29.11.2014 Views

Predictive food microbiology as a tool in risk ... - ProSafeBeef

Predictive food microbiology as a tool in risk ... - ProSafeBeef

Predictive food microbiology as a tool in risk ... - ProSafeBeef

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Predictive</strong> <strong>food</strong> <strong>microbiology</strong> <strong>as</strong> a <strong>tool</strong> <strong>in</strong><br />

<strong>risk</strong> <strong>as</strong>sessment<br />

Kost<strong>as</strong> Koutsoumanis<br />

Assistant Professor<br />

Lab of Food Microbiology and Hygiene Dpt. Of Food<br />

Science and Technology<br />

Aristotle University of Thessaloniki,


Presentation Outl<strong>in</strong>e<br />

1.Food Safety Management<br />

1.1 The Risk Analysis process<br />

1.2 Risk Assessment<br />

1.3 Risk Management<br />

2.<strong>Predictive</strong> Microbiology<br />

2.1 K<strong>in</strong>etic Models<br />

2.1.1 Primary<br />

2.1.2 Secondary<br />

2.1.3 Tertiary (software)<br />

2.2 Growth/no growth boundary models<br />

2.3 Stoch<strong>as</strong>tic Models<br />

3.C<strong>as</strong>e Studies<br />

3.1 Exposure <strong>as</strong>sessment of L monocytogenes <strong>in</strong><br />

p<strong>as</strong>teurized milk<br />

3.2 Risk-b<strong>as</strong>ed approach for evaluat<strong>in</strong>g compliance of<br />

RTE <strong>food</strong> to the safety criteria for L. monocytogenes


Food Safety Management<br />

Traditional Food Safety Management approach w<strong>as</strong> b<strong>as</strong>ed<br />

on end-product test<strong>in</strong>g<br />

End Product Sampl<strong>in</strong>g<br />

Is the product<br />

safe?<br />

Yes<br />

No<br />

Food Safety<br />

Qualitative (Discrete)<br />

variable


Food Safety Management<br />

Traditional Food Safety Management approach w<strong>as</strong> b<strong>as</strong>ed<br />

on end-product test<strong>in</strong>g<br />

Food Safety Crisis of 90’s<br />

Antibiotics<br />

Listeria<br />

BSE<br />

SARS<br />

Diox<strong>in</strong>s<br />

E. coli<br />

Campylobacter<br />

Acrylamide<br />

Salmonella<br />

Need for change


Food Safety Management<br />

Development of new <strong>tool</strong>s<br />

New Tools<br />

<strong>Predictive</strong> Microbiology<br />

Risk Assessment


Risk Analysis<br />

Risk Assessment is a component of Risk Analysis<br />

(WHO/FAO, 1995):<br />

Risk<br />

Assessment<br />

Risk<br />

Communication<br />

Risk<br />

Management


Risk Analysis<br />

Risk Assessment is a component of Risk Analysis


Risk Analysis<br />

The Risk Analysis Process - CAC


Risk Assessment<br />

Risk Assessment Stages<br />

Hazard Identification: what biological, chemical and<br />

physical agents are we deal<strong>in</strong>g with and with which <strong>food</strong>s is<br />

it <strong>as</strong>sociated?<br />

Hazard Characterization: what illness can be caused,<br />

<strong>as</strong>sociated <strong>in</strong> relation to dose and population?<br />

Exposure Assessment: how likely it is that an <strong>in</strong>dividual or<br />

a population will be exposed to a microbial hazard and what<br />

numbers of organisms are likely to be <strong>in</strong>gested?<br />

Risk Characterization: the <strong>in</strong>tegration of the above<br />

result<strong>in</strong>g <strong>in</strong> the probabilities of illness


Risk Assessment<br />

Exposure Assessment<br />

Exposure <strong>as</strong>sessment provides an estimate of the<br />

occurrence and level of the pathogen <strong>in</strong> a specified portion<br />

of a certa<strong>in</strong> <strong>food</strong> at the time of consumption <strong>in</strong> a specified<br />

population by tak<strong>in</strong>g <strong>in</strong>to account uncerta<strong>in</strong>ty and variability<br />

Exposure = f(Contam<strong>in</strong>ation ; Consumption)<br />

Prevalence (proportion of<br />

contam<strong>in</strong>ated units)<br />

and levels of contam<strong>in</strong>ation<br />

(<strong>in</strong> contam<strong>in</strong>ated units)<br />

at the time of consumption<br />

Consumption rates<br />

and serv<strong>in</strong>g sizes


Exposure Assessment<br />

Data and <strong>tool</strong>s required for Exposure Assessment<br />

‣Food product flows<br />

-Farm-to-fork<br />

-Import and export<br />

‣Pathogen dynamics at start<strong>in</strong>g po<strong>in</strong>t<br />

-Prevalence<br />

-Numbers<br />

‣Process<strong>in</strong>g<br />

-Conditions<br />

-Effects (models)<br />

‣Distribution, retail and domestic storage<br />

-Conditions (Time-Temperature)<br />

-Effects (models<br />

‣Consumption patterns<br />

-Intake<br />

-Preparation


Exposure Assessment<br />

Variability and Uncerta<strong>in</strong>ty (Def<strong>in</strong>itions)<br />

Variability represents a true heterogeneity of the<br />

population that is a consequence of the physical system and<br />

irreducible (but better characterized) by further<br />

me<strong>as</strong>urements.<br />

‣Variability between sub-populations<br />

Examples: differences <strong>in</strong> serv<strong>in</strong>g sizes between<br />

<strong>in</strong>fants/children/teenagers/adults, male versus female…<br />

‣Variability with<strong>in</strong> a (sub-) population<br />

Examples: variability of serv<strong>in</strong>g sizes from one person to<br />

another,from one serv<strong>in</strong>g (cocktail) to another (ma<strong>in</strong> meal)…


Exposure Assessment<br />

Variability and Uncerta<strong>in</strong>ty (Def<strong>in</strong>itions)<br />

Uncerta<strong>in</strong>ty represents our lack of knowledge and may<br />

<strong>in</strong>clude:<br />

‣scenario uncerta<strong>in</strong>ty<br />

‣model uncerta<strong>in</strong>ty<br />

‣parameter uncerta<strong>in</strong>ty


Exposure Assessment<br />

Variability (Example)<br />

We all want to move to the 5 th floor us<strong>in</strong>g the elevator <strong>in</strong><br />

groups of 5 (randomly selected) people<br />

The weight limit of the elevator is 480 kg<br />

Estimate the chance of exceed<strong>in</strong>g the weight limit<br />

Determ<strong>in</strong>istic method (variability is not taken <strong>in</strong>to account)<br />

Average <strong>in</strong>dividual weight=70 kg<br />

5 persons x 70 =350 kg


Exposure Assessment<br />

Variability (Example)<br />

Stoch<strong>as</strong>tic method (variability is taken <strong>in</strong>to account)<br />

25<br />

Normal (70,8 kg)<br />

20<br />

%Frequency<br />

15<br />

10<br />

5<br />

0<br />

50 55 60 65 70 75 80 85 90 95 100<br />

Individuals average Weight


Variability (Example)<br />

Exposure Assessment<br />

Stoch<strong>as</strong>tic method (variability is taken <strong>in</strong>to account)<br />

%Frequency<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

50 55 60 65 70 75 80 85 90 95 100<br />

Individuals average Weight<br />

Random selection of<br />

5 values<br />

Repeat 100000<br />

(iterations)<br />

Sum the 5 values<br />

0,1<br />

Monte Carlo<br />

Simulation<br />

Probability<br />

0,08<br />

0,06<br />

0,04<br />

0,02<br />

Limit<br />

P(>480)=3x10 -4<br />

0<br />

240<br />

260<br />

280<br />

300<br />

320<br />

340<br />

360<br />

380<br />

400<br />

420<br />

440<br />

460<br />

480<br />

500<br />

Total Weight of 5 persons


Exposure Assessment<br />

Uncerta<strong>in</strong>ty (Example)<br />

Stoch<strong>as</strong>tic method (variability is taken <strong>in</strong>to account)<br />

Uncerta<strong>in</strong>ty: We don’t know the weight limit of the<br />

elevator<br />

Expert Op<strong>in</strong>ion: M<strong>in</strong>:450, Max:550 Most likely:500<br />

Triang(450; 500; 550)<br />

2,5<br />

X


0<br />

0<br />

2<br />

1<br />

4<br />

2<br />

3<br />

6<br />

8<br />

0<br />

2<br />

4<br />

0<br />

6<br />

8<br />

1<br />

2<br />

3<br />

0<br />

1<br />

2<br />

3<br />

0,40<br />

0,35<br />

0,30<br />

0,25<br />

Expon(2,5) Shift=-2,5<br />

Exposure Assessment<br />

0,40<br />

Triang(-2,5; 0; 2,5)<br />

0,20<br />

0,35<br />

0,15<br />

0,30<br />

0,10<br />

0,25<br />

0,05<br />

0,20<br />

0,00<br />

-4<br />

-2<br />

90,0%<br />

-2,37 4,99<br />

5,0%<br />

Contam<strong>in</strong>ation<br />

at t=0<br />

10<br />

><br />

0,15<br />

0,10<br />

0,05<br />

0,00<br />

-3<br />

-2<br />

-1<br />

5,0% 90,0%<br />

5,0%<br />

-1,709 1,709<br />

Consumption<br />

data<br />

MODELS (growth<strong>in</strong>activation-survival<br />

Contam<strong>in</strong>ation at<br />

consumption time<br />

Normal(0; 1)<br />

0,40<br />

Triang(-2,5; 0; 2,5)<br />

Monte<br />

Carlo<br />

0,45<br />

0,40<br />

0,35<br />

0,35<br />

0,30<br />

0,30<br />

0,25<br />

0,20<br />

0,15<br />

0,25<br />

0,20<br />

0,15<br />

Exposure<br />

0,10<br />

0,10<br />

0,05<br />

0,00<br />

-3<br />

-2<br />

-1<br />

0,05<br />

0,00<br />

Lognorm(2,5; 2,5) Shift=-2,5<br />

< 5,0% 90,0%<br />

5,0% ><br />

-1,645 1,645<br />

-3<br />

-2<br />

-1<br />

5,0% 90,0%<br />

5,0%<br />

-1,709 1,709<br />

0,40<br />

0,35<br />

Process<strong>in</strong>g,<br />

distribution,<br />

storage<br />

parameters<br />

0,40<br />

0,35<br />

0,30<br />

0,25<br />

0,20<br />

0,15<br />

0,10<br />

0,05<br />

0,00<br />

-4<br />

-2<br />

Lognorm(2,5; 2,5) Shift=-2,5<br />

90,0%<br />

-2,05 4,45<br />

5,0%<br />

10<br />

12<br />

><br />

0,30<br />

0,25<br />

0,20<br />

0,15<br />

0,10<br />

0,05<br />

0,00<br />

-4<br />

-2<br />

0<br />

2<br />

4<br />

90,0%<br />

-2,05 4,45<br />

6<br />

8<br />

5,0%<br />

10<br />

12<br />

>


Risk Characterization<br />

< 5,0% 90,0%<br />

5,0% ><br />

-1,645 1,645<br />

Exposure<br />

Dose-Response<br />

Lognorm(2,5; 2,5) Shift=-2,5<br />

100<br />

0,40<br />

0,35<br />

0,30<br />

0,25<br />

0,20<br />

0,15<br />

0,10<br />

0,05<br />

0,00<br />

-4<br />

-2<br />

0<br />

2<br />

4<br />

90,0%<br />

-2,05 4,45<br />

6<br />

8<br />

5,0%<br />

10<br />

12<br />

><br />

Frequency of Infection, %<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 1 2 3 4 5<br />

Dose (Log10 cfu)<br />

6<br />

7<br />

Data<br />

Gompertz-Log<br />

Probability of illness<br />

Normal(0; 1)<br />

0,45<br />

0,40<br />

0,35<br />

0,30<br />

0,25<br />

0,20<br />

0,15<br />

0,10<br />

0,05<br />

0,00<br />

-3<br />

-2<br />

-1<br />

0<br />

1<br />

2<br />

3


Food Safety Management<br />

Microbiological Risk Assessment estimates<br />

Number of c<strong>as</strong>es of (a certa<strong>in</strong>) illness per year per<br />

(e.g.) 100.000 persons <strong>in</strong> a given population caused<br />

by a certa<strong>in</strong> micro-organism or group of<br />

microorganisms <strong>in</strong> a particular <strong>food</strong> or <strong>food</strong> type<br />

The output of Risk Assessment<br />

is a probability (Risk)<br />

e.g 10 -6


Food Safety Management<br />

Food Safety Management approach<br />

Food Safety<br />

Is the product safe? Yes/No<br />

Qualitative (Discrete)<br />

variable<br />

Risk Assessment<br />

Quantitative (Cont<strong>in</strong>ues)<br />

variable<br />

What is the degree of product safety? Risk


Food Safety Management<br />

Food Safety Management approach<br />

ACCEPTABLE RISK?<br />

100% Safety (zero <strong>risk</strong>) does not<br />

exists and should not be expected


Food Safety Management<br />

Food Safety Management approach<br />

1996: WTO/SPS agreement<br />

Appropriate Level of Protection (ALOP)<br />

Level of protection deemed appropriate by a<br />

member (country) establish<strong>in</strong>g a sanitary or<br />

phytosanitary me<strong>as</strong>ure to protect human, animal or<br />

plant life or health with<strong>in</strong> its territory.


Food Safety Management<br />

Food Safety Management approach<br />

Appropriate Level of Protection (ALOP)<br />

Degree of <strong>risk</strong> that a society is will<strong>in</strong>g to<br />

tolerate/accept<br />

The “costs” that society is will<strong>in</strong>g to bear to<br />

achieve a specific degree of control over a<br />

Hazard<br />

“Costs” <strong>in</strong>cludes: human, quality, nutritional,<br />

economic, ethical, medical, legal, etc<br />

ALOP example: less than 0.25 c<strong>as</strong>es of<br />

Listeriosis per 100,000 people per year <strong>in</strong> USA


Food Safety Management<br />

Food Safety Management approach<br />

Need for conversion of ALOP <strong>in</strong>to actions. To<br />

implement actions, an objective must be def<strong>in</strong>ed,<br />

expressed <strong>in</strong> terms of a level of a hazard <strong>in</strong> a<br />

<strong>food</strong><br />

Food Safety Objective (FSO)<br />

The maximum frequency and/or concentration of<br />

a microbial hazard <strong>in</strong> a <strong>food</strong> at the moment of<br />

consumption that provides the ALOP


Food Safety Management<br />

Food Safety Management approach<br />

Establishment FSO b<strong>as</strong>ed on ALOP<br />

Dose-Response relationship


Food Safety Management<br />

Food Safety Management approach<br />

ICMSF Safety Equation<br />

H 0 - ΣR+ ΣG+ ΣC < FSO.<br />

H 0 : Initial contam<strong>in</strong>ation<br />

ΣR: Total Reduction (log CFU/g)<br />

ΣG: Total Growth (log CFU/g)<br />

ΣC: Total Contam<strong>in</strong>ation (log CFU/g)


Food Safety Management<br />

Conversion of FSO to practical criteria for the<br />

<strong>food</strong> <strong>in</strong>dustry<br />

Performance Objective: The maximum frequency and/or<br />

concentration of a (microbial) hazard <strong>in</strong> a <strong>food</strong> at a<br />

specified step <strong>in</strong> the <strong>food</strong> cha<strong>in</strong> before time of consumption<br />

that still provides or contributes to the achievement of an<br />

FSO.<br />

Performance Criterion: The effect of one or more control<br />

me<strong>as</strong>ure(s) needed to meet or contribute to meet<strong>in</strong>g a PO.<br />

Process Criterion: The conditions pf a process that lead to<br />

a PO.


Food Safety Management: Summary<br />

Gorris, 2004


<strong>Predictive</strong> Microbiology<br />

THE CONCEPT<br />

A detailed knowledge of microbial responses to<br />

environmental conditions, synthesized <strong>in</strong> a<br />

mathematical model, enables objective evaluation<br />

of process<strong>in</strong>g, distribution and storage operations<br />

on the microbiological safety and quality of <strong>food</strong>s,<br />

by monitor<strong>in</strong>g the environment without<br />

recourse to further microbiological analysis


<strong>Predictive</strong> Microbiology<br />

THE CONCEPT<br />

‣Growth, survival and <strong>in</strong>activation of microorganisms <strong>in</strong><br />

<strong>food</strong>s are reproducible responses<br />

‣A limited number of environmental parameters <strong>in</strong> <strong>food</strong>s<br />

determ<strong>in</strong>e the k<strong>in</strong>etic responses of microorganisms<br />

(Temperature, Water activity/water ph<strong>as</strong>e salt, pH, Food<br />

preservatives<br />

‣A mathematical model that quantitatively describes the<br />

comb<strong>in</strong>ed effect of the environmental parameters can be<br />

used to predict growth, survival or <strong>in</strong>activation of a<br />

microorganism and thereby contribute important <strong>in</strong>formation<br />

about product safety and shelf-life<br />

Roberts and Jarvis (1983)


<strong>Predictive</strong> Microbiology<br />

APPLICATIONS<br />

‣Predict the effect of product characteristics and storage<br />

conditions on microbial responses (safety and shelf-life)<br />

‣Predict effect of changes <strong>in</strong> parameters (product<br />

development)<br />

‣HACCP plans – establish limits for CCP<br />

‣Food safety objectives – equivalence of processes<br />

‣Education – e<strong>as</strong>y access to <strong>in</strong>formation<br />

‣Quantitative microbiological <strong>risk</strong> <strong>as</strong>sessment (QMRA)<br />

(The concentration of microbial hazards <strong>in</strong> <strong>food</strong>s may<br />

<strong>in</strong>cre<strong>as</strong>e or decre<strong>as</strong>e substantially dur<strong>in</strong>g process<strong>in</strong>g and<br />

distribution)


<strong>Predictive</strong> Microbiology<br />

TYPES OF MODELS<br />

‣Primary models: describ<strong>in</strong>g the microbial evolution<br />

(growth, <strong>in</strong>activation, survival) <strong>as</strong> a function of<br />

time. Estimate k<strong>in</strong>etic parameters<br />

‣Secondary models: describ<strong>in</strong>g k<strong>in</strong>etic parameters<br />

<strong>as</strong> a function of <strong>in</strong>fluenc<strong>in</strong>g factors like pH,<br />

temperature, water activity, concentration of<br />

preservatives, …<br />

‣Tertiary models: <strong>in</strong>tegrate primary and<br />

secondary models <strong>in</strong> a software <strong>tool</strong>


<strong>Predictive</strong> Microbiology<br />

STEPS IN MODEL DEVELOPMENT<br />

‣Experimental design- data collection<br />

‣Estimation of k<strong>in</strong>etic parameters (primary<br />

models)<br />

‣Mathematical description of the effect of the<br />

environmental factors to the k<strong>in</strong>etic parameters<br />

(secondary models)<br />

‣Validation of the model<br />

‣Integration <strong>in</strong> a software <strong>tool</strong> (tertiary models)


<strong>Predictive</strong> Microbiology<br />

STEPS IN MODEL DEVELOPMENT<br />

‣data collection<br />

11<br />

9<br />

7<br />

Log cfu/g<br />

4<br />

2<br />

0<br />

0 5 10 15 20 25 30<br />

TIME (h)


<strong>Predictive</strong> Microbiology<br />

STEPS IN MODEL DEVELOPMENT<br />

‣Fitt<strong>in</strong>g data to primary model<br />

11<br />

9<br />

Log cfu/g<br />

7<br />

4<br />

2<br />

0<br />

0 5 10 15 20 25 30<br />

TIME (h)


<strong>Predictive</strong> Microbiology<br />

STEPS IN MODEL DEVELOPMENT<br />

‣Estimation of k<strong>in</strong>etic parameters<br />

9<br />

11<br />

Log N max<br />

Log cfu/g<br />

7<br />

4<br />

Log N max Maximum rate<br />

0 5 10 15 20 25 30<br />

Log N 0<br />

2<br />

0<br />

0 5 10 15 20 25 30<br />

Lag<br />

TIME (h)


<strong>Predictive</strong> Microbiology<br />

STEPS IN MODEL DEVELOPMENT<br />

‣Primary models


<strong>Predictive</strong> Microbiology<br />

STEPS IN MODEL DEVELOPMENT<br />

‣Primary models


<strong>Predictive</strong> Microbiology<br />

STEPS IN MODEL DEVELOPMENT<br />

‣Mathematical description of the effect of the<br />

environmental factors to the k<strong>in</strong>etic parameters<br />

(secondary models)


<strong>Predictive</strong> Microbiology<br />

STEPS IN MODEL DEVELOPMENT<br />

‣Secondary models<br />

‣K<strong>in</strong>etic models<br />

• Polynomial and constra<strong>in</strong>ed l<strong>in</strong>ear polynomial<br />

models<br />

• Square-root-type models<br />

• Arrhenius type models<br />

• Card<strong>in</strong>al parameter models<br />

• Artificial neural networks<br />

‣Growth/no growth <strong>in</strong>terface models<br />

(probabilistic models)


<strong>Predictive</strong> Microbiology<br />

STEPS IN MODEL DEVELOPMENT<br />

‣Secondary models<br />

Card<strong>in</strong>al parameter model


<strong>Predictive</strong> Microbiology<br />

STEPS IN MODEL DEVELOPMENT<br />

‣Secondary models<br />

Square root type model


<strong>Predictive</strong> Microbiology<br />

STEPS IN MODEL DEVELOPMENT<br />

‣Growth no growth boundary models


<strong>Predictive</strong> Microbiology<br />

STEPS IN MODEL DEVELOPMENT<br />

‣Validation of models<br />

Most models are developed <strong>in</strong> laboratory media. There can<br />

be no guarantee that predicted values will match those<br />

that would occur <strong>in</strong> any specific <strong>food</strong> system. Before the<br />

models could be used <strong>in</strong> such a manner, the user would<br />

have to validate the models for each specific <strong>food</strong> of<br />

<strong>in</strong>terest.<br />

Internal validation: Comparison between predicted and<br />

observed values for data used for model development<br />

External validation: Comparison between predicted and<br />

observed values for <strong>in</strong>dependent data


<strong>Predictive</strong> Microbiology<br />

Tertiary models-Software<br />

Pathogen Model<strong>in</strong>g Program (on-l<strong>in</strong>e)<br />

(http://pmp.arserrc.gov/PMPOnl<strong>in</strong>e.<strong>as</strong>px)<br />

ComB<strong>as</strong>e (datab<strong>as</strong>e) (http://www.comb<strong>as</strong>e.cc)<br />

ComB<strong>as</strong>e Predictor (models) (http://www.comb<strong>as</strong>e.cc)<br />

Sea<strong>food</strong> Spoilage Predictor<br />

(http://www.dfu.m<strong>in</strong>.dk/micro/sssp/Home/Home.<strong>as</strong>px)<br />

Refrigeration Index<br />

(ijenson@mla.com.au; http://www.mla.com.au)


<strong>Predictive</strong> Microbiology<br />

Tertiary models-Software<br />

www.comb<strong>as</strong>e.cc<br />

‣large, searchable, datab<strong>as</strong>e of microbiological<br />

raw data<br />

‣still grow<strong>in</strong>g, users can add data<br />

‣web-b<strong>as</strong>ed, free access<br />

‣<strong>in</strong>tegrates “Food Micromodel” and “Pathogen<br />

Model<strong>in</strong>g Program” data, and many more<br />

‣<strong>in</strong>cludes new models <strong>in</strong> “ComB<strong>as</strong>e Predictor”


<strong>Predictive</strong> Microbiology<br />

Tertiary models-Software<br />

www.comb<strong>as</strong>e.cc<br />

35,000 records on growth and survival of<br />

pathogens and spoilage organisms<br />

– ~28,000 records on pathogens<br />

– ~4,000 on spoilage organisms, <strong>in</strong>clud<strong>in</strong>g<br />

– ‘total spoilage bacteria’ (346)<br />

– ‘bacillus spoilage bacteria’ (65)<br />

– Brocothrix thermosphacta (741)<br />

– enterobacteriaceae (338)<br />

– lactic acid bacteria (701)<br />

– Shewenella putref<strong>as</strong>ciens (57)<br />

– “spoilage ye<strong>as</strong>t” (44)


<strong>Predictive</strong> Microbiology<br />

Tertiary models-Software


<strong>Predictive</strong> Microbiology<br />

Tertiary models-Softwares


<strong>Predictive</strong> Microbiology<br />

Tertiary models-Softwares


<strong>Predictive</strong> Microbiology<br />

Tertiary models-Softwares


<strong>Predictive</strong> Microbiology<br />

Tertiary models-Softwares


<strong>Predictive</strong> Microbiology<br />

Tertiary models-Software<br />

sea<strong>food</strong> spoilage and safety predictor-SSSP<br />

www.dfu.m<strong>in</strong>.dk/micro/sssp/<br />

predicts growth of bacteria <strong>in</strong> different fresh and<br />

lightly preserved sea<strong>food</strong>s<br />

allows prediction of:<br />

– rates of spoilage of sea<strong>food</strong><br />

– shelf life of various sea<strong>food</strong>s<br />

– effect of fluctuat<strong>in</strong>g conditions<br />

– simultaneous growth of Listeria monocytogenes (a<br />

pathogen) and spoilage bacteria <strong>in</strong> cold-smoked<br />

salmon


<strong>Predictive</strong> Microbiology<br />

Tertiary models-Softwares<br />

sea<strong>food</strong> spoilage and safety predictor-SSSP<br />

www.dfu.m<strong>in</strong>.dk/micro/sssp/<br />

predicts growth of bacteria <strong>in</strong> different fresh and<br />

lightly preserved sea<strong>food</strong>s<br />

allows prediction of:<br />

– rates of spoilage of sea<strong>food</strong><br />

– shelf life of various sea<strong>food</strong>s<br />

– effect of fluctuat<strong>in</strong>g conditions<br />

– simultaneous growth of Listeria monocytogenes (a<br />

pathogen) and spoilage bacteria <strong>in</strong> cold-smoked<br />

salmon


<strong>Predictive</strong> Microbiology<br />

Tertiary models-Software<br />

sea<strong>food</strong> spoilage and safety predictor-SSSP<br />

www.dfu.m<strong>in</strong>.dk/micro/sssp/


<strong>Predictive</strong> Microbiology<br />

Tertiary models-Software<br />

“refrigeration <strong>in</strong>dex”<br />

www.mla.com.au<br />

Australian product with regulatory approval for use<br />

under Australian Export Meat Orders<br />

• predicts growth of E. coli (<strong>as</strong> an <strong>in</strong>dicator of<br />

safe temperature control) from cont<strong>in</strong>uous<br />

temperature history us<strong>in</strong>g the idea of timetemperature<br />

function<strong>in</strong>tegration


<strong>Predictive</strong> Microbiology<br />

Tertiary models-Softwares<br />

“refrigeration <strong>in</strong>dex”<br />

www.mla.com.au<br />

Australian product with regulatory approval for use<br />

under Australian Export Meat Orders<br />

• predicts growth of E. coli (<strong>as</strong> an <strong>in</strong>dicator of<br />

safe temperature control) from cont<strong>in</strong>uous<br />

temperature history us<strong>in</strong>g the idea of timetemperature<br />

function<strong>in</strong>tegration


<strong>Predictive</strong> Microbiology<br />

Tertiary models-Softwares<br />

“refrigeration <strong>in</strong>dex”<br />

www.mla.com.au<br />

Australian product with regulatory approval for use<br />

under Australian Export Meat Orders<br />

• predicts growth of E. coli (<strong>as</strong> an <strong>in</strong>dicator of<br />

safe temperature control) from cont<strong>in</strong>uous<br />

temperature history us<strong>in</strong>g the idea of timetemperature<br />

function<strong>in</strong>tegration


<strong>Predictive</strong> Microbiology<br />

Risk Assessment Software<br />

“Risk Ranger”<br />

www.<strong>food</strong>safetycentre.com.au/<strong>risk</strong>ranger.htm<br />

‣semi-quantitative <strong>risk</strong> <strong>as</strong>sessment <strong>tool</strong><br />

‣simple, spreadsheet-b<strong>as</strong>ed<br />

‣determ<strong>in</strong>istic, but similar logic to more complex<br />

stoch<strong>as</strong>tic models<br />

‣good for beg<strong>in</strong>n<strong>in</strong>g to understand microbial <strong>food</strong><br />

safety <strong>risk</strong> <strong>as</strong>sessment, contributions/<strong>in</strong>terplay of<br />

factors,differentiation of levels of <strong>risk</strong>


<strong>Predictive</strong> Microbiology<br />

Risk Assessment Software<br />

“Risk Ranger”<br />

www.<strong>food</strong>safetycentre.com.au/<strong>risk</strong>ranger.htm<br />

‣semi-quantitative <strong>risk</strong> <strong>as</strong>sessment <strong>tool</strong><br />

‣simple, spreadsheet-b<strong>as</strong>ed<br />

‣determ<strong>in</strong>istic, but similar logic to more complex<br />

stoch<strong>as</strong>tic models<br />

‣good for beg<strong>in</strong>n<strong>in</strong>g to understand microbial <strong>food</strong><br />

safety <strong>risk</strong> <strong>as</strong>sessment, contributions/<strong>in</strong>terplay of<br />

factors,differentiation of levels of <strong>risk</strong>


<strong>Predictive</strong> Microbiology<br />

Stoch<strong>as</strong>tic model<strong>in</strong>g-s<strong>in</strong>gle cell behavior<br />

‣For many years predictive <strong>microbiology</strong> deals with<br />

the development of determ<strong>in</strong>istic models b<strong>as</strong>ed on<br />

studies with large microbial populations<br />

‣In “real life” however, contam<strong>in</strong>ation of <strong>food</strong>s occurs<br />

at very low levels and determ<strong>in</strong>istic models are not<br />

suitable for such situations<br />

‣Recently, the need for stoch<strong>as</strong>tic models which are<br />

able to predict the effects of more “realistic”<br />

contam<strong>in</strong>ation events (low microbial numbers) <strong>in</strong> <strong>food</strong><br />

safety w<strong>as</strong> stressed (quantitative <strong>risk</strong> <strong>as</strong>sessment)


<strong>Predictive</strong> Microbiology<br />

Stoch<strong>as</strong>tic model<strong>in</strong>g-s<strong>in</strong>gle cell behavior


<strong>Predictive</strong> Microbiology<br />

Stoch<strong>as</strong>tic model<strong>in</strong>g-s<strong>in</strong>gle cell behavior


WHAT IS LIFE?<br />

ERWIN SCHRODINGER<br />

First published 1944<br />

What is life? The Physical Aspect of the<br />

Liv<strong>in</strong>g Cell.


<strong>Predictive</strong> Microbiology<br />

Stoch<strong>as</strong>tic model<strong>in</strong>g-s<strong>in</strong>gle cell behavior


<strong>Predictive</strong> Microbiology<br />

Stoch<strong>as</strong>tic model<strong>in</strong>g-s<strong>in</strong>gle cell behavior


<strong>Predictive</strong> Microbiology<br />

Stoch<strong>as</strong>tic model<strong>in</strong>g-s<strong>in</strong>gle cell behavior


<strong>Predictive</strong> Microbiology<br />

Stoch<strong>as</strong>tic model<strong>in</strong>g-s<strong>in</strong>gle cell behavior<br />

Distribution of NaCl growth limits for Salmonella s<strong>in</strong>gle<br />

cells at different pH values<br />

0.5<br />

0.4<br />

pH:5.0<br />

pH:5.5<br />

pH:7.3<br />

Probability<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0<br />

%NaCl


pH:7.3, NaCl:4.5%, time=0


pH:7.3, NaCl:4.5%, time=2.5 days


pH:7.3, NaCl:6.5%, time=5.5 days


<strong>Predictive</strong> Microbiology<br />

Stoch<strong>as</strong>tic model<strong>in</strong>g-s<strong>in</strong>gle cell behavior<br />

Simulation of Salmonella growth at 30 o C, NaCl=6.0%,<br />

pH=5.5 (with lag)<br />

5<br />

4<br />

Grow<strong>in</strong>g Fraction<br />

Non Grow<strong>in</strong>g Fraction<br />

Population<br />

lag<br />

Lag:<br />

Wn<br />

μ<br />

N G<br />

pseudolag:<br />

NNG<br />

3<br />

Total Population<br />

Ln cfu/cm 2<br />

2<br />

1<br />

Population lag<br />

0<br />

lag<br />

pseudolag<br />

-1<br />

0 10 20 30 40 50 60 70 80<br />

Time (h)


<strong>Predictive</strong> Microbiology<br />

Stoch<strong>as</strong>tic model<strong>in</strong>g-s<strong>in</strong>gle cell behavior<br />

Results from 20 simulations of Salmonella growth at 30 o C,<br />

NaCl=6.0%, pH=5.5 (no lag)<br />

12<br />

9<br />

Ln cfu<br />

6<br />

3<br />

0<br />

0 5 10 15<br />

Time (h)


<strong>Predictive</strong> Microbiology-Risk Assessment<br />

C<strong>as</strong>e Study 1<br />

Exposure <strong>as</strong>sessment of L monocytogenes <strong>in</strong><br />

p<strong>as</strong>teurized milk<br />

Production<br />

Transportation<br />

To Retail<br />

Retail Storage<br />

Domestic Storage<br />

Consumption


<strong>Predictive</strong> Microbiology-Risk Assessment<br />

C<strong>as</strong>e Study 1<br />

Exposure <strong>as</strong>sessment of L monocytogenes <strong>in</strong><br />

p<strong>as</strong>teurized milk<br />

Growth<br />

model<br />

Production<br />

Transportation<br />

To Retail<br />

Retail Storage<br />

Domestic Storage<br />

Consumption<br />

Prevalenceconcentration<br />

Timetemperature<br />

data<br />

Handl<strong>in</strong>g<br />

<strong>in</strong>formation


C<strong>as</strong>e Study 1: Exposure <strong>as</strong>sessment of Listeria<br />

monocytogenes <strong>in</strong> p<strong>as</strong>teurized milk<br />

Development of a model for Listeria monocytogenes<br />

growth <strong>in</strong> p<strong>as</strong>teurized milk


Data collection<br />

10<br />

9<br />

8<br />

1.5 o C<br />

4.0 o C<br />

8.0 o C<br />

12 o C<br />

16 o C<br />

Log10CFU ml -1<br />

7<br />

6<br />

5<br />

4<br />

3<br />

0 500 1000 1500<br />

Time (h)


Fitt<strong>in</strong>g data to primary model (Baranyi and Roberts<br />

1994)-Estimation of k<strong>in</strong>etic parameters<br />

9<br />

8<br />

9<br />

8<br />

9<br />

8<br />

9<br />

8<br />

7<br />

7<br />

7<br />

7<br />

6<br />

6<br />

6<br />

6<br />

5<br />

5<br />

5<br />

5<br />

4<br />

4<br />

4<br />

4<br />

3<br />

3<br />

3<br />

3<br />

2<br />

2<br />

2<br />

2<br />

1<br />

1<br />

1<br />

1<br />

0<br />

0<br />

0<br />

0<br />

0 500 1000 0 500 1000 0 100 200 300 0 100 200 300<br />

9<br />

9<br />

9<br />

9<br />

8<br />

8<br />

8<br />

8<br />

7<br />

7<br />

7<br />

7<br />

6<br />

6<br />

6<br />

6<br />

5<br />

5<br />

5<br />

5<br />

4<br />

4<br />

4<br />

4<br />

3<br />

3<br />

3<br />

3<br />

2<br />

2<br />

2<br />

2<br />

1<br />

1<br />

1<br />

1<br />

0<br />

0 100 200 300 400<br />

0<br />

0 100 200 300 400<br />

0<br />

0 50 100 150 200<br />

0<br />

0 50 100 150 200<br />

9<br />

10<br />

10<br />

10<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 50 100 150 200<br />

0<br />

0 50 100 150 200<br />

0<br />

0 50 100 150<br />

0<br />

0 50 100 150


Fitt<strong>in</strong>g data to primary model (Baranyi and Roberts<br />

1994)-Estimation of k<strong>in</strong>etic parameters<br />

curve rate lag y0 yEnd se(fit) R^2_stat<br />

1A 0.0046 502.4 3.70 0.225 0.973<br />

1B 0.0035 460.9 3.80 0.133 0.985<br />

4A 0.0121 199.3 3.79 7.74 0.172 0.991<br />

4B 0.0110 164.0 3.60 7.77 0.164 0.992<br />

4C 0.0111 181.2 4.03 8.07 0.202 0.987<br />

4D 0.0083 164.9 4.11 7.68 0.146 0.991<br />

8A 0.0267 16.4 3.50 8.26 0.146 0.992<br />

8B 0.0252 25.2 3.66 8.29 0.106 0.995<br />

8C 0.0250 17.1 3.59 8.46 0.161 0.992<br />

8D 0.0257 19.0 3.80 8.37 0.129 0.995<br />

12A 0.0476 13.3 3.68 8.35 0.126 0.994<br />

12B 0.0476 14.3 3.74 8.25 0.113 0.995<br />

12C 0.0502 9.3 3.60 8.31 0.214 0.984<br />

12D 0.0478 12.8 3.89 8.83 0.160 0.992<br />

16A 0.0773 4.0 3.57 8.51 0.176 0.991<br />

16B 0.0804 5.9 3.71 8.56 0.161 0.992<br />

16C 0.0829 8.8 3.44 8.23 0.173 0.992<br />

16D 0.0832 6.0 3.30 8.15 0.178 0.992<br />

16E 0.0967 10.2 3.60 8.45 0.063 0.999<br />

16F 0.0973 7.8 3.63 8.62 0.100 0.998


Fitt<strong>in</strong>g k<strong>in</strong>etic parameters to a secondary model<br />

0.5<br />

0.4<br />

μ<br />

max<br />

= b −<br />

( T Tm<strong>in</strong><br />

)<br />

(μmax) 0.5<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 2 4 6 8 10 12 14 16 18<br />

Temperature ( o C)<br />

Estimated value Lower 95% CI Upper 95% CI r 2<br />

Parameter<br />

b 0.024 0.023 0.025 0.988<br />

T m<strong>in</strong> ( o C) -2.32 -3.02 -1.61


Validation at dynamic temperature conditions<br />

prediction b<strong>as</strong>ed on the square root model for the<br />

estimation of the “momentary” rate and the differential<br />

equations of Baranyi and Roberts model (eq. 2 and 3),<br />

which were numerically <strong>in</strong>tegrated with respect to time:<br />

d<br />

dt<br />

x<br />

=<br />

⎛<br />

q<br />

⎞<br />

q<br />

⎜<br />

⎝ + 1<br />

⎠<br />

⎝<br />

x<br />

x<br />

[ b( T<br />

t<br />

T )] ⎟⎜<br />

⎛ 2<br />

( ) − ⎜<br />

−<br />

⎟<br />

x<br />

m<strong>in</strong> 1<br />

max<br />

⎞<br />

⎟<br />

⎠<br />

m<br />

d q<br />

=<br />

2<br />

m<strong>in</strong><br />

dt<br />

[ b<br />

( T<br />

( t<br />

)<br />

−<br />

T<br />

)<br />

] q


Validation at dynamic temperature conditions<br />

10<br />

20<br />

9<br />

18<br />

Log10 cfu/ml<br />

8<br />

7<br />

6<br />

5<br />

4<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

Temperature ( o C)<br />

3<br />

2<br />

2<br />

0<br />

0 30 60 90 120 150 180<br />

Time (hours)


Validation at dynamic temperature conditions<br />

10<br />

20<br />

9<br />

18<br />

8<br />

16<br />

Log10 cfu/ml<br />

7<br />

6<br />

5<br />

4<br />

3<br />

14<br />

12<br />

10<br />

8<br />

6<br />

Temperature ( o C)<br />

2<br />

4<br />

1<br />

2<br />

0<br />

0<br />

0 30 60 90 120 150 180 210 240<br />

Time (hours)


Validation at dynamic temperature conditions<br />

10<br />

20<br />

Log10 cfu/g<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

4<br />

2<br />

0<br />

0 30 60 90 120 150<br />

Time (hours)<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

Temperature ( o C)


C<strong>as</strong>e Study 1: Exposure <strong>as</strong>sessment of Listeria<br />

monocytogenes <strong>in</strong> p<strong>as</strong>teurized milk<br />

Collection of data on p<strong>as</strong>teurized milk chill cha<strong>in</strong><br />

Wholesaler<br />

Packer/Processor<br />

Pro<br />

duc<br />

er<br />

Consumer<br />

Retailer<br />

Hospital


C<strong>as</strong>e Study 1: Exposure <strong>as</strong>sessment of Listeria<br />

monocytogenes <strong>in</strong> p<strong>as</strong>teurized milk<br />

Collection of data on p<strong>as</strong>teurized milk chill cha<strong>in</strong><br />

Collection of Time-Temperature data from<br />

Transportation trucks<br />

retail refrigerators<br />

domestic refrigerators<br />

Pro<br />

duc<br />

er


C<strong>as</strong>e Study 1: Exposure <strong>as</strong>sessment of Listeria<br />

monocytogenes <strong>in</strong> p<strong>as</strong>teurized milk<br />

Data from trucks dur<strong>in</strong>g transportation to<br />

retail<br />

Transportation<br />

time<br />

Transportation<br />

temperature<br />

20<br />

18<br />

30<br />

%Products<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

%Trucks<br />

25<br />

20<br />

15<br />

10<br />

4<br />

2<br />

5<br />

0<br />

0 1 2 3 4 5 6 7 8 9 10 11<br />

0<br />

3 4 5 6 7 8 9 10 11 12<br />

Transportation time (hours)<br />

Temperature <strong>in</strong> truck ( o C)


C<strong>as</strong>e Study 1: Exposure <strong>as</strong>sessment of Listeria<br />

monocytogenes <strong>in</strong> p<strong>as</strong>teurized milk<br />

Representative temperature profiles of retail<br />

cab<strong>in</strong>ets<br />

Θερμοκρασία o C<br />

15,0<br />

13,0<br />

11,0<br />

9,0<br />

7,0<br />

5,0<br />

3,0<br />

1,0<br />

-1,0<br />

-3,0<br />

-5,0<br />

15,0<br />

13,0<br />

0 50 100 150 200 250 300 350<br />

Χρόνος (ώρες)<br />

Θερμοκρασία o C<br />

15,0<br />

13,0<br />

11,0<br />

9,0<br />

7,0<br />

5,0<br />

3,0<br />

1,0<br />

-1,0<br />

-3,0<br />

-5,0<br />

15,0<br />

13,0<br />

0 50 100 150 200 250 300 350<br />

Χρόνος (ώρες)<br />

11,0<br />

11,0<br />

Θερμοκρασία o C<br />

9,0<br />

7,0<br />

5,0<br />

3,0<br />

1,0<br />

Θερμοκρασία o C<br />

9,0<br />

7,0<br />

5,0<br />

3,0<br />

1,0<br />

-1,0<br />

-3,0<br />

0 50 100 150 200 250<br />

-1,0<br />

-3,0<br />

0 50 100 150 200 250 300 350<br />

-5,0<br />

-5,0<br />

Χρόνος (ώρες)<br />

Χρόνος (ώρες)


C<strong>as</strong>e Study 1: Exposure <strong>as</strong>sessment of Listeria<br />

monocytogenes <strong>in</strong> p<strong>as</strong>teurized milk<br />

Temperature distribution of retail cab<strong>in</strong>ets<br />

35<br />

30<br />

%Refrigerators<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-2 0 2 4 6 8 10 12 14<br />

Temperature o C


C<strong>as</strong>e Study 1: Exposure <strong>as</strong>sessment of Listeria<br />

monocytogenes <strong>in</strong> p<strong>as</strong>teurized milk<br />

Storage time at retail cab<strong>in</strong>ets<br />

%Products<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Storage time at retail (hours)


Temperature o C<br />

Temperature o C<br />

15<br />

13<br />

11<br />

9<br />

7<br />

5<br />

3<br />

1<br />

-1<br />

-3<br />

-5<br />

Representative temperature profiles of<br />

domestic refrigerators<br />

Upper shelf<br />

Middle shelf<br />

Lower shelf<br />

Door shelf<br />

0 4 8 12 16 20 24<br />

15,0<br />

13,0<br />

11,0<br />

9,0<br />

7,0<br />

5,0<br />

3,0<br />

1,0<br />

Upper shelf<br />

Middle shelf<br />

Lower shelf<br />

Door shelf<br />

Time (hours)<br />

Temperature o C<br />

Temperature o C<br />

15,0<br />

13,0<br />

11,0<br />

9,0<br />

7,0<br />

5,0<br />

3,0<br />

1,0<br />

-1,0<br />

-3,0<br />

-5,0<br />

15,0<br />

13,0<br />

11,0<br />

9,0<br />

7,0<br />

5,0<br />

3,0<br />

1,0<br />

Upper shelf<br />

Middle shelf<br />

Lower shelf<br />

Door shelf<br />

0 4 8 12 16 20 24<br />

Upper shelf<br />

Middle shelf<br />

Lower shelf<br />

Door shelf<br />

Time (hours)<br />

-1,0<br />

-3,0<br />

0 4 8 12 16 20 24<br />

-1,0<br />

-3,0<br />

0 4 8 12 16 20 24<br />

-5,0<br />

-5,0<br />

Time (hours)<br />

Time (hours)


Temperature distribution of domestic<br />

refrigerators<br />

%Refrigerators<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

Upper shelf<br />

Middle shelf<br />

Lower shelf<br />

Door shelf<br />

5<br />

0<br />

0 2 4 6 8 10 12 14 16 18<br />

Average Temperature o C


Consumer Handl<strong>in</strong>g <strong>in</strong>formation


Consumer Handl<strong>in</strong>g <strong>in</strong>formation<br />

60<br />

Storage time <strong>in</strong> domestic<br />

refrigerator<br />

50<br />

% Consumers<br />

40<br />

30<br />

20<br />

10<br />

0<br />

1 2 3 4 5<br />

Storage time of p<strong>as</strong>teurized milk <strong>in</strong> domestic refrigerator (days)


Consumer Handl<strong>in</strong>g <strong>in</strong>formation<br />

60<br />

50<br />

Position of milk <strong>in</strong> domestic<br />

refrigerator<br />

% Consumers<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Upper shelf Middle shelf Lower shelf Door shelf<br />

Position of p<strong>as</strong>teurized milk <strong>in</strong> domestic refrigerator


0<br />

0<br />

2<br />

1<br />

4<br />

2<br />

3<br />

6<br />

8<br />

0<br />

2<br />

4<br />

0<br />

6<br />

8<br />

1<br />

2<br />

3<br />

0<br />

1<br />

2<br />

3<br />

0,40<br />

0,35<br />

0,30<br />

0,25<br />

Expon(2,5) Shift=-2,5<br />

Exposure Assessment<br />

0,40<br />

Triang(-2,5; 0; 2,5)<br />

0,20<br />

0,35<br />

0,15<br />

0,30<br />

0,10<br />

0,25<br />

0,05<br />

0,20<br />

0,00<br />

-4<br />

-2<br />

90,0%<br />

-2,37 4,99<br />

5,0%<br />

Contam<strong>in</strong>ation<br />

at t=0<br />

10<br />

><br />

0,15<br />

0,10<br />

0,05<br />

0,00<br />

-3<br />

-2<br />

-1<br />

5,0% 90,0%<br />

5,0%<br />

-1,709 1,709<br />

Consumption<br />

data<br />

MODELS (growth<strong>in</strong>activation-survival<br />

Contam<strong>in</strong>ation at<br />

consumption time<br />

Normal(0; 1)<br />

0,40<br />

Triang(-2,5; 0; 2,5)<br />

Monte<br />

Carlo<br />

0,45<br />

0,40<br />

0,35<br />

0,35<br />

0,30<br />

0,30<br />

0,25<br />

0,20<br />

0,15<br />

0,25<br />

0,20<br />

0,15<br />

Exposure<br />

0,10<br />

0,10<br />

0,05<br />

0,00<br />

-3<br />

-2<br />

-1<br />

0,05<br />

0,00<br />

Lognorm(2,5; 2,5) Shift=-2,5<br />

< 5,0% 90,0%<br />

5,0% ><br />

-1,645 1,645<br />

-3<br />

-2<br />

-1<br />

5,0% 90,0%<br />

5,0%<br />

-1,709 1,709<br />

0,40<br />

0,35<br />

Process<strong>in</strong>g,<br />

distribution,<br />

storage<br />

parameters<br />

0,40<br />

0,35<br />

0,30<br />

0,25<br />

0,20<br />

0,15<br />

0,10<br />

0,05<br />

0,00<br />

-4<br />

-2<br />

Lognorm(2,5; 2,5) Shift=-2,5<br />

90,0%<br />

-2,05 4,45<br />

5,0%<br />

10<br />

12<br />

><br />

0,30<br />

0,25<br />

0,20<br />

0,15<br />

0,10<br />

0,05<br />

0,00<br />

-4<br />

-2<br />

0<br />

2<br />

4<br />

90,0%<br />

-2,05 4,45<br />

6<br />

8<br />

5,0%<br />

10<br />

12<br />

>


Concentration of L. monocytogenes <strong>in</strong> contam<strong>in</strong>ated<br />

p<strong>as</strong>teurized milk at the t<strong>in</strong>e of consumption<br />

60<br />

56.57<br />

50<br />

40<br />

%Products<br />

30<br />

20<br />

18.50<br />

10<br />

11.55<br />

6.18<br />

0<br />

3.66 1.77 0.87 0.44 0.27 0.09 0.04 0.03 0.02 0.01<br />

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5<br />

L. monocytogenes concentration at consumption time (Log CFU/ml)


Sensitivity Analysis<br />

Domestic Storage Time<br />

0.515<br />

Domestic Temperature-Door Shelf<br />

0.307<br />

Retail Storage Time<br />

Retail Storage Temperature<br />

Domestic Temperature-Upper Shelf<br />

Position <strong>in</strong> Domestic Refrigerator (Shelf)<br />

Domestic Temperature-Middle Shelf<br />

Transportation Temperature<br />

Domestic Temperature-Lower Shelf<br />

Transportation Time<br />

0.209<br />

0.188<br />

0.149<br />

0.114<br />

0.097<br />

0.046<br />

0.038<br />

0.032<br />

0 0.1 0.2 0.3 0.4 0.5 0.6<br />

Corelation Coefficient


C<strong>as</strong>e Study 1: Exposure <strong>as</strong>sessment of Listeria<br />

monocytogenes <strong>in</strong> p<strong>as</strong>teurized milk<br />

Evaluation of “what if” scenarios<br />

Int. I: better control of retail temperature,<br />

Int. II: exclude door shelf from domestic storage,<br />

Int. III: Int. II+ decre<strong>as</strong>e domestic mean<br />

temperature by 2 oC


Evaluation of “what if” scenarios<br />

20<br />

18<br />

Int. III<br />

81.9<br />

16<br />

Int. II<br />

67.6<br />

14<br />

Int. I<br />

61.1<br />

%Products<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Current situation<br />

Current situation<br />

Int. I<br />

Int. II<br />

Int. III<br />

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0<br />

Total growth of L. monocytogenes (Log CFU/ml) dur<strong>in</strong>g distribution,<br />

retail and domestic storage<br />

56.6<br />

0 20 40 60 80 100<br />

Percent of products <strong>in</strong> which L. monocytogenes will not grow


Evaluation of “what if” scenarios<br />

Incre<strong>as</strong>e shelf life of p<strong>as</strong>teurized milk from 5 to<br />

10 days<br />

40<br />

35<br />

30<br />

%Products<br />

25<br />

20<br />

15<br />

10<br />

Current situation<br />

Int. III<br />

5<br />

0<br />

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0<br />

L. monocytogenes concentration at consumption time (Log CFU/ml)


<strong>Predictive</strong> Microbiology-Risk Assessment<br />

C<strong>as</strong>e Study 2<br />

Risk-b<strong>as</strong>ed approach for evaluat<strong>in</strong>g compliance of<br />

RTE <strong>food</strong> to the safety criteria for L.<br />

monocytogenes


The new EC regulation 2073/2005 on<br />

microbiological criteria for <strong>food</strong>stuffs<br />

(safety criteria for L. monocytogenes)<br />

Before January 1 st 2006 the Microbiological criterion<br />

for L. monocytogenes w<strong>as</strong><br />

Zero Tolerance<br />

(EC Directive 92/46)<br />

The problem………<br />

Zero Tolerance w<strong>as</strong> not fe<strong>as</strong>ible <strong>in</strong> practice


Source:Draft Assessment of the Relative Risk to Public Health from Foodborne<br />

Listeria monocytogenes Among Selected Categories of Ready-to-Eat<br />

Foodshttp://www.<strong>food</strong>safety.gov/~dms/lm<strong>risk</strong>.html


The new EC regulation 2073/2005 on<br />

microbiological criteria for <strong>food</strong>stuffs<br />

(safety criteria for L. monocytogenes)


Lm <strong>in</strong> sliced RTE meat products of the Hellenic Market<br />

Mean Prevalence 8,1% (n=209)<br />

Product Product Product<br />

Tested Positive<br />

type name category a Manufactur<strong>in</strong>g company<br />

samples samples<br />

1 Bresaola F F 2 0<br />

2<br />

Turkey<br />

bre<strong>as</strong>t<br />

HT H,I,K,S,U,X,ZA 21 0<br />

3<br />

Smoked<br />

tongue<br />

HT T 1 0<br />

4<br />

Ham<br />

(cooked)<br />

HT E,H,J,K,P,S,X,ZA 27 1<br />

5<br />

Ham<br />

(fermented)<br />

F E,I,N 6 1<br />

6 Copa F E,F 3 0<br />

7<br />

Chicken<br />

bre<strong>as</strong>t<br />

HT Q 4 0<br />

8 Mortadella HT C,D,E,H,I,S,X,ZA 13 0<br />

9 Bacon HT B,C,D,E,H,I,J,M,O,S,U,W,X,Y,Z,ZA 49 12<br />

10 Pork lo<strong>in</strong> HT C,D,H,J,S,ZA 10 0<br />

11 Pariza HT A,C,D,H,X,ZA 14 0<br />

12 P<strong>as</strong>tirma F T 2 0<br />

13 Prosiuto F F,M,R 6 0<br />

14 Salami F D,E,F,G,I,M,P,R,S,U,V,X,ZA 30 3<br />

15<br />

Salami<br />

(cooked)<br />

HT K,L,Q 6 0<br />

16<br />

Pork<br />

shoulder<br />

HT D,H,M,P,S,U,X,ZA 15 0<br />

Total 209 17


The new EC regulation 2073/2005 on<br />

microbiological criteria for <strong>food</strong>stuffs<br />

(safety criteria for L. monocytogenes)


The new EC regulation 2073/2005 on<br />

microbiological criteria for <strong>food</strong>stuffs<br />

Safety Criteria for L. monocytogenes<br />

Food category<br />

Sampl<strong>in</strong>gplan<br />

Limits<br />

n c m M<br />

Stage where the criterion<br />

applies<br />

1.2 Ready-to-eat<br />

<strong>food</strong>s able to support<br />

the growth of L.<br />

monocytogenes<br />

5 0 100 cfu/g 4 placed on the market and<br />

Products ready to be<br />

dur<strong>in</strong>g their shelf-life<br />

5 0 Absence<br />

<strong>in</strong> 25 g 5<br />

Before the <strong>food</strong> h<strong>as</strong> left<br />

the immediate control of<br />

the <strong>food</strong> bus<strong>in</strong>ess operator,<br />

who h<strong>as</strong> produced it<br />

1.3 Ready-to-eat<br />

<strong>food</strong>s unable to<br />

support the growth<br />

of L. monocytogenes<br />

5 0 100 cfu/g<br />

Products ready to be<br />

placed on the market and<br />

dur<strong>in</strong>g their shelf-life


The new EC regulation 2073/2005 on<br />

microbiological criteria for <strong>food</strong>stuffs<br />

(emph<strong>as</strong>is on L. monocytogenes)<br />

the traditional approach b<strong>as</strong>ed on end-product<br />

sampl<strong>in</strong>g and exam<strong>in</strong>ation is no longer sufficient to<br />

<strong>as</strong>sess the compliance of RTE <strong>food</strong>s with the new<br />

criteria<br />

Use of alternative “<strong>tool</strong>s”<br />

<strong>Predictive</strong> Microbiology


Requirements (technical)<br />

for the Food Industry for compliance with the new<br />

safety criteria for LM <strong>in</strong> RTE <strong>food</strong>s<br />

1. Prove that the products support or do not support<br />

growth of L monocytogenes<br />

Probabilistic (Growth/no Growth) models<br />

If the product supports growth<br />

2. Prove that the concentration of the pathogen will<br />

not exceed 100 cfu/g at the end of shelf life <strong>in</strong> retail<br />

K<strong>in</strong>etic models


Requirements (technical)<br />

1.Prove that the products support or do not support<br />

growth of L monocytogenes<br />

Note <strong>in</strong> the regulation<br />

Products are automatically considered to belong to the<br />

category of not support<strong>in</strong>g growth of Lm if<br />

pH


Requirements (technical)<br />

1.Prove that the products support or do not support<br />

growth of L monocytogenes<br />

7,00<br />

pH-a w comb<strong>in</strong>ations of RTE meat<br />

products <strong>in</strong> the Hellenic market<br />

6,50<br />

6,00<br />

pH<br />

5,50<br />

5,00<br />

4,50<br />

4,00<br />

0,890 0,910 0,930 0,950 0,970 0,990<br />

Only 6.1% of the products are automatically considered to belong<br />

to the category of not support<strong>in</strong>g growth of Lm<br />

a w


Requirements (technical)<br />

1.Prove that the products support or do not support<br />

growth of L monocytogenes<br />

Probabilistic (Growth/no Growth) models<br />

7,00<br />

4 o C<br />

6,50<br />

Support Growth<br />

6,00<br />

pH<br />

5,50<br />

5,00<br />

4,50<br />

Do not Support Growth<br />

Growth boundary (P=0.5)<br />

4,00<br />

0,920 0,930 0,940 0,950 0,960 0,970 0,980 0,990<br />

a w<br />

Model:Koutsoumanis et al., 2004, Int. J. Food Micro.


Requirements (technical)<br />

1.Prove that the products support or do not support<br />

growth of L monocytogenes<br />

Probabilistic (Growth/no Growth) models<br />

7,00<br />

15 o C<br />

10 o C<br />

4 o C<br />

6,50<br />

6,00<br />

pH<br />

5,50<br />

5,00<br />

4,50<br />

Growth boundary (P=0.5)<br />

4,00<br />

0,920 0,930 0,940 0,950 0,960 0,970 0,980 0,990<br />

Model:Koutsoumanis et al., 2004<br />

a w


Requirements (technical)<br />

1.Prove that the products support or do not support<br />

growth of L monocytogenes<br />

At which temperature ?


Requirements (technical)<br />

2.Prove that the concentration of the pathogen will<br />

not exceed 100 cfu/g at the end of shelf life <strong>in</strong> retail<br />

Before the <strong>food</strong> h<strong>as</strong> left<br />

the immediate control of the<br />

<strong>food</strong> bus<strong>in</strong>ess operator, who<br />

h<strong>as</strong> produced it<br />

Products ready to be placed<br />

on the market and dur<strong>in</strong>g<br />

their shelf-life<br />

Absence <strong>in</strong> 25 g or<br />


2.Prove that the concentration of the pathogen will<br />

not exceed 100 cfu/g at the end of shelf life <strong>in</strong> retail<br />

Use of available predictive model<strong>in</strong>g software (i.e PMP)


2.Prove that the concentration of the pathogen will<br />

not exceed 100 cfu/g at the end of shelf life <strong>in</strong> retail<br />

Use of available predictive model<strong>in</strong>g software (i.e PMP)<br />

11.0<br />

Listeria monocytogenes<br />

11.0<br />

Listeria monocytogenes<br />

10.0<br />

9.0<br />

4 o C<br />

10.0<br />

9.0<br />

10 o C<br />

8.0<br />

8.0<br />

7.0<br />

7.0<br />

log(CFU/ml)<br />

6.0<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

25 days for 3 logs<br />

<strong>in</strong>cre<strong>as</strong>e<br />

log(CFU/ml)<br />

6.0<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

8 days for 3 logs<br />

<strong>in</strong>cre<strong>as</strong>e<br />

0.0<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Time (Days)<br />

0.0<br />

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25<br />

Time (Days)


2.Prove that the concentration of the pathogen will<br />

not exceed 100 cfu/g at the end of shelf life <strong>in</strong> retail<br />

At which temperature ?<br />

General Requirements <strong>in</strong> Reg 2073/2005<br />

the <strong>food</strong> safety criteria applicable<br />

throughout the shelf-life of the products<br />

can be met under re<strong>as</strong>onably,foreseeable<br />

conditions of distribution, storage and use.


Chill Cha<strong>in</strong> Conditions<br />

Temperature distribution <strong>in</strong> retail refrigerators<br />

(survey <strong>in</strong> Greece)<br />

35<br />

30<br />

% Refrigerators<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 2 4 6 8 10 12 14<br />

Temperature o C


<strong>Predictive</strong> Microbiology <strong>tool</strong>s at Production level<br />

A probabilistic modell<strong>in</strong>g approach for evaluat<strong>in</strong>g<br />

the compliance of RTE <strong>food</strong>s with the new safety<br />

criteria for Listeria monocytogenes<br />

The approach is b<strong>as</strong>ed on the comb<strong>in</strong>ed use of: a)<br />

growth/no growth boundary models, b) k<strong>in</strong>etic growth<br />

models, c) data on product characteristics (pH, aw, shelflife)<br />

and d) storage temperature data<br />

A probabilistic analysis of the above components us<strong>in</strong>g<br />

Monte Carlo simulation, can lead to a more realistic<br />

estimation of the behavior of L. monocytogenes which can<br />

be further used <strong>as</strong> a decision-mak<strong>in</strong>g <strong>tool</strong> regard<strong>in</strong>g the<br />

design or modification of a product’s formulation or its<br />

“use-by-date” <strong>in</strong> order to ensure its compliance


Requirements (technical)<br />

1.Prove that the products support or do not support<br />

growth of L monocytogenes<br />

Probabilistic approach<br />

G/NG<br />

model<br />

Product<br />

Characteristics<br />

(pH, a w …)<br />

Monte Carlo<br />

simulation<br />

Probability of growth<br />

Chill cha<strong>in</strong><br />

characteristics<br />

1<br />

0,9<br />

Cumulative probability<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

0 0,2 0,4 0,6 0,8 1 1,2<br />

Probability of growth for L. monocytogenes<br />

% Refrigerators<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 2 4 6 8 10 12 14<br />

Temperature o C


Requirements (technical)<br />

1.Prove that the product supports or do not support<br />

growth of L monocytogenes<br />

C<strong>as</strong>e study<br />

Product: cooked ham (pH=5.49, a w =0.943)<br />

1<br />

1<br />

Cumulative probability<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

B<strong>in</strong>omial (1, Pg)<br />

probability<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

No Growth<br />

0,6143<br />

Growth<br />

0,3857<br />

0,1<br />

0,1<br />

0<br />

0 0,2 0,4 0,6 0,8 1 1,2<br />

Probability of growth for L. monocytogenes<br />

0<br />

0 1<br />

Growth/No growth for L. monocytogenes


X


Model used<br />

Comb<strong>in</strong>ation of G/NG and k<strong>in</strong>etic models<br />

0,1<br />

0,08<br />

G/NG boundary model<br />

Koutsoumanis et al., 2004<br />

K<strong>in</strong>etic model<br />

Buchanan., 2001<br />

0,06<br />

mmax<br />

0,04<br />

0,02<br />

Probability of growth<br />

1,2<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0<br />

4 6 8<br />

mmax=<br />

Normal (m, sePred)<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20<br />

μ<br />

max<br />

Pg =<br />

=<br />

Temperature ( o C)<br />

fT ( ),Ross et al., 2003<br />

Buchanan, 2001<br />

g( T), Presser et al., 1998<br />

Primary model: Baranyi, μ<br />

a: B<strong>in</strong>omial (1, Pg)<br />

Koutsoumanis et al., 2004<br />

μ: Normal ( ˆ μ , sepred)<br />

max<br />

max<br />

= a×<br />

μ<br />

max


Requirements (technical)<br />

2.Prove that the concentration of the pathogen will<br />

not exceed 100 cfu/g at the end of shelf life <strong>in</strong> retail<br />

C<strong>as</strong>e study<br />

Product: cooked ham (pH=5.49, a w =0.943, N=50ppm, SL=60 days)<br />

Distribution of L. monocytogenes<br />

at the end of shelf life <strong>in</strong> retail<br />

0,25<br />

0,2<br />

In 28% of products Lm will<br />

exceed 100 cfu/g<br />

Probability<br />

0,15<br />

0,1<br />

0,05<br />

0<br />

-2 -1 0 1 2 3 4 5 6 7 8 9 10<br />

L. monocytogenes at the end of retail storage (Log cfu/g)


Requirements (technical)<br />

2.Prove that the concentration of the pathogen will<br />

not exceed 100 cfu/g at the end of shelf life <strong>in</strong> retail<br />

Potential actions for achiev<strong>in</strong>g the desired level of<br />

compliance to the Safety criteria<br />

‣ Adjust the shelf life of the product<br />

‣ Modify the formulation of the product


Requirements (technical)<br />

2.Prove that the concentration of the pathogen will<br />

not exceed 100 cfu/g at the end of shelf life <strong>in</strong> retail<br />

Potential actions for meet<strong>in</strong>g the Safety criteria<br />

Adjust the shelf life of the product<br />

Probability<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

Shelf Life 60 Days Compliance <strong>in</strong> 72th percentile<br />

Shelf Life 43 days:Compliance <strong>in</strong> 90th percentile<br />

Shelf Life 35 Days:Compliance <strong>in</strong> 95th percentile<br />

Shelf Life 25 Days:Compliance <strong>in</strong> 99th percentile<br />

0,1<br />

0<br />

-2 -1 0 1 2 3 4 5 6 7 8 9 10<br />

L. monocytogenes at the end of retail storage (Log cfu/g)


Requirements (technical)<br />

2.Prove that the concentration of the pathogen will<br />

not exceed 100 cfu/g at the end of shelf life <strong>in</strong> retail<br />

Cooked ham<br />

Potential actions for meet<strong>in</strong>g the Safety criteria<br />

Modify the formulation of the product<br />

a w 0.943 0.935<br />

N 50ppm 80ppm<br />

0,45<br />

0,4<br />

0,35<br />

0,3<br />

Compliance <strong>in</strong> 72th percentile<br />

Compliance <strong>in</strong> 95th percentile<br />

a w<br />

-0.848<br />

Tornado graph<br />

Regression Sensitivity for Self-life<br />

Probability<br />

0,25<br />

0,2<br />

0,15<br />

pH<br />

-0.458<br />

0,1<br />

Nitrites<br />

0.269<br />

0,05<br />

-1 -0.5 0 0.5 1<br />

Std b Coefficients<br />

0<br />

-2 -1 0 1 2 3 4 5 6 7 8 9 10<br />

L. monocytogenes at the end of retail storage (Log cfu/g)


Us<strong>in</strong>g the probabilistic approach for both safety<br />

and spoilage<br />

X


Us<strong>in</strong>g the probabilistic approach for both safety<br />

and spoilage<br />

C<strong>as</strong>e study<br />

Product: cooked ham<br />

pH=5.49, a w =0.943, N=50ppm, SL=60 days<br />

SSO: L. sake<br />

Spoilage level 10 7 cfu/g


Us<strong>in</strong>g the probabilistic approach for both safety<br />

and spoilage<br />

C<strong>as</strong>e study<br />

Product: cooked ham SL 60 days<br />

poilage<br />

10<br />

compliant/spoiled<br />

non-compliant/spoiled<br />

Level<br />

LAB at end of SL (log cfu/g)<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

compliant/unspoiled<br />

3<br />

non-compliant/unspoiled<br />

2<br />

-2 -1 0 1 2 3 4 5 6 7<br />

L. monocytogenes at the end of SL (log cfu/g)<br />

Safety criterion


Us<strong>in</strong>g the probabilistic approach for both safety<br />

and spoilage<br />

C<strong>as</strong>e study<br />

SL 60 days<br />

Product: cooked ham<br />

SL 25 days<br />

10<br />

compliant/spoiled<br />

non-compliant/spoiled<br />

10<br />

compliant/spoiled<br />

non-compliant/spoiled<br />

9<br />

9<br />

LAB at end of SL (log cfu/g)<br />

8<br />

7<br />

6<br />

5<br />

4<br />

compliant/unspoiled<br />

LAB at end of SL (log cfu/g)<br />

8<br />

7<br />

6<br />

5<br />

4<br />

compliant/unspoiled<br />

3<br />

2<br />

-2 -1 0 1 2 3 4 5 6 7<br />

L. monocytogenes at the end of SL (log cfu/g)<br />

72% compliance<br />

non-compliant/unspoiled<br />

17% spoiled before end<br />

of Shelf life<br />

3<br />

2<br />

-2 -1 0 1 2 3 4 5 6 7<br />

L. monocytogenes at the end of SL (log cfu/g)<br />

99% compliance<br />

non-compliant/unspoiled<br />

0.1% spoiled before end<br />

of Shelf life


Acknowledgement<br />

EU Framework VI programme on Food Quality and Safety,<br />

‘<strong>ProSafeBeef</strong>’ Food-CT-2006-36241<br />

EU Framework V programme on “Quality of Life and<br />

Management of Liv<strong>in</strong>g Resources”, Key Action 1-Health<br />

Food and Environment,”SMAS” QLK1-CT2002-02545<br />

“Development and Application of Microbial Time<br />

Temperature Indicators for Monitor<strong>in</strong>g Food Quality &<br />

Safety” Greek Government & Commission of the European<br />

Community, PENED 2003


<strong>Predictive</strong> <strong>food</strong> <strong>microbiology</strong> <strong>as</strong> a <strong>tool</strong> <strong>in</strong><br />

<strong>risk</strong> <strong>as</strong>sessment<br />

Kost<strong>as</strong> Koutsoumanis<br />

Lab of Food Microbiology and Hygiene<br />

Dpt. Of Food Science and Technology<br />

Aristotle University of Thessaloniki,<br />

Contact: kkoutsou@agro.auth.gr

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!