwater wetlands on <strong>the</strong> Massachusetts coastal<br />

pla<strong>in</strong>. J. Appl. Ecol. 17667-673.<br />

Larson, J. S., and 6. Neill, editors. 1987. Mitigat<strong>in</strong>g<br />

freshwater alterations <strong>in</strong> <strong>the</strong> glaciated nor<strong>the</strong>astern<br />

United States: an assessment <strong>of</strong> <strong>the</strong> science base.<br />

Univ. Mass. Environ. Inst. Publ. 87-1. 143 pp,<br />

Laundre, J. A. 1980. Heavy metal distribution <strong>in</strong> two<br />

Connecticut wetlands: a red maple swamp and a<br />

Sphagnum bog. M.S. <strong>the</strong>sis, University <strong>of</strong> Connecticut,<br />

Storrs. 56 pp.<br />

Leffelman, L. J., and R. C. Hawley. 1925. Studies <strong>of</strong><br />

Connecticut hardwoods: <strong>the</strong> treatment <strong>of</strong> advance<br />

growth as a result <strong>of</strong> th<strong>in</strong>n<strong>in</strong>gs and sheltenvood cutt<strong>in</strong>gs.<br />

Yale Univ. School For. Bull. 15.68 pp.<br />

Little, S. 1950. <strong>Ecology</strong> and silviculture <strong>of</strong> white cedar<br />

and associated hardwoods <strong>in</strong> sou<strong>the</strong>rn New Jersey.<br />

Yale Univ. School For. Bull. 56. 103 pp.<br />

Little, S. 1951. Observations on <strong>the</strong> m<strong>in</strong>or vegetation <strong>of</strong><br />

<strong>the</strong> p<strong>in</strong>e barren swamps <strong>in</strong> sou<strong>the</strong>rn New Jersey.<br />

Bull. Torrey Bot. Club 78:153-160.<br />

Little, E. L., Jr. 1979. Checklist <strong>of</strong> United States trees<br />

(native and naturalized). U.S. Dep. Agric. Agric.<br />

Handb. 541.375 pp.<br />

Lowry, D, J. 1984. Water regimes and vegetation <strong>of</strong><br />

Rhode Island forested wetlands. M.S. <strong>the</strong>sis, University<br />

<strong>of</strong> Rhode Island, K<strong>in</strong>gston. 174 pp.<br />

Lull, H. W 1968. A forest atlas <strong>of</strong> <strong>the</strong> Nor<strong>the</strong>ast. U.S.<br />

Forest Service Nor<strong>the</strong>astern Forest Experiment Station,<br />

Upper Darby, Pa. 46 pp.<br />

Lyford, W. H., and D. W. Maclean. 19%. Mound and pit<br />

microrelief <strong>in</strong> relation to soil disturbances and tree<br />

distribution <strong>in</strong> New Brunswick, Canada. Harvard<br />

For. Pap. 15. 18 pp.<br />

Lyford, W. H., and B. E Wilson. 19643. Controlled growth<br />

<strong>of</strong> forest tree roots: technique and application. Harvard<br />

For. Pap. 16. 12 pp.<br />

MacArthur, R. EI. 1964. Environmental factors affect<strong>in</strong>g<br />

bird species diversity. Am. Nat. 98:387-397.<br />

MacArthur, W. H., and J. W. MacArthur. 1961. On bird<br />

species diversity. <strong>Ecology</strong> 42:594-598,<br />

Malecki, R. A., J. R. Lassoie, E. Ftieger, and T. Seamans.<br />

1983. Effects <strong>of</strong> long-term artificial flood<strong>in</strong>g on a


nor<strong>the</strong>rn botbnlfand hardwood forest community.<br />

For. Sci. 29:535-544.<br />

Mart<strong>in</strong>, A. C., H. S. Zim, and A. L. Nelson. 1951. Amencan<br />

wildlife and plants: a guide to wildlife food habits.<br />

aver Publications, New York. 500 pp.<br />

Mason, C. E, and R J. Bryant. 1975. Production, nutrient<br />

content, and decomposition <strong>of</strong> Phragm,ites communk<br />

and Typha latifolk. J. Ecol. 63:71-95.<br />

McCoy, C. J. 1989. The amphibians and reptiles <strong>of</strong> Pennsylvania<br />

wetlands: an ecological survey. Pages 171-<br />

182 <strong>in</strong> S. K. Majumdar, R. PBrooks, E J. Brenner, and<br />

R. W. T<strong>in</strong>er, Jr., editors. Wetlands ecology and conservation:<br />

emphasis <strong>in</strong> Pennsylvania. Pennsylvania<br />

Academy <strong>of</strong> Science, Philadelphia.<br />

McGilvrey, E B. 1968. A guide to wood duck production<br />

habitat requirements. U.S. Fish Wildl. Sew. Resour.<br />

hbl. 60.32 pp.<br />

McECnight, ,J. S., D. D. kIook, 0. G. Langdon, and R. L.<br />

Johnson. 1981. Flwd tolerance and related characteristics<br />

<strong>of</strong> trees <strong>of</strong> <strong>the</strong> bottornlarrd hardwood forests<br />

<strong>of</strong> <strong>the</strong> Sou<strong>the</strong>rn IJnited States. Pages 29 70 <strong>in</strong> J. R.<br />

Clark and J. Berrforado, editors. Wetlands <strong>of</strong> bottomland<br />

hardwood forests. Elsevier, New York.<br />

Mclktughl<strong>in</strong>, C, L., and D. Grice. 1962. The effectiveness<br />

<strong>of</strong> large scale crectiorr <strong>of</strong> wood duck boxes as a management<br />

procedure. Trans. N. h1. Wildl. Conf.<br />

17:242--259.<br />

McVnugh, K. 1955. Flora <strong>of</strong> <strong>the</strong> Columbia County area,<br />

New York. N.Y. State Mus. Sci. Serv. Bull. 360.<br />

400 I@.<br />

Meek, B. U., and IA. $3. Stolzy. 11978. Short,-tcnn flood<strong>in</strong>g.<br />

Pages 361 373 ira D. I?. EIook and fi. M. M. Crawford,<br />

ed~tora. Plant life <strong>in</strong> aneeroLic rx~vironmet~ts. Ax111<br />

Arbor Science I"lllIisliers, hrm Arbor, Mlch.<br />

Meent~xn~t?yyer, V: 1978. Macro-cl<strong>in</strong>ratc und ligni~i control<br />

<strong>of</strong> liltter decoxn~msztlorl rates. <strong>Ecology</strong> 59:465 -472.<br />

Menges, E. S., and 1). M. Wallcr. 1953. Want stratel3ies<br />

<strong>in</strong> relation to elevatiorl and light <strong>in</strong> floodpla<strong>in</strong> herbs.<br />

Am. Nat. 122:454 -473.<br />

Memw, J. S. 1990. 'Fhe <strong>in</strong>fluence <strong>of</strong> area and habitat on<br />

<strong>the</strong> avian coriununity <strong>in</strong> red 111eple swamps <strong>of</strong> sou<strong>the</strong>rn<br />

Itkxr>du I~la~ld. M.S. <strong>the</strong>sis, Un~vcrsit~ <strong>of</strong> Rhode<br />

Islilrlil, K<strong>in</strong>gstarx. 53 pp.<br />

Messier; S. N. 1980. '111~ piatit conl~rlurlitics <strong>of</strong> <strong>the</strong> acid<br />

wctl~nds <strong>of</strong> r~urtfxwrster~i Colu~ecticul. M.S. <strong>the</strong>sis,<br />

University <strong>of</strong> Cc~nnecticut. Storm. 98 pp.<br />

MeCzler, K. J. 1982. Nat~onrrl Wetlands Inventory: Connecticut<br />

firm1 re~xwt, U.S. Fish and Wildlife Service<br />

and ChnnecLicut Cmlctgical and Natural History Survey,<br />

Efartford, 33 pp.<br />

Metzler, K. J., and A. W. H. Damman. 1985. Vegetation<br />

pattern9 <strong>in</strong> <strong>the</strong> Coxmectlcut River fiood pla<strong>in</strong> <strong>in</strong> relation<br />

to frequency and duration <strong>of</strong> flood<strong>in</strong>g. Mat. Can.<br />

(Ott.) 112:535-547.<br />

Metzler, K. J., and R. W. T<strong>in</strong>er. 1992. Wetlands <strong>of</strong> Connecticut.<br />

Cow. 6-1. Nat. Hist. Sun: Rep. Invest. 13.<br />

115 pp.<br />

Meyers, F! N., T. W. Gutzke, and M. E hkowski. 1981.<br />

Breed<strong>in</strong>g bird census no. 6: red maple-p<strong>in</strong> oak-mixed<br />

hardwoods. Am. Birds 3551.<br />

Miller, D. H., and L. L. Getz. 1972. Fadom <strong>in</strong>fluenciq<br />

<strong>the</strong> local distribution <strong>of</strong> <strong>the</strong> redback vole,<br />

Clethrionomys gapperi, <strong>in</strong> New Englmd. Univ. Corn.<br />

Biol. Sci. Ser. Occas. Pap. 2:115-138.<br />

Miller, D. H., and L. L. Getz. 1973. Factors <strong>in</strong>fluenc<strong>in</strong>g<br />

<strong>the</strong> local distribution <strong>of</strong> <strong>the</strong> redback vole,<br />

Ckthrionomys gapperi, <strong>in</strong> New England. 11. Vegetation<br />

cover, soil moisture, and debris cover. Univ. Con..<br />

Biol. Sci. Ser. Occas. Pap. 2:159-180.<br />

Miller, D. H., and L. L. Getz, 1977a. Factors <strong>in</strong>fluenc<strong>in</strong>g<br />

local distribution and species diversity <strong>of</strong> forest small<br />

mammals <strong>in</strong> New England. Can. J. Zoo1.55:806-814<br />

+ appendixes.<br />

Miller, D. W., and L. L. Getz. 1977b. Comparisons <strong>of</strong><br />

population dynamics <strong>of</strong> Peromyscus and<br />

Clethrionomys <strong>in</strong>New England. J. Mammal. 58:1-16.<br />

Miller, E. 6. 1W5. Effect <strong>of</strong> Great Swamp, New Jersey,<br />

on streamflow dur<strong>in</strong>g base-flow periods. U.S. Geol.<br />

Surv. Res. Pap. 525-B:177-179.<br />

Mitsch, W. J., C. L. Dorge, and J. R. Wiemh<strong>of</strong>f. 1979.<br />

Ecosystem dynamics and a phosphorus budget <strong>of</strong> an<br />

alluvial cypress swamp <strong>in</strong> sou<strong>the</strong>rn Ill<strong>in</strong>ois. <strong>Ecology</strong><br />

60:1116-1124.<br />

Moizuk, G. A., and R. B. Liv<strong>in</strong>gston. 1966. <strong>Ecology</strong> <strong>of</strong> red<br />

maple (Acer rubrum L.) <strong>in</strong> a Massachusetts upland<br />

bog. <strong>Ecology</strong> 47942-950.<br />

Monk, C. D. 1966. An ecological study <strong>of</strong> hardwood<br />

swamps <strong>in</strong> north-central Florida. <strong>Ecology</strong><br />

47:G49-654.<br />

Montgomery, J. D., and D. E. Fairbro<strong>the</strong>rs. 1963. A<br />

floristic conlparison <strong>of</strong> <strong>the</strong> vascular plants <strong>of</strong> two<br />

sphagnous wetlands <strong>in</strong> New Jersey. Bull. Torrey Bot.<br />

Club 90:87-99.<br />

Moody, D. W., E. B. Chase, and D. A. Aronson. 1486.<br />

National water summary 1985-hydrologic events<br />

and surface-water resources. ZJ.S. Geol. Sum. Water<br />

Supply Pap. 2,300. 506 pp.<br />

Moore, D. D. 1959. Ecological changes and wildlife use<br />

<strong>in</strong> impounded areas with emphasis on flooded forest<br />

swamps. M.S. <strong>the</strong>sis, University <strong>of</strong> Massachusetts,<br />

Amherst. 90 pp.<br />

M~wre, l? D., and D. J. Beilarny. 1974. Batlands. Spr<strong>in</strong>ger-Verlag,<br />

N.Y. 221 pp.<br />

Rforrissey, D. J. 1987. Estimation <strong>of</strong> <strong>the</strong> recharge area<br />

contribut<strong>in</strong>g to a pumped well <strong>in</strong> a glacial-drift, rivervalley<br />

aquifer. RI. Dep. <strong>of</strong> Environ. Manage.-U.S.<br />

Geol. Surv. Open-File Rep. 86-543.M pp.<br />

Mott, W. S., and A. L. O'Brien. 1981. Geology and<br />

hydrology <strong>of</strong> wetimds iri &lllassacltusetts. Untiv. Mass.<br />

Wakr Resour. Res. Cent. Publ. 123. 147 pp.<br />

Mueller, A. J. 1974. Twenty years <strong>of</strong> change <strong>in</strong> open<br />

freshwater wetlands on <strong>the</strong> Massachusetts coastal<br />

pla<strong>in</strong>. M.S. <strong>the</strong>sis, University <strong>of</strong> Massachusetts, Amherst.<br />

fi4 pp.


Xew Hampshire Xatural Areas Program. l!dfi3. h e<br />

wetlmch plant llst. Office <strong>of</strong> StateMannxng, Corrcord.<br />

12 pp.<br />

Nichols, G. E. 1913. The vegetation <strong>of</strong> Conntrtrcut. 1.<br />

Phytogeographicd aspects. Torrcya 13.88- 101.<br />

Nichols, G. E. 1915, The vegetation <strong>of</strong> Go~mecticut: IY<br />

Plant societies <strong>in</strong> lowlnnds. Bull. Tomey ht. Club<br />

42:169-217.<br />

Nichols, G. E. 1916. The vegetat~on <strong>of</strong> Coxulectlcut: K<br />

Plant societies along rivers and strearna. Bull. l'orrey<br />

Bot. Glub 43:235 -26%.<br />

Nier<strong>in</strong>g, W. A. 1953. The past and present vegetation <strong>of</strong><br />

IEgh Fb<strong>in</strong>t State Wrk, New Jersey. &ol. Monogr.<br />

23127- 147.<br />

Nier<strong>in</strong>g, W. A. 1979. Our wetland heritage: historic,<br />

artistic, and future perspectives. Pages 505 - 522 <strong>in</strong> E<br />

E. Greeson, S. It. Clark, and J. E. Clark, editors.<br />

Wetland functions and values: <strong>the</strong> state <strong>of</strong> our t<strong>in</strong>derstand<strong>in</strong>g.<br />

American Water Resources Assoc<strong>in</strong>tion,<br />

M<strong>in</strong>neapolis, M<strong>in</strong>n.<br />

Nier<strong>in</strong>g, W. A. 1987. Vegetation dynanlics (succession<br />

and climax) <strong>in</strong> relation to plant coxrrmuriity managcment.<br />

Consem Biol. 1 :B7-295.<br />

Nier<strong>in</strong>g, W. A. 1988. IIydrology, disturbance, and vegetation<br />

change. Ehges 50-54 <strong>in</strong> J. A. Kusler, and 6.<br />

Brooh, editom. P-'rweed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> National Wetland<br />

Symposium: wetland hydrology. Assoc. State Wetland<br />

Manage. Tc:h. Kep. 6.<br />

Nier<strong>in</strong>g, W. A,, and R. K. Coodw<strong>in</strong>. 1x2.<br />

studies <strong>in</strong> <strong>the</strong> Connecticut Arboretum Natural Area.<br />

1. Introduction and survey <strong>of</strong> vegctation types. Erology<br />

4341-54.<br />

Nier<strong>in</strong>g, W A., and fi.1t-I. Goadw<strong>in</strong>. 1!365. 'Rie vegetation<br />

<strong>of</strong> <strong>the</strong> Conncqticut Arboretum. Conn. Arbor. Bull.<br />

15:4-16.<br />

Nixon, S. W., and V: Iae. 1986. Wetlands and water<br />

quality: a regional review <strong>of</strong> recent research <strong>in</strong> <strong>the</strong><br />

United Stat~s on <strong>the</strong> role <strong>of</strong> freshwater and saltwater<br />

wetlands as sources, slnks, and transformers <strong>of</strong> nitrogen,<br />

phosphonxs, and various heavy mrtiils. 17.3.<br />

b y Eng. Waterways Exp. Str~. Tech. fic.1). U-86-2<br />

2% PP.<br />

Novitzkl, R E? 1979a. An <strong>in</strong>troduction to Wl~corlair~ wetlands-planfs,<br />

hydrology, and soils. Unzversity <strong>of</strong><br />

Wiscons<strong>in</strong> Extension Geological arid Natural FGstnry<br />

Survey Publication. Madison. 19 pp.<br />

Novitzki, R. E 1979b. Hydrologic characteristics <strong>of</strong> WIScons<strong>in</strong>'s<br />

wetlands and <strong>the</strong>ir <strong>in</strong>fluence on floods,<br />

stream flow, and sediment. Pages 377- 388 En F? E.<br />

Greeson, f. R. Clark, and J. E. Clark, editors. Wetland<br />

&xf&iona aid VEI!UCSS: <strong>the</strong> state <strong>of</strong> ow undcrstsnrf<strong>in</strong>g.<br />

American Water Resources Association, M<strong>in</strong>neapolrs,<br />

Nnn.<br />

Novitzki, R F! 1982. Hydrology <strong>of</strong> Wiscons<strong>in</strong> wetlands.<br />

Univ. WjBc. Exten. Cml. Nat. Kist. Sw.<br />

Infonn, Cirr.<br />

40. 22 pp.<br />

0?3slen, A. L. 1977. Hydrology <strong>of</strong> two small wetland<br />

basm <strong>in</strong> eastenr hIassachusetts. Water Resour. Bull.<br />

13:325 ,340.<br />

O'Connor, S., and N. U. Cnole. 1989. EFeshwater wetlands<br />

<strong>in</strong>ventory data analysis. New York State Departn~ent<br />

<strong>of</strong> Envirunmerltal Conservation Division <strong>of</strong> Fish and<br />

Wildlife, Albany. 107 pp.<br />

mum, f.:.E 1971. Fundanierltals <strong>of</strong> ecology. W. 13. Saunders,<br />

Philadelphia, PR. 674 pp.<br />

Office <strong>of</strong> Technology Assessment. 1984. Wetlands: <strong>the</strong>ir<br />

use and regulation. U.S. Off. Technol. Assess. QTA-<br />

0-206.208 pp.<br />

Ogawa, EL, arldJ. W Male, Jr. 1983. The f l d nlitigation<br />

potential <strong>of</strong> iriland wetlands. Univ. Mass. Water Resour.<br />

Rcs. C~nt. Publ. 138. 164 pp.<br />

Organ, J. E 1953. F'alustr<strong>in</strong>e wetland dynamics <strong>in</strong> 15<br />

Massachusetts conmunities (1951-197m7). M.S.<br />

tlles~s, University <strong>of</strong> Massachusetts, Amherst.<br />

Osvald, I%. 1970. Vegetation and stratigraphy <strong>of</strong> patlands<br />

<strong>in</strong> North Axnerica. Nov. Act. Reg. ]Roy, Soc. Sci.<br />

(IJpsrtla) C. 1 : 1 -%.<br />

Ov<strong>in</strong>gton, J. I). IfKi.5. Organic production, turnover arid<br />

m<strong>in</strong>eral cychng <strong>in</strong> woodlands. Biol. Rev. 40:295-336.<br />

Ozbllgln, M. M. 1982. Modell<strong>in</strong>g <strong>of</strong> surface waterground<br />

water <strong>in</strong>teractions. Doctoral dissertation,<br />

University <strong>of</strong> Wlode Island, Kirlffsbri. 215 pp.<br />

E'aratley, K. I)., arid T. J. Fahey. 1986. Vegetation-environmerit<br />

relations <strong>in</strong> a conifer swamp <strong>in</strong> central New<br />

York. Bull. Tomy Bat. Club 113:357-371.<br />

Parkhurst, J. A. 1977, Freshwater wetland dynamics<br />

and related irnpacta on wildlife <strong>in</strong> South K<strong>in</strong>gstown,<br />

mode Island, 1939- 1972. M.S. <strong>the</strong>sis, University <strong>of</strong><br />

%ode Island, K<strong>in</strong>gston. 104 pp.<br />

Parsons, S. E., and S. Ware, 1982. Edaphic factors and<br />

vegctstion <strong>in</strong> Vlrg-lnia coastal pla<strong>in</strong> swamps. Bull.<br />

Torrey Bot. Club 109:365 370.<br />

Wterson, IZ. T, and M. McKenny. 1968. A field guide to<br />

wildlowers <strong>of</strong> nortfxeastern md north-central North<br />

America. Houghton Miffl<strong>in</strong>, Boston, Mass. 420 pp.<br />

Mtndes, G. A. 1972. A field guide to trees and shrubs.<br />

Houghton Mifflln, Boston, Mass. 428 pp.<br />

Phillips, J. E 1'371. Vascular plants and plant cornrnunities<br />

<strong>of</strong> Mercer Bog, Mercer County, Wnnsylvania.<br />

M.S. <strong>the</strong>sis, Sllppcry Hock University, Slippery Rock,<br />

W. fB pp.<br />

l'i~ipps, Et. L. 1979. Simulat~nn <strong>of</strong> wetlarxd forest vegetation<br />

dymarnics. F~ol. Modell. 7:W7 -28t3.<br />

I'icker<strong>in</strong>g, E. W, and I-! 1,. M. Veneman. 19%. Moxsture<br />

repmes and morpiiola~ca1 charactenstics <strong>in</strong> a hydrosequence<br />

In central Massachusetts. Soil Sci. Soc,<br />

Am. J. 48:113-118.<br />

fkrce, G. 2. 1981. The <strong>in</strong>3urfrcc <strong>of</strong> ad fnrqucncy en<br />

wetlands <strong>of</strong> <strong>the</strong> Allegheny River floodpla<strong>in</strong> <strong>in</strong> Cattaraugus<br />

CO., New Yurk. Wetlar~ctY 1:87-104.<br />

Porter, 13. W. 1981. Tile wetland edge as a comnnunity<br />

and ~ts value to w~ldlife. Pages 15-25 <strong>in</strong> B. Richardson,<br />

e&i~r. Selected prmeedr~igs <strong>of</strong> <strong>the</strong> Midwest Con-


ference on Wetland Values and Management. Freshwater<br />

Society, Navarre, M<strong>in</strong>n.<br />

Portnoy, J. W., and W. E. Dodge. 1979. <strong>Red</strong>-shouldered<br />

hawk nest<strong>in</strong>g ecology and behavior. Wilson Bull.<br />

91:104-117.<br />

Powell, D. S., and D. R. Dickson. 1984. Forest statistics<br />

for Ma<strong>in</strong>e-1971 and 1982. U.S. For. Serv. Nor<strong>the</strong>ast.<br />

For. Exp. Stn. Resour. Bull. NE-81. 194 pp.<br />

Pr<strong>of</strong>ous, G. V, and R. E. Loeb. 1984. Vegetation and plant<br />

communities <strong>of</strong> Van Cortlandt Park, Bronx, New<br />

York. Bull. Torrey Bot. Club 111:80-89.<br />

Raw<strong>in</strong>ski, 'I! J. 1984. Natural community description<br />

abstract: sou<strong>the</strong>rn New England calcareous seepage<br />

swamp. Eastern Regional Office, The Nature Conservancy,<br />

Boston, Mass. 5 pp.<br />

Reed, EB., Jr. 1968. Prelim<strong>in</strong>arystudy <strong>of</strong> a green-timber<br />

impoundment. M.S. <strong>the</strong>sis, Cornell University, Ithaca,<br />

N.Y. 66 pp.<br />

Reed, E B., Jr. 1988. National list <strong>of</strong> plant species that<br />

occur <strong>in</strong> wetlands: Nor<strong>the</strong>ast (Region 1). U.S. Fish<br />

Wildl. Serv. Biol. Rep. 88t26.1). 111 pp.<br />

Reschke, C. 1990. Ecological communities <strong>of</strong> New York<br />

State. New York Department <strong>of</strong> Environmental Conservation<br />

Natural Heritage Program, Latham.<br />

96 PP.<br />

Reynolds, E E., K. G. Carlson, 'I! W. Fromrn, K. A.<br />

Gigliello, and R. J. Kam<strong>in</strong>ski. 1978. Phytosociology,<br />

biomass, productivity, aild nutrient budget for <strong>the</strong><br />

tree stratum <strong>of</strong> a sou<strong>the</strong>rn New Jersey hardwood<br />

swamp. Pages 123-139 <strong>in</strong> E E. Pope, editor. Proceed<strong>in</strong>gs<br />

<strong>of</strong> <strong>the</strong> Central Hardwood Forest Conference II.<br />

Purdue University Press, Lafayette, Ind.<br />

Reynolds, E E., W. R. Parrott, Jr., K. G. Carlson, and T<br />

W. Fromrn. 1982. Computer mapp<strong>in</strong>g <strong>of</strong> forest vegetation<br />

for three differ<strong>in</strong>g sou<strong>the</strong>rn New Jersey swamp<br />

forests. Pages 746-757 <strong>in</strong> 'I! B. Brann, L. 0. House,<br />

IV; and H. G. Lund, editors. Proceed<strong>in</strong>gs <strong>of</strong> In-place<br />

Resource Inventories: F'r<strong>in</strong>ciples and Practices. Society<br />

<strong>of</strong> American Foresters, Wash<strong>in</strong>gton, D.C.<br />

Richardson, El., editor. 1981. Selected proceed<strong>in</strong>gs <strong>of</strong><br />

<strong>the</strong> Midwest Conference on Wetland Values and<br />

Management. Freshwater Society, Navarre, M<strong>in</strong>n.<br />

PP,<br />

Richardson, C. J., D. L. Tilton, J. A. Kadlec, J. Ef M.<br />

Chamie, and W. A. Wentz. 1978. Nut.rient dynamics<br />

<strong>of</strong> nor<strong>the</strong>rn wetland ecosystems. Pages 217-241 <strong>in</strong><br />

R. E. Good, D. E Whigham, and R. L. Simpson,<br />

ed~tors. Freshwater wetlands: ecological processes<br />

and management potential. Academic Press, New<br />

York.<br />

Riex<strong>in</strong>ger, l? 1986. New York's freshwater wetlands classif<br />

cation system, Pages 235-238 <strong>in</strong> J. A. Kusler and<br />

PRiex<strong>in</strong>ger, editors. F'roceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> National Wet-<br />

Ian& Assessment Symposium. Assoc. State Wetland<br />

Manage. Tech. Rep. 1.<br />

R<strong>in</strong>gelman, J. K., and J. R. Longcore. 1982. Movements<br />

and wetland selection by bmd-rear<strong>in</strong>g black ducks.<br />

J. Wildl. Manage. 46515-621.<br />

R<strong>in</strong>gelman, J. K., J. R. Longcore, and R B. Owen, Jr.<br />

1982. Breed<strong>in</strong>g habitat selection and home range <strong>of</strong><br />

radio-marked black ducks ( Am rubripes) <strong>in</strong> Ma<strong>in</strong>e.<br />

Can. J. Zool. 60:241-248.<br />

Ruckwell, H. W. 1970. Importance <strong>of</strong> wetlands as a<br />

natural resource <strong>in</strong> <strong>the</strong> Connecticut River Valley <strong>in</strong><br />

Massachusetts. M.S. <strong>the</strong>sis, University <strong>of</strong> Massachusetts,<br />

Amherst. 85 pp.<br />

Roman, C. T, and R. E. hd. 1985. Buffer del<strong>in</strong>eation<br />

model for New Jersey p<strong>in</strong>elands wetlands. Center for<br />

Coastal Environmental Studies, Rutgers University,<br />

New Brunswick, N.J. 73 pp.<br />

Roman, 6. 'I!, and R. E. Good. 1986. Del<strong>in</strong>eat<strong>in</strong>g wetland<br />

buffer protection areas: <strong>the</strong> New Jersey p<strong>in</strong>elands<br />

model. Pages 224-230 <strong>in</strong> J. A. Kusler and P Riex<strong>in</strong>ger,<br />

editors. Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> National Wetlands Assessment<br />

Symposium. Assoc. State Wetland Manage.<br />

Tech. Rep. 1.<br />

Ruffner, J. A. 1985. Climates <strong>of</strong> <strong>the</strong> states. Vols. 1 and<br />

2. Gale Research Co., Detroit, Mich. 1,572 pp.<br />

Ryrnon, L. M. 1989. The importance <strong>of</strong> Pennsylvania's<br />

wetlands to raptors. Pages 195-204 <strong>in</strong> S. K. Majumdar,<br />

R. FI Brooks, E J. Brenner, and R. W. T<strong>in</strong>er, Jr.,<br />

editors. Wetlands ecology and conservation: emphasis<br />

<strong>in</strong> Pennsylvania. Pennsylvania Academy <strong>of</strong> Science,<br />

Philadelphia.<br />

Sampson, H. C. 1930. Succession <strong>in</strong> a swamp forest<br />

formation <strong>in</strong> nor<strong>the</strong>rn Ohio. Ohio J. Sci. 30:340-357.<br />

Satterlund, D. R. 1960. Some <strong>in</strong>terrelationships between<br />

ground water and swamp forests <strong>in</strong> <strong>the</strong><br />

western Upper Pen<strong>in</strong>sula <strong>of</strong> Michigan. Doctoral dissertation,<br />

University <strong>of</strong> Michigan, Ann Arbor.<br />

171 pp.<br />

Scott, M. L., W. L. Slauson, C. A. Segelquist, and G. T.<br />

Auble. 1989. Correspondence between vegetation<br />

and soils <strong>in</strong> wetlands and nearby uplands. Wetlands<br />

9:41-60.<br />

Seeley, G. M. 1954. Breed<strong>in</strong>g bird census no. 6: wet<br />

deciduous forest. Audubon Field Notes 8:366.<br />

Seeley, G. M. 1955. Breed<strong>in</strong>g bird census no. 3: wet<br />

deciduous forest. Audubon Field Notes 9:412-413.<br />

Seeley, 6. M. 1956. Breed<strong>in</strong>g bird census no. 3: wet<br />

deciduous forest. Audubon Field Notes 10:420.<br />

Seeley, G. M. 1957. Breed<strong>in</strong>g bird censuht no. 1: wet<br />

deciduous forest. Audubon Field Notes 11:436.<br />

Seeley, G. M. 1966. Breed<strong>in</strong>g bird census no. 2: wet<br />

deciduous forest. Audubon Field Notes 20:608.<br />

Shanks, R. E. 1966. An ecological survey <strong>of</strong> <strong>the</strong> vegetation<br />

<strong>of</strong> Monroe County, New York. Proc. Rochester<br />

Acad. Sci. 11:108-252.<br />

Slack, R. S., l? G. Kalka, V J. Lucid, and J. McMullen.<br />

1975. Breed<strong>in</strong>g bird census no. 3: red maple forest.<br />

Am. Birds 29: 1082-1083.<br />

Smardon, R. C. 1988. Aes<strong>the</strong>tic, recreational, landscape<br />

values <strong>of</strong> urban wetlands. Pages 92-96 <strong>in</strong> J,<br />

A. Kusler, S. Daly, and G. Brooks, editors. Proceed<strong>in</strong>gs<br />

<strong>of</strong> <strong>the</strong> National Wetland Symposium: Urban<br />

Wetlands. Association <strong>of</strong> Wetland Managers,<br />

Berne, N.Y.


Ren MAPLE SWAMR 137<br />

Smith, H. 1984. General soil map <strong>of</strong> <strong>the</strong> nor<strong>the</strong>astern<br />

unite$ States, In R L. Gun-ham, and E. J. Ciolkosz,<br />

editors. Soils <strong>of</strong> <strong>the</strong> nor<strong>the</strong>as- United Stabs-<br />

W. State Univ. Agric. Exp. Stn. Bull. 848.47 pp.<br />

Smith, K. G. 1977. Distribution <strong>of</strong> summer birds along<br />

a forest moisture gradient <strong>in</strong> an Ozark watershed.<br />

<strong>Ecology</strong> 58:810-819.<br />

Smith, 'I! R 1985. <strong>Ecology</strong> <strong>of</strong> black bears <strong>in</strong> a bottomland<br />

hardwood forest <strong>in</strong> Arkansas. Doctoral dissertation,<br />

University <strong>of</strong> Tennessee, Knoxville. 209 pp.<br />

Society <strong>of</strong> American Foresters. 1954. Forest cover types<br />

<strong>of</strong> North America (exclusive <strong>of</strong> Mexico). Society <strong>of</strong><br />

American Foresters, Wash<strong>in</strong>gton, D.C. 67 pp.<br />

Soil Survey Staff. 11990. Keys to soil taxonomy. U.S. Dep.<br />

Agric. Soil Manage. Support Sew. Tech. Monogr. 6.<br />

4,422 PP.<br />

Sokoloski, T E. 1989. Soil and hydrological properties <strong>of</strong><br />

wetland transition zones <strong>in</strong> stratified glacial deposits.<br />

M.S. <strong>the</strong>sis, University <strong>of</strong> Rhode Island, K<strong>in</strong>gston.<br />

121 pp.<br />

Sokoloski, 'I! E., E C. Golet, W. R. Wright, A. J. Gold, and<br />

A. E Davis. 1988. Soil properties <strong>in</strong> <strong>the</strong> transition<br />

zone <strong>of</strong> Rhode Island red maple swamps. Draft f<strong>in</strong>al<br />

report. U.S. Army Eng<strong>in</strong>eer Waterways Experiment<br />

Station, Vicksburg, Miss. 55 pp. + appendix.<br />

Sollem, S. C. 1973. Substrate conditions, community<br />

structure, and succession <strong>in</strong> a portion <strong>of</strong> <strong>the</strong> floodpla<strong>in</strong><br />

<strong>of</strong> Wissahickon Creek, Pennsylvania. Bartonia<br />

42:24-42.<br />

Speiser, R, and 'l! Bosakowski. 1987. Nest site selection<br />

by nor<strong>the</strong>rn goshawks <strong>in</strong> nor<strong>the</strong>rn New Jersey and<br />

sou<strong>the</strong>astern New York. Condor 89:387-394.<br />

Spurr, S. H. 1956. Forest associations <strong>in</strong> <strong>the</strong> Harvard<br />

Forest. Ecol. Monogr. 26:245-262.<br />

Stanton, ET B. 1965. An evaluation <strong>of</strong> waterfowl utilization<br />

on three age classes <strong>of</strong> beaver impoundments<br />

with emphasis on <strong>the</strong> black duck (Anas rubripes).<br />

M.S. <strong>the</strong>sis, University <strong>of</strong> Massachusetts, Amherst.<br />

112 pp.<br />

Stewart, E A., and M? D. Merrell. 1937. The Bergen<br />

Swamp: an ecological study. Proc. Rochester Acad.<br />

Sci. 8:209-262.<br />

Swift, B. L. 1980. Breed<strong>in</strong>g bird habitats <strong>in</strong> forested<br />

wetlands <strong>of</strong> west-central Massachusetts. M.S. <strong>the</strong>sis,<br />

University <strong>of</strong> Massachusetts, Amherst. 90 pp.<br />

Swift, B. L, J. S. Larson, and R. M. DeGraaf. 1984.<br />

Relationships <strong>of</strong> breed<strong>in</strong>g bird density and diversity<br />

to habitat variables <strong>in</strong> forested wetlands. Wilson<br />

Bull. 96:48-59.<br />

Taylor, G. W. 1984. Breed<strong>in</strong>g bird census no. 3: red maple<br />

swamp. Am. Birds 38:69.<br />

Teskey, R. O., and 'I! M. hckley. 1977. Impact <strong>of</strong> water<br />

level changes on woody riparian and wetland CO-Unities.<br />

Val. 1. Plant and soil responses. U.S. Fish<br />

Wildl. Sew. Biol. Serv. Program FWS-OBS 78/58.<br />

30 PP.<br />

Teskey, R O., and T.M. H<strong>in</strong>ckley. 1978a. Impad <strong>of</strong> water<br />

level changes on woody riparian and wetland CO-U-<br />

nities. Vol. 4. Eastern deciduous forest region. U.S.<br />

Fish Wildl. Serv. Biol. Serv. Program FWS-OBS<br />

78/87. 54 pp.<br />

Teskey, R. O., and 'I! M. PF<strong>in</strong>cMey. 1978b. Impact <strong>of</strong><br />

water level changes on woody riparian and wetland<br />

communities. Vol. 5. Nor<strong>the</strong>rn forest region. U.S.<br />

Fish Wildl. Serv. Biol. Serv. Program FWS-OBS<br />

7w.54 PP.<br />

Theriot, R. E 1988. Flood tolerance <strong>in</strong>dices for palustr<strong>in</strong>e<br />

forest species. Pages 477-488 <strong>in</strong> D. D. Hook, W. H.<br />

McKee, Jr., H. K. Smith, J. Gregory, K G. Burrell, Jr.,<br />

M. R. DeVoe, R. E. Sojka, S. Gilbert, R Banks, L. H.<br />

Stolzy, C. Brooks, 'I! D. Mat<strong>the</strong>ws, and 'I! H. Shear,<br />

editors. The ecology and management <strong>of</strong> wetlands.<br />

Vol. 1. <strong>Ecology</strong> <strong>of</strong> wetlands. Timber Press, Portland,<br />

ow3.<br />

Thompson, D. A,, and A. H. Williams-Dawe. 1988. Key<br />

404 program issues <strong>in</strong> wetland mitigation. Wges<br />

49-52 <strong>in</strong> J. A. Kusler, M. L. Quammen, and G. Brooks,<br />

editors. Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> National Wetlands Symposium:<br />

mitigation impacts and losses. Assoc. State<br />

Wetland Manage. Tech. Rep. 3.<br />

Thompson, D. Q., F? B. Reed, Jr., G. E. Cumm<strong>in</strong>gs, and<br />

E. Kivisalu. 1968. Muck hardwoods as green-timber<br />

impoundments for waterfowl. Trans. N. Am. Wildl.<br />

Nat. Resour. Conf. 33: 142- 159.<br />

Thompson, E. 1988. Natural communities <strong>of</strong> Vermont.<br />

Vermont Natural Heritage Program, Agency for<br />

Natural Resources, Waterbury. 11 pp.<br />

Tilton, D. L., J. A. Kadlec, and C. J. Richardson, editors.<br />

1976. Freshwater wetlands and sewage effluent disposal.<br />

University <strong>of</strong> Michigan, Ann Arbor.<br />

T<strong>in</strong>er, R. W., Jr. 1984. Wetlands <strong>of</strong> <strong>the</strong> United States:<br />

current status and recent trends. U.S. Fish and Wildlife<br />

Service National Wetlands Inventory, Waah<strong>in</strong>gton,<br />

D.C. 59 pp.<br />

T<strong>in</strong>er, R. W., Jr. 1985. Wetlands <strong>of</strong> New Jersey. U.S. Fish<br />

and Wildlife Service National Wetlands Inventory,<br />

Newton Corner, Mass. 117 pp.<br />

T<strong>in</strong>er, R W, Jr. 1988. Agricultural impacts on wetlands <strong>in</strong><br />

<strong>the</strong> nor<strong>the</strong>astern United States. Pages 9-14 <strong>in</strong> E? J.<br />

Stuber, technical coord<strong>in</strong>ator. Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> National<br />

Symposium on Protection <strong>of</strong> Wetlands from<br />

Agmcultmal Impacts. U.S. Fish Wildl. Serv. Biol. Rep.<br />

88(16).<br />

T<strong>in</strong>er, R. K, Jr. 1989a. Current status and recent trends<br />

<strong>in</strong> Pennsylvania's wetlands. Pages 368-378 <strong>in</strong> S. K.<br />

Majumdar, R F? Brooks, E J. Bremer, and R. W. T<strong>in</strong>er,<br />

Jr., editors. Wetlands ecology and conservation: ernphasis<br />

<strong>in</strong> Pennsylvania. Pennsylvania Academy <strong>of</strong><br />

Science, Philadelphia.<br />

T<strong>in</strong>er, R. W., Jr. 1989b. Wetlands <strong>of</strong> Rhode Island. U.S.<br />

Fish and Wildlife Service National Wetlands Inventory,<br />

Newton Corner, Mass. 70 pp. + appendixes.<br />

T<strong>in</strong>er, R. W., Jr., and J. T Fim. 19%. Status and recent<br />

trends <strong>of</strong> wetlands <strong>in</strong> five mid-Atlantic states: Delaware,<br />

Maryland, Pennsylvania, Virg<strong>in</strong>ia, and West<br />

Virg<strong>in</strong>ia. U.S. Fish and Wildlife Service National<br />

Wetlands Inventory Project, Newton Corner, Mass.,


and U.S. Environmental Protection Agency, Philadelphia,<br />

Pa. 40 pp.<br />

T<strong>in</strong>er, R W, Jr., J. Stone, and J. Gook<strong>in</strong>. 1989. Current<br />

status and recent trends <strong>in</strong> wetlands <strong>of</strong> central Connecticut.<br />

U.S. Fish and Wildlife Service National<br />

Wetlands Inventory, Newton Corner, Mass. 9 pp.<br />

T<strong>in</strong>er, R. W., Jr., and l? L. M. Veneman. 1987. Hydric soils<br />

<strong>of</strong> New England. Univ. Mass. Coop. Exten. Bull. C-<br />

183.27 pp.<br />

T<strong>in</strong>er, R. W., Jr., and W. Z<strong>in</strong>ni, Jr. 1988. Recent wetland<br />

trends <strong>in</strong> sou<strong>the</strong>astern Massachusetts. U.S. Fish and<br />

Wildlife Service, National Wetlands Inventory, Newton<br />

Corner, Mass. 9 pp.<br />

Tourney, J. W. 1926. Initial root habitat <strong>in</strong> American<br />

trees and its bear<strong>in</strong>g on regeneration. Proc. Int. Cong.<br />

Plant Sci. 1:713-728.<br />

Tramer, E. J. 1969. Bird species diversity: components<br />

<strong>of</strong> Shannon's formula. <strong>Ecology</strong> 50:927-929.<br />

U.S. Anny Corps <strong>of</strong> Eng<strong>in</strong>eers. 1972. Charles River<br />

watershed, Massachusetts. U.S. Army Corps <strong>of</strong> Eng<strong>in</strong>eers,<br />

Waltham, Mass. 65 pp.<br />

U.S. Soil Conservation Service. 1982. National list<br />

<strong>of</strong> scientific plant names. Vol. 1. List <strong>of</strong> plant<br />

names. Vol. 2. Synonymy. U.S. Dep. Agric. Soil<br />

Cons. Serv. SCS-TP-159. Vol. 1: 416 pp., Vol. 2:<br />

438 pp.<br />

U.S. Soil Conservation Service. 1987. Hydric soils <strong>of</strong><br />

<strong>the</strong> United States. U.S. Department <strong>of</strong> Agriculture<br />

Soil Conservation Service, Wash<strong>in</strong>gton, D.C. (not<br />

pag<strong>in</strong>ated)<br />

U.S. Soil Conservation Service. 1991. Hydric soils <strong>of</strong> <strong>the</strong><br />

United States. U.S. Department <strong>of</strong> Agriculture Soil<br />

Conservation Service, Wash<strong>in</strong>gton, D.C. (not pag<strong>in</strong>ated)<br />

van der Valk, A. 6. 1981. Succession <strong>in</strong> wetlands: a<br />

Gleasonian approach. <strong>Ecology</strong> 62:688-696.<br />

van der Valk, A. G., C. B. Davis, J. L. Baker, and C. E.<br />

Beer. 1979. Natural freshwater wetlands as nitrogen<br />

and phosphorus traps for land run<strong>of</strong>f. Pages 457-467<br />

<strong>in</strong> E E. Greeson, J. R. Clark, and J. E. Clark, editors.<br />

Wetland functions and values: <strong>the</strong> state <strong>of</strong> ourunderstand<strong>in</strong>g.<br />

American Water Resources Association,<br />

M<strong>in</strong>neapolis, M<strong>in</strong>n.<br />

Van Dersal, W, R. 1933. An ecological study <strong>of</strong> Pymatun<strong>in</strong>g<br />

S~amp. Doctoral dissertation, University <strong>of</strong><br />

Pittsburgh, Pittsburgh, Pa. 154 pp.<br />

Veneman, l? L. M., M. J. Vepraskas, and J. Bouma.<br />

1976. The physical significance <strong>of</strong> soil mottl<strong>in</strong>g <strong>in</strong><br />

a Wiscons<strong>in</strong> toposequence. Geoderma 15:103-118.<br />

Vogelmann, H. W 1976. An unusual black gum swamp<br />

<strong>in</strong> Ma<strong>in</strong>e. Rhodora 78:326-327.<br />

Vosburgh, R. R 1979. Response <strong>of</strong> wetland maplee Lo a<br />

chang<strong>in</strong>g hydrologic regime. M.S. <strong>the</strong>sis, University<br />

<strong>of</strong> Massachusetts, Amherst. 102 pp.<br />

Wanner, R., Jr. 1979. Wetlands <strong>in</strong> Vermont, <strong>the</strong>ir identification<br />

and protection. Vermont Natural Resources<br />

Council and Vermont Agency <strong>of</strong> Environment. Conservation,<br />

Waterbury. 71 pp.<br />

White, D. C. 1985. Lowland hardwood wetland <strong>in</strong>vertebrate<br />

community and production <strong>in</strong> Missouri. Arch.<br />

Hydrobiol. 103:509-533.<br />

Whittaker, R EL 1953. A consideration <strong>of</strong> climax <strong>the</strong>ory:<br />

<strong>the</strong> climax as a population and pattern. Ecol. Monogr.<br />

2341-78.<br />

Whittaker, R. H., E H. Bormann, G. E. Likens, and 'I!<br />

G. Siccama. 1974. The Hubbard Brook ecosystem<br />

study: forest biomass and production. Ecol. Monogr.<br />

44:233-254.<br />

Wid<strong>of</strong>f, L. 1988. Ma<strong>in</strong>e wetlands conservation priority<br />

plan. Ma<strong>in</strong>e Bureau <strong>of</strong> Parks and Recreation State<br />

Plann<strong>in</strong>g Augusta. 91 pp. + appendix.<br />

Wigg<strong>in</strong>s, G. B., R J. Mackay, and I. M. Smith. 1980.<br />

Evolutionary and ecological strategies <strong>of</strong> animals <strong>in</strong><br />

annual temporary pools. Arch. Hydrobiol. Suppl.<br />

58:97-206.<br />

Willoughby, L. G. 1974. Decomposition <strong>of</strong> litter <strong>in</strong> fresh<br />

water. Pages 659-681 <strong>in</strong> C. H. Dickson and G. J. E<br />

Pugh, editors. Biology <strong>of</strong> plant litter decomposition.<br />

Academic bss, New York.<br />

W<strong>in</strong>ger, I? 1986. Forested wetlands <strong>of</strong> <strong>the</strong> Sou<strong>the</strong>ast:<br />

review <strong>of</strong> major characteristics and role <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<br />

water quality. U.S. Fish Wild. Serv, Resour.<br />

Publ. 163. 16 pp.<br />

Wistendahl, W. A. 1958. The flood pla<strong>in</strong> <strong>of</strong> <strong>the</strong> Raritan<br />

River, New Jersey. Ecol. Monogr. 28:129-151.<br />

Woo, M., and J. Valverde. 1981. Summer streadow and<br />

water level <strong>in</strong> a midlatitude forested swamp. For. Sci.<br />

27: 177-189.<br />

Wright, K. E. 1941. The Great Swamp. Torreya<br />

41:145-150.<br />

Wright, Vi! R, and E. H. Sautter. 1979. Soils <strong>of</strong> Rhode<br />

Island landscapes. R.I. Agric. Exp. Stn. Bull. 429.<br />

42 PP.<br />

Yaeger, L. E. 1949. Effect <strong>of</strong> permanent flood<strong>in</strong>g <strong>in</strong> a<br />

river-bottom timber area. Ill. Nat. Hist. Surv. Bull.<br />

25:33-65.<br />

Zobeck, T M., and A. Ritchie, Jr. 19%. Analysis <strong>of</strong><br />

long-term water table depth records from a hydrosequence<br />

<strong>of</strong> soils <strong>in</strong> central Ohio. Soil Sci. Soc. Am. J.<br />

48:119- 125.


Appendix A. Sources <strong>of</strong> Floristic Data for<br />

Nor<strong>the</strong>aste <strong>Red</strong> <strong>Maple</strong><br />

Zone I: Sou<strong>the</strong>rn New England Upland, Sea- T<strong>in</strong>er (1985,1989b)<br />

lboard Lowland, and Coastal Pla<strong>in</strong> Vogelmann (1976)<br />

Wistendahl(1958)<br />

Wright (1941)<br />

Anderson et al. (1980)<br />

Baldw<strong>in</strong> (1961)<br />

Braiewa (1983)<br />

Buell and Wistendahl(1955)<br />

Ca<strong>in</strong> and Penfound (1938)<br />

&nard (1935)<br />

Damxnan and Kershner (1977)<br />

Davis (1988)<br />

Davis, R. B. (University <strong>of</strong> Ma<strong>in</strong>e, Orono,<br />

unpublished data)<br />

Deland (1986)<br />

Egler and Nier<strong>in</strong>g (1967)<br />

Fosberg and Blunt (1970)<br />

Goodw<strong>in</strong> and Nier<strong>in</strong>g (1975)<br />

Grace (1972)<br />

Greller (1977)<br />

Hale (1965)<br />

Hanks (1985)<br />

Harper (191 7)<br />

Holland and Burk (1984)<br />

Hunter, M. L., and J. Witham (University <strong>of</strong><br />

Ma<strong>in</strong>e Holt Research Forest, Aroosik, unpublished<br />

data)<br />

Kershner (1975)<br />

Laundre (1980)<br />

hwry (1984)<br />

Messier (1980)<br />

Metzler (1982)<br />

Metzler and T<strong>in</strong>er (1992)<br />

Moore (1959)<br />

National Wetlands Inventory Field Data (US.<br />

Fish and Wildlife Service, Newton Corner,<br />

Mass.)<br />

Nichols (1915, 1916)<br />

Nier<strong>in</strong>g (1953)<br />

Nier<strong>in</strong>g and Goodw<strong>in</strong> (1962,1965)<br />

Nowell, H. (New Hampshire Fish and Game Department,<br />

Concord, personal cornmurmieatioi~)<br />

Osvald (1970)<br />

F'r<strong>of</strong>ous and Loeb (1984)<br />

Sorrie, B. A. (Massachusetts Natural Heritage<br />

Program, Boston, personal communication)<br />

Swift (lW)<br />

Zone 11: Great Lakes and <strong>Glaciated</strong> Allegheny<br />

Plateau<br />

Bray (1915)<br />

Brooks et al. (1987)<br />

Brooks and T<strong>in</strong>er (1989)<br />

Coward<strong>in</strong> (1965)<br />

Golet (1969)<br />

Goodw<strong>in</strong> (1942)<br />

Huenneke (1982)<br />

Malecki et al. (1983)<br />

McVaugh (1958)<br />

National Wetlands Inventory Field Data (U.S.<br />

Fish and Wildlife Service, Newton Corner,<br />

Mass.)<br />

Paratley and Fahey (1986)<br />

Phillips (1971)<br />

Reschke (1990)<br />

Reed (1968)<br />

Shanks (1966)<br />

Stewart and Merrell(1937)<br />

Thompson et al. (1968)<br />

Van Dersal(1933)<br />

Zone III: St. Lawrence Valley and Lake<br />

Champla<strong>in</strong> Bas<strong>in</strong><br />

Bray (1915)<br />

Goodw<strong>in</strong> and Nier<strong>in</strong>g (1975)<br />

Marshdl, E. (Vermont Natural Heritage Program,<br />

Burl<strong>in</strong>gton, personal communication)<br />

National Wetlands Inventory Field Data (US.<br />

Fish and Wildlife Service, Newton Corner,<br />

Mass.)<br />

Thonlpson (1988)<br />

Thompson, E. (Vermont Natural Heritage Program,<br />

Burl<strong>in</strong>gton, persond ccornmrmication)<br />

Vogeimann, H. W. (University <strong>of</strong> Vermont,<br />

Burl<strong>in</strong>gton, personal comm.unication)<br />

Vosburgh (1979)<br />

Zone IV: Nor<strong>the</strong>astern Mounta<strong>in</strong>s<br />

DeGraaf and Rudis (I 990)


National Wetlands Inventory Field Data (U.S.<br />

Fish and Wildlife Service, Newton Corner,<br />

Mass.)<br />

Calcareous Seepage <strong>Swamps</strong><br />

McVaugh (1958)<br />

Metzler (1982)<br />

Metzler and T<strong>in</strong>er (1992)<br />

New Hampshire Natural Areas Program (1983)<br />

]Ra+ki (19&a)<br />

Reschke (1990)<br />

The Nature Conservancy (Eastern Regional<br />

Office, Boston, unpublished data)<br />

Thompson, E. (Vermont Natural Heritage<br />

Program, Burl<strong>in</strong>gton, personal communication)<br />

Sonrie, B. A. (Massachusetts Natural Heritage<br />

Program, Boston, personal coxnmunication)


Appendix B. Plants <strong>of</strong> Special Conce<br />

Have Been Observed <strong>in</strong><br />

Nor<strong>the</strong>aste <strong>Red</strong> <strong>Maple</strong><br />

stateb and conservation statusC<br />

d<br />

Species<br />

Ma<strong>in</strong>e N.H. Vt. Mass. RI. Con.. N.Y. Pa. N.J.<br />

'I'rmS<br />

Abies balsanea<br />

Betula papyrifem<br />

Carya cordiformis<br />

Carp lac<strong>in</strong>iosa<br />

Chamaayparis thyoh<br />

Fmr<strong>in</strong>w nigra<br />

Lark laric<strong>in</strong>a<br />

Liquidambar stymcifluu<br />

Liriociendron tulipifem<br />

Magnolia vig<strong>in</strong>iunu<br />

Nyssa sylvatk<br />

Quercus m<strong>in</strong>ea<br />

Quem im bricaria<br />

Quercus macrocarpa<br />

Sassafrms albidum<br />

Thuja midentalis<br />

Ulmus rubm<br />

Erect shrub and woody v<strong>in</strong>es<br />

Acer pensylvanicum<br />

S1<br />

Acer spicatum S 1<br />

Betula pumila SW4 S1 S 1 S2 S2 S2<br />

Celastnrs sandem<br />

S1<br />

Celtis midentalis<br />

S2<br />

Clethm alnifoliu S 1<br />

Ilex glabm S 1 S1<br />

Ilex laevigata<br />

S2<br />

Kalmia latifoliu =3434<br />

Ledum pnlandicum<br />

SyS2<br />

Larcothoe mcemosa<br />

L<strong>in</strong>dem benzo<strong>in</strong> 52<br />

Lonicem diolw S1 S I<br />

Lyonia ligustr<strong>in</strong>a<br />

Menispermum anudeme<br />

Myrica gale<br />

htentilla fruticosa<br />

Rhumnus alnifolia


Appendix B. ~ont<strong>in</strong>ued<br />

- - -- - -- -- -- ..--- - -- -<br />

.- - -- -- --<br />

stateb and conservation statueC<br />

d<br />

Swcies<br />

Ma<strong>in</strong>e N.H. Yt. Mass. RI. Conn. N.Y. ]Pa. N.J.<br />

Rhododendron canadme<br />

Rhododendron maximum<br />

R!toabdendmn periclymemides<br />

R-ndmn viscosum<br />

Ribes hirtellum<br />

Ribes k t r e<br />

Ribs triste<br />

Rosa viry<strong>in</strong>iana<br />

Staphylea trifnlia<br />

~xus canadensis<br />

Vt<strong>in</strong>iurn myrtilloides<br />

Viburnum 1antanoidt.s<br />

Vibuntu~~z triio bu rr~<br />

Zantho.qlurn arnerknunz<br />

Fbrne, ciubmo~sas, and horsetails<br />

Equiseturn fluviatile<br />

S1<br />

IJympdiun~ mmplanatunt S1 SH<br />

IJy~diurn pctlrnaturn SH S1 S3 S2 S2 S 1 S2 S2<br />

Matt~u~ict struti~wpterk<br />

S2<br />

I;l')lclypteris simulatu<br />

S1<br />

WootJcvarclia nmwhtn SX S1<br />

WaczcEtuad<strong>in</strong> oirgirt~~n: S 1<br />

I"ar&1 and trail<strong>in</strong>g shrubs<br />

Actam mbm<br />

Aneraom mrtader~sk<br />

Anpr~lrm ntmpurpum<br />

Aster divar.iroi;lus<br />

Aster macrophyllw<br />

Aster mvi-bc?lyzi<br />

Aster pmrmn.tho&s<br />

Bartonk virg<strong>in</strong>&


Appendix B. Cont<strong>in</strong>ued<br />

Species d<br />

Cardam<strong>in</strong>e bulbsa<br />

Cardam<strong>in</strong>e piatensis var. plu<br />

Ma<strong>in</strong>e N.H.<br />

-<br />

s 1<br />

S 1<br />

Chimuphila muculuta<br />

Cirwea alp<strong>in</strong>a<br />

Cirsium muticum<br />

Chytoniu virg<strong>in</strong>ica<br />

Coniosel<strong>in</strong>um ch<strong>in</strong>ense<br />

Comllorhiuz trifida<br />

Cornus anadensis<br />

Cypripedium calceolw<br />

var. prviflorum<br />

Cypripedium reg<strong>in</strong>ae<br />

Epilobium leptophyllum<br />

Epilobium palustre<br />

Eupatoriadelphus dubius<br />

GaLm rivale<br />

Hydmphyllum cvrnadense<br />

Hydmphyllum virg<strong>in</strong>ianum<br />

Hypericum denticulatum<br />

Impatiens pallidQ<br />

Lilium anadense<br />

Lilium philadelphicum<br />

Lilium superburn<br />

Liparis helii<br />

Lobelia siphilitica<br />

Lympus rubellus<br />

Lympus virg<strong>in</strong>icus<br />

Lysimachia thyrsiflom<br />

Malaxis monophyllw<br />

Malaxis monophylLw<br />

var. bmcchypoda<br />

Mikaniu sandem<br />

Mitella nuda<br />

Monarda didyma<br />

Micularis lanceoluta<br />

Penthorum sedoides<br />

Fkltan$m virg<strong>in</strong>ica<br />

Petasites palmutus<br />

Platan<strong>the</strong>m gmndiflom<br />

Platan<strong>the</strong>m psy&<br />

Rhphyllum peltutum<br />

Prman<strong>the</strong>s trifoliuta<br />

Pymla asarifoliu<br />

Rudbeckiu lac<strong>in</strong>iata<br />

Sangu<strong>in</strong>aI.ia cmmdensis<br />

Saururw cenuus<br />

Sarifmsa pensylvank<br />

Solidago ptula<br />

Sphenopholis pensylvanica<br />

Streptopus amplexifolius<br />

- -<br />

stateb and conservation -- - statusC<br />

Vt. Mass. R.I. Conn. N.Y.<br />

----- - - -- - -- -<br />

SH<br />

52<br />

S2<br />

S2<br />

S3<br />

S1 S2 SX<br />

S3<br />

SVS4<br />

s1 S 1<br />

Pa.<br />

N.J.


Appendix B. Cont<strong>in</strong>ued<br />

-- ..-......... -.<br />

~<br />

.- -. --<br />

-- - - ---- Stateb -- and conservation statuse<br />

Ma<strong>in</strong>e N.H. Vt. Mass. RI. Corn. N.Y. Pa. N.J.<br />

Streptopus roseus<br />

Tiarella cordifolia<br />

Trillium cernuum<br />

Trillium erectum<br />

Trillium grandiflorum<br />

Trollius laxus<br />

Vwla brittoniana<br />

Viola <strong>in</strong>cognita<br />

Zizea a um<br />

R r<br />

rhe plant species <strong>in</strong> this table have been observed <strong>in</strong> red rriaple swamps somewhere <strong>in</strong> <strong>the</strong> glaciated Nor<strong>the</strong>ast (see Table 34,<br />

and have been given special status by at least one nor<strong>the</strong>astern state. None <strong>of</strong> <strong>the</strong>se species is restricted to red maple swamps,<br />

and many are more corrlrnon <strong>in</strong> otl~er habitats. Several subspecies or varieties <strong>of</strong> species listed <strong>in</strong> Table 3.3 are listed by various<br />

states, but only those that Ilavc been reported from red maple swamps are <strong>in</strong> this nppendix.<br />

sources for each state are:<br />

Ma<strong>in</strong>e-Ma<strong>in</strong>e Nat~lral IIeritRge Program, Topsham, October 1989.<br />

N.H.-New 11a111pshire Natrlral IIeritage Inventory, Concord, July 1989.<br />

Vt.-Vennont Nongatne and Natt~raI fieritage Program, Waterbury, February 1990.<br />

Mass.-Mnssacl~uset Natural 1Ierit.age L'rojp-am, Rosto~~, May 1989.<br />

R.1.-Ithode Island Natural Ileritsgc :t:'rogram, I'rovidence, March 100.<br />

Cann.-xonnecticut Nat,r~r~I Diversity Ihta I3ase, IIartford, July 100.<br />

N.Y.-New York Nat,llral ITeritage Program, Lnthtlrn (Clemants 1989).<br />

W.-F'ennsylvnnia Natural Diversity Inventory, IIarrisburg, July 1W).<br />

Nd.-New Jersey Natural IIcritagt: r'rograrn, l'renton, Novernber 1989.<br />

"Codes for stRt.~~s are 11s follows; detailed def<strong>in</strong>itions may be obta<strong>in</strong>ed from <strong>the</strong> above sources: S1--critically endangered,<br />

SZ-cndangered, 83-t.hreat.ened, 34-npprrrent,ly secure, SE-cxotic, SII-historically occurred, SU-status uncerta<strong>in</strong>,<br />

SX--npparently extiq)at,eci,<br />

d~rrxonomy accorct<strong>in</strong>g to tlie Nutioncrl List <strong>of</strong> Sc:ienl,ific Plant Nnrrres (lJ.S. Soil Conservation Service 1982). Common names are<br />

given <strong>in</strong> '!'able 3.3.


Appendix C. Vertebrates That Have Been<br />

Observed <strong>in</strong> Nor<strong>the</strong>aste<br />

<strong>Red</strong> <strong>Maple</strong> Sw<br />

Taxonomy <strong>of</strong> amphibians and reptiles accord<strong>in</strong>g to Coll<strong>in</strong>s (1990), birds accord<strong>in</strong>g to AOU (1983), and<br />

mammals accord<strong>in</strong>g to Jones et al. (1986).<br />

Amphibians<br />

American toad ........................................... Bufo americanus<br />

Blue-spotted salamander ..................................... Ambystoma latern&<br />

Bullbg ............................................... Rana mtesbeiam<br />

Dusky salamander ....................................... Desmognathus fb-<br />

Eastern newt ....................................... Notophthalmw virides~em<br />

Four-toed salamander ................................... Hemidactylium scutatum<br />

Fowler$ toad ........................................ B~fo woodhousii fowkri<br />

Gray treefrog ............................................. Hyh versicolor<br />

Greenfr og ...............................................<br />

Ranaclamitans<br />

Jefferson salamander .................................. Ambystoma jeflersonianum<br />

Marbled salamander ...................................... Ambystoma opac~~m<br />

Mi& frog ............................................ Ram septentrionalis<br />

Mounta<strong>in</strong> dusky salamander ............................. Desmognathus ochmphaeus<br />

Nor<strong>the</strong>rn leopard frog ......................................... Rana pipiens<br />

Nor<strong>the</strong>rn slimy salamander .................................. Plethodon glutimus<br />

Nor<strong>the</strong>rn two-l<strong>in</strong>ed salamander ................................. Euryoea bisl<strong>in</strong>euta<br />

Pickerel fiwg .............................................. R m palustris<br />

<strong>Red</strong>back salamander ....................................... Plethodon c<strong>in</strong>era~s<br />

Silvery salamander .................................... Ambystoma Xplatimma<br />

Spotted salamander .................................... Ambystoma maculatum<br />

Spr<strong>in</strong>g peeper ........................................... Pskris crucifer<br />

Spr<strong>in</strong>g salamander .................................... Gjtr<strong>in</strong>ophilus prphyriticus<br />

Tremblay's salamander .................................. Ambystoma X tt.emblayia<br />

Wood frog ............................................... Ram sylvatica<br />

Rept ilw<br />

Bog turtle<br />

Brown snake<br />

Common garter snake<br />

Copperhead<br />

Eastern box turtle<br />

Eastem ribbon snake<br />

Five-l<strong>in</strong>ed sk<strong>in</strong>k<br />

Milk snake<br />

Nor<strong>the</strong>rn water snake<br />

Pa<strong>in</strong>ted turtle<br />

Racer<br />

Rat snake<br />

<strong>Red</strong>belly snake<br />

R<strong>in</strong>gneck snake<br />

Smooth green snake<br />

Snapp<strong>in</strong>g turtle<br />

Timber rattlesnake<br />

Wood turtle<br />

...........................................<br />

.............................................<br />

.....................................<br />

..........................................<br />

........................................<br />

......................................<br />

...........................................<br />

.........................................<br />

........................................<br />

.............................................<br />

...............................................<br />

...............................................<br />

......................................<br />

.........................................<br />

.......................................<br />

.........................................<br />

.........................................<br />

............................................<br />

Ckmmys nzuhbnbergii<br />

Storeria dekayi<br />

Thamnophis sirtali.<br />

Agkistrwlon contortrix<br />

Termpene caml<strong>in</strong>a<br />

Thannophis sauritus<br />

&mews fasciatus<br />

Lampropeltis triangillum<br />

Nerodia sipdon<br />

Chrysemys pieta<br />

Coluber wwtrictor<br />

Efaphe obsoleta<br />

Storeria occipitonaculata<br />

Diadaphis punctatus<br />

@hedrys uemlis<br />

Ghelydm serpent<strong>in</strong>a<br />

Cmtalus horridus<br />

Ckmmys <strong>in</strong>sculpta<br />

Birds<br />

Acadian flycatcher<br />

.......................................<br />

Empidomu vipes0ei-w


American black duck .......................................... Anas rubripes<br />

American crow ........................................ Coruw bmhyrhymhos<br />

American goldf<strong>in</strong>ch .......................................... Caroluelis t&tk<br />

American redstart ........................................ Setophaga mtictlla<br />

American rob<strong>in</strong> .......................................... TUTTILIB migratoritLs<br />

Americanwoodcock ..........................................<br />

Soohparm<strong>in</strong>or<br />

American wigeon ........................................... Anas ameTicana<br />

Barredowl ................................................. Strixvaria<br />

Belted k<strong>in</strong>gfisher ............................................ Ceryle alcyon<br />

Black-and-white warbler ....................................... Mnwtilta varia<br />

Black-billed cuckoo .................................... Coccym erythmpthalmus<br />

Black-capped chickadee ...................................... Pam atricapiEltLs<br />

Black-throated green warbler ................................... Dendmim vilrens<br />

Blue jay .............................................. Cyanocitta cristata<br />

Blue-gray gnatcatcher ...................................... Polwptila cuemlea<br />

Blue-w<strong>in</strong>ged teal ............................................. Anus dkcors<br />

Blue-w<strong>in</strong>ged warbler ........................................ Vermivom p<strong>in</strong>us<br />

Broad-w<strong>in</strong>ged hawk ........................................&teo platypterus<br />

Brown creeper .......................................... Certhia amerioana<br />

Brown-headed cowbird ........................................ Molothrus ater<br />

Bufflehead ............................................. Bucephala albeola<br />

Canadagoose ........................................... Bmntucunadensis<br />

Canada warbler ......................................... Wilsonia canademis<br />

Carol<strong>in</strong>a chickadee ........................................ Pam carvl<strong>in</strong>emis<br />

Carol<strong>in</strong>a wren ....................................... Thryothom ludouicianus<br />

Cerulean warbler .......................................... Dendmica cerulea<br />

Chestnut-sided warbler .................................. Dendmioa pensylvanica<br />

Chipp<strong>in</strong>g sparrow ......................................... Spizella passerim<br />

Camon goldeneye ........................................ Bucephala clangula<br />

Common grackle ......................................... @isah quiscula<br />

Common merganser ....................................... Mergus mergamer<br />

Common yellowthroat ....................................... Geothlypis trichas<br />

Gooper's hawk. ........................................... Accipiter mperii<br />

Dark-eyed junco. ........................................... Jum hyemalis<br />

Downy woodpecker ........................................ Picvides pubeswm<br />

Eastern k<strong>in</strong>gbird ......................................... Tymnnus tymnnw<br />

Eastern phoebe ............................................ Sayornis phoebe<br />

Eastern screech-owl ............................................ Otus asw<br />

Eastern wood-pewee ......................................... Contopw viwm<br />

European starl<strong>in</strong>g ......................................... Sturnus vulgaris<br />

Even<strong>in</strong>g grosbeak ..................................... Coccothmwtes vespert<strong>in</strong>us<br />

Gadwall ................................................. Anas strepem<br />

Golden-crowned k<strong>in</strong>glet ....................................... Regulus satmpa<br />

Gray catbird .......................................... Dumetella curol<strong>in</strong>emis<br />

Great blw heron ........................................... A& heivdias<br />

Great crested flycatcher ..................................... Myiarck cr<strong>in</strong>itus<br />

Great gray owl ............................................. Strix nebulusa<br />

Great horned owl .......................................... Bubo virg<strong>in</strong>ianus<br />

Green-w<strong>in</strong>ged teal ............................................ Anas crerwr<br />

Hairy woodpecker. .......................................... Picoides villosus<br />

Hermit thrush .......................................... Catharus guttatus<br />

Hooded merganser ...................................... Lophoclyytes cucullatus<br />

Hooded warbler ............................................ Wilsonia citr<strong>in</strong>u<br />

Woirse wren ............................................. Troglodytes aedon<br />

Indigo bunt<strong>in</strong>g ........................................... Pwer<strong>in</strong>a cyanea<br />

Kentucky warbler. ........................................ Opmmis formasus<br />

hng-eared owl ................................................ Asw otus<br />

bnisiana waterthrush ....................................... Seiurus motacilla<br />

Mallard .............................................. Anasplat;vrhynchos


Mourn<strong>in</strong>g warbler ...<br />

Nashville warbler . ...<br />

Nor<strong>the</strong>rn bobwhite ...<br />

Nor<strong>the</strong>nl c dnd ...<br />

Nor<strong>the</strong>rn flicker. ....<br />

Wor<strong>the</strong>rngoshawk ...<br />

Nor<strong>the</strong>rn mock<strong>in</strong>gbird .<br />

Nor<strong>the</strong>rnoriole .....<br />

Nor<strong>the</strong>rn parula ....<br />

Nor<strong>the</strong>rn saw-whet owl<br />

Nor<strong>the</strong>rn shrike. ....<br />

Nor<strong>the</strong>rxi waterthrush .<br />

Orchnrdoriole. .....<br />

Overlbird ........<br />

Peregr<strong>in</strong>e falcon ....<br />

filadelphia vireo ...<br />

Pileated wdgeckcr . .<br />

P<strong>in</strong>e grosbesk ......<br />

P<strong>in</strong>e sisk<strong>in</strong> .......<br />

P<strong>in</strong>e warbler ......<br />

Prairie warbler .....<br />

Prothonotary warbler . .<br />

Ruple f<strong>in</strong>ch .......<br />

<strong>Red</strong>-bellid wwtIperker<br />

<strong>Red</strong>-eyed vireo .....<br />

<strong>Red</strong>-headed wdpeckrr<br />

<strong>Red</strong>-shouldered hawk .<br />

<strong>Red</strong>-tailed hawk ....<br />

<strong>Red</strong>-wiryyrd blackbird .<br />

R<strong>in</strong>g-nwked duck ....<br />

RcMlo-brrmted gro8tvi.d<br />

Ruby-crowned k<strong>in</strong>glet ..................................... Regulus rnbcnclriL!


Mammals<br />

Beaver ............................................... Castorcanadensis<br />

Big brown bat ............................................. EptesicLLs fuscus<br />

Black bear ............................................. Ursus amerkunus<br />

Bobcat .................................................... Lymmfus<br />

Coyote .................................................. Canis latmm<br />

Deer mouse ......................................... Peromyscus maniculatus<br />

Eastern chipmunk .......................................... Tamias striatw<br />

Eastern cottontail ........................................ Sylvi2agus firidanus<br />

Eastern mole ........................................... Scabpus aquaticus<br />

Eastern mounta<strong>in</strong> lion ..................................... Felis cornlor cougar<br />

Eastern pipistrelle ....................................... Pipistrellus subflavus<br />

Enn<strong>in</strong>e ............................................... Mustela ernr<strong>in</strong>ea<br />

Fisher ................................................ Martespenmnti<br />

Gray fox .......................................... Urocyon c<strong>in</strong>ereoagenteus<br />

Gray squirrel .......................................... Sciurus carol<strong>in</strong>ensis<br />

Hairytailed mole ........................................ Pawcalops breweri<br />

Indiana myotis ............................................. Myotis sodalis<br />

Keen's myotis .............................................. Myotis keenii<br />

Little brown myotis ........................................ Myotis lwifugw<br />

bng-tailed weasel .......................................... Mustela fmta<br />

Lynx.. ............................................... Lynxcanademis<br />

Masked shrew. ............................................. Sorex c<strong>in</strong>ereus<br />

Meadow jump<strong>in</strong>g mouse ...................................... Zapus hudsonius<br />

Meadow vole ........................................ Microtus pennsylvanicus<br />

Mir~k ................................................... Mustehuison<br />

Moose .................................................... Alcesalces<br />

New England cottontail .................................. Sy1vikgt.u tmnsitwrurlis<br />

Nor<strong>the</strong>rn short-tailed shrew ................................... Bhr<strong>in</strong>a bmicauda<br />

Porcup<strong>in</strong>e ............................................. Erethizon hrsatum<br />

Raccoon .................................................. Pmcyonlotor<br />

<strong>Red</strong>bat ............................................... hiurusbomlis<br />

<strong>Red</strong>fox ................................................. Vulpesvulpes<br />

<strong>Red</strong> squirrel ........................................ Tamiasciurus hudsoniczls<br />

River otter. ............................................. Lutm canademis<br />

Silver-haired bat ..................................... Lasionycteris noctivagam<br />

Smoky shrew .............................................. Sorex fumeus<br />

Snowshoe hare ........................................... Lepw americanus<br />

Sou<strong>the</strong>rn bog lemm<strong>in</strong>g ...................................... Synaptomys cooperi<br />

Sou<strong>the</strong>rn fly<strong>in</strong>g squirrel ...................................... Glaucomys volans<br />

Sou<strong>the</strong>rn red-backed vole .................................. Clethnbnomys gapperi<br />

Star-nosed mole .......................................... Condylum cristata<br />

Striped skunk ............................................ Mephitis mephitis<br />

Virg<strong>in</strong>ia opposum ........................................ Didelphis virg<strong>in</strong>iana<br />

Water shrew ............................................. Sorexpalustrk<br />

Wkite-footed muse. ...................................... Peromyscus leucopus<br />

Whitetailed deer ....................................... Odocoih virg<strong>in</strong>ianus<br />

Woodchuck ............................................. Marmota monax<br />

FQoodland jump<strong>in</strong>g mouse .................................. Napaeozapus <strong>in</strong>signis<br />

Woodland vole .......................................... Microtus p<strong>in</strong>etoium<br />

aScientific name follows t.hc Eastern IIeritage Task Force data base, The Nature Conservancy, Boston, Mass.


Appendix D. Vertebrates <strong>of</strong> Special Conce<br />

That Have Been Observed <strong>in</strong><br />

stateb and conserv~tio_n_statusc<br />

Ma<strong>in</strong>e N.H. Vt. Mass. RI. Conn. N.Y. Pa. N.J.<br />

Amphibians<br />

Blue-spotted salamander<br />

Dusky salamander<br />

Four-toed salamander<br />

Jefferson salamander<br />

Marbled salamander<br />

Mounta<strong>in</strong> dusky salamander<br />

Nor<strong>the</strong>rn leopard Grog<br />

Nor<strong>the</strong>rn slimy salamander<br />

Spr<strong>in</strong>g salamander<br />

Silvery salamander<br />

Spotted salamander<br />

Tremblay's salamander<br />

Reptiles<br />

Bog turtlee<br />

Copperhead<br />

Eastern box turtle<br />

Eastern ribbon snake<br />

Five-l<strong>in</strong>ed sk<strong>in</strong>k<br />

Racer<br />

Rat snake<br />

<strong>Red</strong>belly snake<br />

Smooth green snake<br />

Timber rattlesnake<br />

Wood turtle<br />

Birds<br />

Acadian flycatcher<br />

American black duck<br />

American wigeon<br />

Barred owl<br />

Blue-gray gnatcatcher<br />

Blue-w<strong>in</strong>ged teal<br />

Blue-w<strong>in</strong>ged warbler<br />

Buffiehead<br />

Carol<strong>in</strong>a wren<br />

Cerulean warbler<br />

Common goldeneye<br />

Common merganser<br />

Cooper's hawk<br />

Dark-eyed junco


Appendix D, Cont<strong>in</strong>ued<br />

--" - - - --<br />

Specie8 d<br />

Eastern screech-awl<br />

Even<strong>in</strong>g grosbeak<br />

Gadwall<br />

Golden-crowned k<strong>in</strong>glet<br />

Great blue heron<br />

Great gray awl<br />

Green-w<strong>in</strong>ged teal<br />

Hooded merganser<br />

Hooded warbler<br />

Kentucky warbler<br />

Lang-eared owl<br />

Mourn<strong>in</strong>g warbler<br />

NashvilIe warbler<br />

Nor<strong>the</strong>rn babwhite<br />

Nortllenn goshawk<br />

Nor<strong>the</strong>rn parula<br />

Nor<strong>the</strong>rn saw-whet owl<br />

Nor<strong>the</strong>rn ertlrikc*<br />

Orchard oriole<br />

Peregr<strong>in</strong>e falcon 1<br />

Philadelphia vireo<br />

Pileated woodpecker<br />

Rxre grosbeak<br />

fire aiakirl<br />

Relirie wmbler<br />

Rotilonotnuy warlder<br />

X%lrple f<strong>in</strong>ch<br />

itad-be1lic.d woodpecker<br />

1.ied-headed woodpwkrr<br />

<strong>Red</strong>-shauldemd hawk<br />

K<strong>in</strong>g-necked duck<br />

alby-crowned k<strong>in</strong>glet<br />

Ku~ty blackbird<br />

Shew-shimed Iriwwk<br />

Solitary vim<br />

%~fkd titntouse<br />

Turkey vulture<br />

whi~-~r-wiIi<br />

Wite-eycd vvirrio<br />

Whib-Wated spamw<br />

W<strong>in</strong>ter wren<br />

Yellow-bellied sapsucker<br />

VrtIlow-mmpd warbler<br />

Yellow-throated wdfer<br />

- - - ~&atg~and-mnservation statusC _--<br />

Ma<strong>in</strong>e N.W.<br />

S3<br />

Vt. Mass. RI. Conn. N.Y.<br />

S A<br />

S A<br />

SN S1 $1 S2 53<br />

$2 S1 S2<br />

S3 S2 S2 SI S3<br />

SN<br />

S A<br />

S3 SN S2 S1 SN S3<br />

53 S3 S1 S3<br />

S2<br />

su<br />

S2 S2<br />

SU S2 S1 S 1 S3<br />

St<br />

SN<br />

Pa.<br />

N.J.<br />

SN<br />

Black bear<br />

Bobcat<br />

Coyote<br />

Deer mowe<br />

Ski<br />

53 S2


~tnte"and ronsewat ion stat ilu'<br />

d Mairae N.III. Vt. hIz~as. KI. C:oxxn. N.Y Pa, N.J.<br />

Spxiea<br />

E-km nlctunta<strong>in</strong> lion f Sf1 SII SEI SII Sfi SX SX SX<br />

Emtern pipistrelle SU SB SN<br />

W n e<br />

SN<br />

Flsher S 1 S 1 SII SX<br />

).fairy-tailed 111ole<br />

Ixrdiana myotis f<br />

SI SII<br />

KeenL myotis<br />

14ymr<br />

Mmxle<br />

New England cottontail'<br />

fir?d bat<br />

River otter<br />

Silver- haired bat SN SIJ<br />

SU SCJ<br />

Smoky s k w<br />

Snow~hCiG harc<br />

Sou<strong>the</strong>rn bog letlmx<strong>in</strong>g<br />

Sou<strong>the</strong>rn red-backed vole<br />

Wakr stmw<br />

'SIH~c~cn or R~I~)H~WCI~-H <strong>in</strong> fllrn fall)ltt nrr ~IIOWII lxf wScur 1x1 r6.d IXI~IJIIC RWIIIII~~H <strong>of</strong> tllv Ntlri htvrst ( ? r ~ ri*fc~r(~~r(vs <strong>in</strong> (:htij~t('r 71, 1111~1<br />

~ ~ N Vkvii P ~IVCII H~X'CI~I stnf tts t~y HI lt'tlst (I~I(* norf I~(~)~hferrr sti~t*'. NC~III, nf tkwhc' i1111111f1lh IH r~.sf rltbt~-d t~) rt~i ~~~aplt, s~~n~irps, rrnd<br />

ntnny are rttorc curnrnotr III ott1c.r hnbrtntn<br />

"~ot~rc-ew fur cwrtr R ~A~A+ trw<br />

Mn~nc-fvfwrnr. Natilrrrl Iterttngr f'rogrw~~r, 'rc~pstrwtn,.lur~r*<br />

l!lH',)<br />

N lI --%taw tltrrrrpsil~re Nntrrrnl llt'rttctgt. Invt-~ltciry, ('ot~cortl. Sthl)t~.lrll,c*r 1!EW<br />

Wt. -V~nnont Nongnrn~ nrrd Ntat~trtrl iIc,r~ta~gc* f'rogrtt~r~, Wtrt.erbrrry, Aprrl l(EH<br />

hlarw -MacutnchttwttYI Natrtrwi f lc-rrtwgt. ~nci I':ttd~trgt~rc'tf S[rc*rlcs Ik~grrctn, f3ontrrr1, Mny 1!EX!X)<br />

RI -Rh~lcxlc i~iwrtd Nnt~rrrri f fcrit~rgt. I'rt)grerrt, Eh~vrcierrct., Mny 1989<br />

Cur~n.-C:unnt.ctici(t Nattirtll l)rvrrx~ty Ijatrt Has


A list <strong>of</strong> current Rioiogicni Rt?po~-r~ follows.<br />

'Zlle Ecolagy <strong>of</strong> I Il<strong>in</strong>lboldt Bay, C'nlifi~rrzia: iln Rstu~u-<strong>in</strong>c I'r<strong>of</strong>ile, by Roger A. Unmhart, Milton J.<br />

Boyd, and lJoh~~ E. I'eq~~g~l:+t. 1(3Y!. 121 pp.<br />

Fenvalerate Eiazt~rds tn IJlsh, lVildlifc, tul~l 1rlvt.rtebratc.s: A Syrloptic Review, by Ronald Eisler.<br />

1992.33 pp.<br />

An Evnluat ion <strong>of</strong> R~>gressiori hlcthods to Estimatc Nutritional Condition <strong>of</strong> Canvasbacks and<br />

O<strong>the</strong>r 15Elter Birds, by I)oxlnld l4: Sparl<strong>in</strong>g, Jcb A. Barzetl, Jarnes H. Loworn, and Jerome R.<br />

Serie. 1992. I1 pp.<br />

Diflubcnzuron EIazards to Fish, Wildlife, nnd I~rvert~brntcs: A Synoptic Review, by Ronald Eisler.<br />

132. 36 pp.<br />

Vale Mmiagen~cnt <strong>in</strong> Fruit Ox-chnrcls, by Mark E. To't)lt~ nrld Milo E. Richmond. 1993. 18 pp.<br />

<strong>Ecology</strong> <strong>of</strong> Br<strong>in</strong>cl-tailed Pigeons <strong>in</strong> Oregon, by Robert I,. Jarvis axld Michael E Passmore. 2%2.<br />

343 PP.<br />

tZ Model <strong>of</strong> <strong>the</strong> Productivity <strong>of</strong> <strong>the</strong> Northmi EZ<strong>in</strong>tnil, by John D. Cnrlson, Jr., William R. Clark,<br />

arid Erw<strong>in</strong> E. Klaris. 1'33. 20 pp.<br />

Guidel<strong>in</strong>es for <strong>the</strong> L)eveloprncnt <strong>of</strong> Cornn~urrity-Icvrl I Inbit at Evalu~tio~l Models, by &chard L.<br />

Schrot3der r<strong>in</strong>d Sarrdra I,, Ifnire. 1993. 8 pp.<br />

ri'tlermril Strat ificatiorl <strong>of</strong> IliluLc Lakes-Evaluation <strong>of</strong> Regulatory Processes and Biological Effects<br />

&fore arid Aftcr Base Addition: Effects on Brook ?'rout 1 Iabitnt arrd Growth, by Carl L. Sch<strong>of</strong>ield,<br />

Dtir~ Josephson, Chris ICclclzcr, ttnd S~CVCI~ F? Gloss. 1093. 36 pp.<br />

Z<strong>in</strong>c Haziwds tu Fishes, Wildlif~3, ttnd Invcrtn~bratrs: A Synoptic &view, by Ihnald Eisler. 1993.<br />

1% PP.<br />

In-water Klcctricril Mcr\surc..xr~cb~lts for Evrlluntirlg Electr<strong>of</strong>isi~<strong>in</strong>g Sysknls, by A. Lawrence Kolz.<br />

1993. 24 pp.<br />

Library<br />

Natlo!J. .-- k - - I- p---oqrrh Center<br />

U. S ;t.rylce<br />

700 CLAj -<br />

. dvard<br />

"<br />

Lafayetic, La. 1~306<br />

S(M'I< 'I'hc opirl~nris, fijkd111g\, COII~~LIC~OIIS,<br />

(id ni>t rlcscc~a,srrrily rc>flc-c.t trc. VIVWS <strong>of</strong> f(chc*/tr~li<br />

,3<br />

I Irt* rlre nt~on<br />

or ~~~((~~ILEI)rf~(.ilt,<br />

r,f Lrridt. rtrlmcxs tiocr rl<strong>of</strong> roribt it ilk elidi>rs( IIIVII~ or r(hci~!i~i~i(.iidiIt<br />

1x1 this r

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!