30.11.2014 Views

Hurdle Rates

Hurdle Rates

Hurdle Rates

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

WECC Energy Imbalance<br />

Market: <strong>Hurdle</strong> Rate<br />

Development Lessons<br />

WECC MWG<br />

June 18, 2012<br />

Jack Moore, Sr. Consultant<br />

Arne Olson, Partner


Key Takeaways<br />

EIM Background: Why hurdle rates were so<br />

important for EIM analysis<br />

Impact: <strong>Hurdle</strong> rates can significantly affect flow<br />

across major interfaces<br />

Comparison: <strong>Hurdle</strong> rate vs. Wheeling rates in tariff<br />

<strong>Hurdle</strong> Rate process: Importance of first addressing<br />

other (non-transactional) factors that affect flows<br />

<strong>Hurdle</strong> Rate Level of detail : More precision may not<br />

mean more accuracy<br />

2


Context:<br />

EIM Project Goals and Approach<br />

Overall Goal:<br />

Estimate the societal benefits of implementing an EIM<br />

throughout the West (excluding CAISO and AESO)<br />

Approach:<br />

Societal Benefit<br />

of EIM =<br />

West-wide<br />

production cost<br />

without EIM -<br />

(Benchmark Case)<br />

West-wide<br />

production cost<br />

with EIM<br />

(EIM Case)<br />

Inter-BA transactions were a key driver of the<br />

benefits we were seeking to model<br />

Developed hurdle rate to apply Benchmark Case<br />

(GridView production simulation run)<br />

3


<strong>Hurdle</strong> <strong>Rates</strong> can impact regional<br />

flows on major interfaces<br />

“<strong>Hurdle</strong> <strong>Rates</strong>” are price adders, in<br />

$/MWh, that production simulation<br />

models use to inhibit trade between<br />

zones<br />

Can greatly affect flows over major<br />

interfaces depending on relative<br />

prices in adjacent zones<br />

• Depending on fuel & CO2 prices,<br />

coal vs. gas, local demand and heat<br />

rates, hurdle rates can make a big<br />

difference in relative cost<br />

Goal: want to represent<br />

institutional and issues that effect<br />

dispatch decisions & resulting<br />

regional transactions<br />

4


<strong>Hurdle</strong> <strong>Rates</strong> vs. Wheeling <strong>Rates</strong><br />

Many transactions don’t pay wheeling rates on a<br />

transaction basis because they own intertie transmission<br />

or have long-term service<br />

<strong>Hurdle</strong> rates should also capture other<br />

barriers to trade not reflected in<br />

wheeling rates<br />

• Pancaked losses<br />

• Inefficiencies due to illiquid markets<br />

• Need to use resources to serve native load<br />

Also is interactive: hurdle rates on one<br />

path can affect flows on other paths<br />

Approach: benchmarked simulation to<br />

actual 2006 path flows<br />

• Started with OATT rate schedules & losses, but then adjust as<br />

feasible to make simulation more similar to historical flows<br />

5


<strong>Hurdle</strong> rate development process:<br />

Benchmark everything else first<br />

1. Define zonal boundaries (for applying hurdles)<br />

2. Select monitored paths to monitor inter-zonal flows<br />

(must have historical data for comparison)<br />

3. Select historical benchmark year to simulate<br />

4. Remove as many (non-hurdle) differences as<br />

possible between historical data and benchmark<br />

simulation<br />

• Transmission, loads & generation, but also hydro levels,<br />

coal & nuclear maintenance schedules, etc.<br />

5. Start with wheeling rates, or other relevant initial set<br />

of hurdle rates<br />

6. Adjust iteratively until satisfied or no longer observing<br />

improvement<br />

6


Precision:<br />

Selecting right level of detail<br />

Possible in production simulation to benchmark with<br />

extremely precise level of detail<br />

• E.g., difference hurdle rates for HLH vs. LLH<br />

Challenge is that more precision may not capture<br />

barriers to trade more accurately, and entail more<br />

work for development<br />

• In extreme case, could specify every hour, but then would be<br />

capturing idiosyncratic issues, not more lasting institutional<br />

barriers & patterns<br />

• Even developing a single set of hurdle rate for the full year<br />

takes multiple iterations, so plan accordingly<br />

• Could deviate from the one hurdle rate for all hours on a<br />

particular path if have strong data & story that explains the<br />

dynamic<br />

7


Monitored Paths Used for<br />

Phase 1 and 2 <strong>Hurdle</strong> Rate Calibration<br />

(Shown with Phase 2 zone map)<br />

Zone<br />

Name<br />

Zone Description<br />

1 BC British Columbia<br />

2 AB Alberta<br />

3 BPA<br />

BPA + SCL + TWPR + GCPD<br />

+ CHPD + DOPD<br />

4 NWE Northwestern Energy + WAUW<br />

5 NNV<br />

Northern Nevada<br />

(Sierra Pacific Power)<br />

6 PACE PacifiCorp East<br />

7 WACM WAPA Rocky Mts.<br />

8 PSCO Xcel Colorado<br />

9 CA CAISO + CFE<br />

10 NEVP NV Energy<br />

11 AZPS APS<br />

12 NM New Mexico<br />

13 PSE Puget Sound Energy<br />

14 AVA Avista<br />

15 PGN Portland General Electric<br />

16 PACW PacifiCorp West<br />

17 IPC Idaho Power<br />

18 WALC WAPA Lower Colorado<br />

19 SRP Salt River Project<br />

20 TEP Tucson Electric Power<br />

21 BANC BA of N. CA+ Turlock ID<br />

22 EPE El Paso Electric<br />

23 LADWP LA Dept. of Water & Power<br />

24 IID Imperial Irrigation District<br />

Zone 1 Zone 2<br />

Northwest-BC (P3)<br />

COI<br />

(P66)<br />

ID-Northwest<br />

(P14)<br />

Path C<br />

(P20)<br />

PDCI<br />

(P65)<br />

West of<br />

River (P46)<br />

MT-Northwest (P8)<br />

MT-ID<br />

(P18)<br />

IPPDC<br />

(P27) Tot 2B<br />

Tot 2C (P34) Tot 2A<br />

(P35)<br />

(P31)<br />

EOR<br />

(P49)<br />

Bridger We<br />

(P19)<br />

Tot 3<br />

(P36)<br />

No. NM<br />

(P48)<br />

So. NM<br />

(P47)<br />

8


Incremental Improvement in<br />

Simulating Historical 2006 Flows<br />

Results of sequential runs<br />

shows incremental<br />

improvement in historical<br />

year simulation<br />

• Overall average flows now 0.1%<br />

below historical<br />

• Small reductions to absolute<br />

value of difference in simulated<br />

vs. actual flows<br />

Accuracy varies by path<br />

• Accuracy is very good for Westside<br />

paths<br />

• East side flows still higher than<br />

historical, despite large hurdle<br />

rates<br />

• Non-economic factors in model<br />

likely limit greater precision<br />

% Difference from Actual Average Hourly<br />

Flow over 17 WECC Paths (MW)<br />

Avg Hourly Flow<br />

vs. Actual (% Difference)<br />

15%<br />

12%<br />

9%<br />

6%<br />

3%<br />

0%<br />

-3%<br />

-6%<br />

Absolute Value of Hourly Difference in Flow<br />

Average over 17 WECC Paths (MW)<br />

Avg Abs Value of Flow<br />

vs. Actual (MW)<br />

550<br />

500<br />

450<br />

400<br />

350<br />

300<br />

0.1%<br />

below<br />

actual<br />

9


Benchmarking Simulation versus<br />

2006 Actual Hourly Flows<br />

2006 Actual Flows Phase 2 Simulation Flows<br />

Path Flows (MW)<br />

3,000<br />

2,000<br />

1,000<br />

0<br />

-1,000<br />

-2,000<br />

-3,000<br />

P3: NORTHWEST-BC (S-N)<br />

Jan<br />

Feb<br />

Mar<br />

Apr<br />

May<br />

Jun<br />

Jul<br />

Aug<br />

Sep<br />

Oct<br />

Nov<br />

Dec<br />

Path Flows (MW)<br />

P8: MONTANA-NORTHWEST (E-W)<br />

3,000<br />

2,000<br />

1,000<br />

0<br />

-1,000<br />

-2,000<br />

Jan<br />

Feb<br />

Mar<br />

Apr<br />

May<br />

Jun<br />

Jul<br />

Aug<br />

Sep<br />

Oct<br />

Nov<br />

Dec<br />

Path Flows (MW)<br />

2,500<br />

2,000<br />

1,500<br />

1,000<br />

500<br />

0<br />

P19: BRIDGER WEST (E-W)<br />

Jan<br />

Feb<br />

Mar<br />

Apr<br />

May<br />

Jun<br />

Jul<br />

Aug<br />

Sep<br />

Oct<br />

Nov<br />

Dec<br />

Path Flows (MW)<br />

10,000<br />

8,000<br />

6,000<br />

4,000<br />

2,000<br />

-2,000 0<br />

-4,000<br />

P65+P66: COI & PDCI (N-S)<br />

Jan<br />

Feb<br />

Mar<br />

Apr<br />

May<br />

Jun<br />

Jul<br />

Aug<br />

Sep<br />

Oct<br />

Nov<br />

Dec<br />

Path Flows (MW)<br />

P14: IDAHO-NORTHWEST (E-W)<br />

3,000<br />

2,000<br />

1,000<br />

0<br />

-1,000<br />

-2,000<br />

Jan<br />

Feb<br />

Mar<br />

Apr<br />

May<br />

Jun<br />

Jul<br />

Aug<br />

Sep<br />

Oct<br />

Nov<br />

Dec<br />

Path Flows (MW)<br />

2,000<br />

1,500<br />

1,000<br />

500<br />

0<br />

P36: TOT 3 (N-S)<br />

Jan<br />

Feb<br />

Mar<br />

Apr<br />

May<br />

Jun<br />

Jul<br />

Aug<br />

Sep<br />

Oct<br />

Nov<br />

Dec<br />

Path Flows (MW)<br />

P46:WEST OF RIVER (WOR) (E-W)<br />

10,000<br />

8,000<br />

6,000<br />

4,000<br />

2,000<br />

0<br />

Jan<br />

Feb<br />

Mar<br />

Apr<br />

May<br />

Jun<br />

Jul<br />

Aug<br />

Sep<br />

Oct<br />

Nov<br />

Dec<br />

Path Flows (MW)<br />

1,000<br />

500<br />

0<br />

-500<br />

-1,000<br />

P34: TOT 2B (N-S)<br />

Jan<br />

Feb<br />

Mar<br />

Apr<br />

May<br />

Jun<br />

Jul<br />

Aug<br />

Sep<br />

Oct<br />

Nov<br />

Dec<br />

Path Flows (MW)<br />

1,000<br />

500<br />

0<br />

-500<br />

-1,000<br />

P31: TOT 2A (N-S)<br />

Jan<br />

Feb<br />

Mar<br />

Apr<br />

May<br />

Jun<br />

Jul<br />

Aug<br />

Sep<br />

Oct<br />

Nov<br />

Dec<br />

(Path flow primary direction in parenthesis)<br />

10


Seasonal Benchmarking:<br />

Average Path Transfers during HLH<br />

11<br />

2006 Historical Flows Phase 2 Simulation Phase 1 Simulation<br />

Path Flows (MW)<br />

2,000<br />

P3: NORTHWEST-BC (S-N)<br />

1,500<br />

1,000<br />

500<br />

0<br />

-500<br />

Winter Spring Summer Fall<br />

Path Flows (MW)<br />

P8: MONTANA-NORTHWEST (E-W)<br />

2,000<br />

1,500<br />

1,000<br />

500<br />

0<br />

Winter Spring Summer Fall<br />

Path Flows (MW)<br />

2,000<br />

P19: BRIDGER WEST (E-W)<br />

1,500<br />

1,000<br />

500<br />

0<br />

Winter Spring Summer Fall<br />

Path Flows (MW)<br />

6,000<br />

5,000<br />

4,000<br />

3,000<br />

2,000<br />

1,000<br />

0<br />

P65+P66: COI & PDCI (N-S)<br />

Winter Spring Summer Fall<br />

Path Flows (MW)<br />

P14: IDAHO-NORTHWEST (E-W)<br />

1,400<br />

1,200<br />

1,000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Winter Spring Summer Fall<br />

Path Flows (MW)<br />

1,200<br />

1,000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

P36: TOT 3 (N-S)<br />

Winter Spring Summer Fall<br />

Path Flows (MW)<br />

P46:WEST OF RIVER (WOR) (E-W)<br />

7,000<br />

6,000<br />

5,000<br />

4,000<br />

3,000<br />

2,000<br />

1,000<br />

0<br />

Winter Spring Summer Fall<br />

Path Flows (MW)<br />

400<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

P34: TOT 2B (N-S)<br />

Winter Spring Summer Fall<br />

Path Flows (MW)<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

P31: TOT 2A (N-S)<br />

Winter Spring Summer Fall


Seasonal Benchmarking:<br />

Average Path Transfers during LLH<br />

12<br />

2006 Historical Flows Phase 2 Simulation Phase 1 Simulation<br />

Path Flows (MW)<br />

1,500<br />

P3: NORTHWEST-BC (S-N)<br />

1,000<br />

500<br />

0<br />

-500<br />

Winter Spring Summer Fall<br />

Path Flows (MW)<br />

P8: MONTANA-NORTHWEST (E-W)<br />

2,000<br />

1,500<br />

1,000<br />

500<br />

0<br />

Winter Spring Summer Fall<br />

Path Flows (MW)<br />

2,500<br />

P19: BRIDGER WEST (E-W)<br />

2,000<br />

1,500<br />

1,000<br />

500<br />

0<br />

Winter Spring Summer Fall<br />

Path Flows (MW)<br />

6,000<br />

5,000<br />

4,000<br />

3,000<br />

2,000<br />

1,000<br />

0<br />

P65+P66: COI & PDCI (N-S)<br />

Winter Spring Summer Fall<br />

Path Flows (MW)<br />

P14: IDAHO-NORTHWEST (E-W)<br />

1,400<br />

1,200<br />

1,000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Winter Spring Summer Fall<br />

Path Flows (MW)<br />

1,200<br />

1,000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

P36: TOT 3 (N-S)<br />

Winter Spring Summer Fall<br />

Path Flows (MW)<br />

P46:WEST OF RIVER (WOR) (E-W)<br />

7,000<br />

6,000<br />

5,000<br />

4,000<br />

3,000<br />

2,000<br />

1,000<br />

0<br />

Winter Spring Summer Fall<br />

Path Flows (MW)<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

P34: TOT 2B (N-S)<br />

Winter Spring Summer Fall<br />

Path Flows (MW)<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

P31: TOT 2A (N-S)<br />

Winter Spring Summer Fall


Thank You!<br />

Energy and Environmental Economics, Inc. (E3)<br />

101 Montgomery Street, Suite 1600<br />

San Francisco, CA 94104<br />

Tel 415-391-5100<br />

Web http://www.ethree.com<br />

Arne Olson, Partner (arne@ethree.com)<br />

Jack Moore, Sr. Consultant (jack@ethree.com)


Appendix


<strong>Hurdle</strong> <strong>Rates</strong> Used for<br />

Phase 2 Study<br />

Benchmark Case <strong>Hurdle</strong><br />

<strong>Rates</strong> (2010 $/MWh)<br />

Difference from<br />

Tariff Rate + Losses<br />

From To Forward Backward Forward Backward<br />

AB BC $4.72 $3.63 ($5.98)<br />

BPA BC $3.26 $3.63 ($5.98)<br />

NWE BPA $14.72 $3.26 $7.50<br />

IPC BPA $11.36 $3.26 $7.50<br />

BPA NNV $6.44 $6.04<br />

BPA CA $11.44 $7.29 $5.00<br />

NWE WACM $12.22 $7.27 $5.00<br />

PACE NNV $5.06 $6.04<br />

PACE WACM $10.06 $7.27 $5.00<br />

WACM PSCO $14.77 $4.22 $7.50<br />

NNV CA $6.04 $3.88<br />

PACE AZPS $12.56 $3.62 $7.50 ($1.00)<br />

PACE LADWP $40.00 $9.68 $34.94<br />

WACM WALC $14.77 $3.64 $7.50<br />

NNV NEVP $6.04 $3.03<br />

NEVP CA $8.03 $3.88 $5.00<br />

PACE NEVP $12.56 $2.03 $7.50 ($1.00)<br />

NEVP WALC $3.03 $3.64<br />

AZPS CA $9.62 $3.88 $5.00<br />

AZPS NM $2.12 $5.43 ($2.50)<br />

PSCO NM $9.22 $5.43 $5.00<br />

NM WALC $5.43 $3.64<br />

Benchmark Case <strong>Hurdle</strong><br />

<strong>Rates</strong> (2010 $/MWh)<br />

Note: In EIM Case, hurdle rates shown in blue text above are applied during unit commitment but set to zero during<br />

dispatch. <strong>Rates</strong> in gold text (related to a zone not participating in the EIM) are maintained during both unit<br />

commitment and dispatch.<br />

Difference from<br />

Tariff Rate + Losses<br />

From To Forward Backward Forward Backward<br />

AVA BC $4.07 $3.63 ($5.98)<br />

AVA BPA $4.07 $3.26<br />

IPC AVA $11.36 $4.07 $7.50<br />

NWE AVA $14.72 $4.07 $7.50<br />

AVA PACW $4.07 $5.06<br />

BPA LADWP $8.94 $9.68 $2.50<br />

WACM NM $14.77 $5.43 $7.50<br />

PACE WALC $12.56 $2.64 $7.50 ($1.00)<br />

PACE IPC $5.06 $3.86<br />

PSCO WALC $11.72 $3.64 $7.50<br />

WALC CA $8.64 $3.88 $5.00<br />

PACW CA $10.06 $3.88 $5.00<br />

PACE CA $40.00 $9.68 $34.94<br />

IID CA $4.13 $3.88<br />

LADWP CA $9.68 $3.88<br />

CA BANC $3.88 $5.99<br />

AZPS IID $2.12 $4.13 ($2.50)<br />

AZPS LADWP $9.62 $9.68 $5.00<br />

AZPS SRP $2.12 $2.98 ($2.50)<br />

AZPS TEP $2.12 $4.88 ($2.50)<br />

AZPS WALC $2.12 $3.64 ($2.50)<br />

15


<strong>Hurdle</strong> <strong>Rates</strong> Used for<br />

Phase 2 Study (continued)<br />

Additional <strong>Hurdle</strong> <strong>Rates</strong><br />

(continued from previous slide)<br />

Benchmark Case <strong>Hurdle</strong><br />

<strong>Rates</strong> (2010 $/MWh)<br />

Difference from<br />

Tariff Rate + Losses<br />

From To Forward Backward Forward Backward<br />

BPA PACW $3.26 $5.06<br />

BPA PGN $3.26 $1.62<br />

BPA PSE $3.26 $0.96<br />

BPA BANC $8.94 $5.99 $2.50<br />

NM EPE $5.43 $5.63<br />

TEP EPE $4.88 $5.63<br />

IPC NNV $11.36 $6.04 $7.50<br />

IPC PACW $11.36 $5.06 $7.50<br />

IPC PGN $11.36 $1.62 $7.50<br />

NEVP LADWP $8.03 $9.68 $5.00<br />

NNV LADWP $40.00 $9.68 $33.96<br />

NWE PACE $14.72 $5.06 $7.50<br />

PACW PGN $5.06 $1.62<br />

AVA PGN $4.07 $1.62<br />

TEP NM $2.38 $5.43 ($2.50)<br />

SRP CA $7.98 $3.88 $5.00<br />

SRP TEP $2.98 $4.88<br />

SRP WALC $2.98 $3.64<br />

WALC TEP $3.64 $4.88<br />

WALC IID $3.64 $4.13<br />

WALC LADWP $8.64 $9.68 $5.00<br />

Note: In EIM Case, hurdle rates shown in blue text above are<br />

applied during unit commitment but set to zero during dispatch.<br />

Phase 2 calibrated bidirectional<br />

hurdle rates for 64 different<br />

interfaces (vs. 25 in Phase 1)<br />

For new interfaces for<br />

Phase 2 (esp. in NW and AZ)<br />

stayed close to OATT tariff rates<br />

unless flow results available to<br />

indicate otherwise<br />

In calibration, added $2-8<br />

premium to tariff rates to<br />

reduce certain flows:<br />

• N-S flows on East side<br />

• MT/ID into NW<br />

• CA imports<br />

• For PACE->CA, used large hurdle<br />

rate to make flows resemble 2006<br />

actual when IPP gen is offline<br />

16


Creation of 2006 Benchmark Case<br />

WECC 2020 PC0 case rolled back to 2006 by removing<br />

major generation and transmission to create a 2006<br />

system topology<br />

• System changes made by WECC staff<br />

• Not possible to precisely reconfigure PROMOD database back to<br />

2006 – may be small inaccuracies where upgrades are complex<br />

(e.g., north of Salt Lake City)<br />

Incorporated historical data from WECC and NREL: Fuel<br />

prices, hydro availability, hourly wind & load profiles<br />

Modified reserve requirements<br />

Created 24 zones by assigning busses to a zone and<br />

grouping lines that interconnect zones<br />

Implemented hurdle rates that affect transactions<br />

between zones & adjusted until major path flows and<br />

gen dispatch match 2006 actual<br />

17


Phase 2 Results<br />

$141MM in annual<br />

savings from EIM for<br />

2020<br />

• 0.7% reduction in<br />

total production costs<br />

• Ranges from $54-233MM<br />

among all cases run<br />

Lower overall savings<br />

compared to Phase 1<br />

• Phase 1 assumed more<br />

optimization of operations<br />

Millions of 2010$<br />

150<br />

100<br />

50<br />

0<br />

Phase 2 EIM Benefits<br />

(MM 2010 Dollars)<br />

$50MM<br />

$141MM<br />

2006 EIM 2020 EIM<br />

18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!