29.11.2014 Views

p-γ3-CN - IDF Cheese Ripening

p-γ3-CN - IDF Cheese Ripening

p-γ3-CN - IDF Cheese Ripening

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

University of Milan<br />

Pyroglutamyl- 3<br />

-Casein, a Proteolysis Resistant<br />

Peptide Present in Long Ripened <strong>Cheese</strong>s<br />

S. Cattaneo 1 , F. Masotti 1 , I. De Noni 1 , V. Rosi 1 , 1 , M. Brasca 2 , L. Pellegrino 1<br />

1<br />

Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS),<br />

Università degli Studi di Milano, Italia;<br />

2<br />

ISPA Istituto di Scienze delle Produzioni Alimentari, Italia<br />

<strong>IDF</strong> <strong>Cheese</strong> <strong>Ripening</strong> & Technology Symposium - Madison, 21-24 May 2012


Formation of pyro-glutamic acid<br />

‣ Cyclization of free GLU to pyro-GLU has been highlighted in several ripened cheeses<br />

‣ When N-terminal GLU or GLN cyclize, N-pyroglutamyl peptides form<br />

N-pyro-GLU<br />

N-GLN<br />

N-GLU<br />

Significance of the presence of N-pyroglutamyl peptides in food<br />

resistance to (gastro-intestinal) proteinases<br />

taste enhancers (umami taste)<br />

<strong>IDF</strong> <strong>Cheese</strong> <strong>Ripening</strong> & Technology Symposium - Madison, 21-24 May 2012


mV<br />

Background: identification of pyroglutamyl-γ 3 -casein (p-γ3-<strong>CN</strong>) in<br />

Grana Padano and Parmigiano Reggiano cheeses<br />

in cheese, plasmin plays a major role in primary hydrolysis of β-casein (<strong>CN</strong>) leading to<br />

formation of γ1-<strong>CN</strong> f(29-209), γ2-<strong>CN</strong> f(106-209) and γ3-<strong>CN</strong> f(108-209)<br />

cyclization of N-terminal GLU of γ3-<strong>CN</strong> and formation of p-γ3-<strong>CN</strong> was observed during<br />

ripening of Grana Padano and Parmigiano Reggiano cheeses (Masotti et al., 2010)<br />

128<br />

126<br />

124<br />

122<br />

120<br />

118<br />

116<br />

114<br />

112<br />

110<br />

108<br />

Parmigiano<br />

Reggiano<br />

Grana<br />

Padano<br />

3-<strong>CN</strong><br />

p-3-<strong>CN</strong><br />

bA 1 bA 2<br />

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30<br />

Minutes<br />

CZE of Grana Padano (14-month ripened)<br />

and Parmigiano Reggiano (15-year ripened )<br />

100<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

p-3-<strong>CN</strong><br />

11539.4<br />

10000 10500 11000 11500 12000<br />

Mass<br />

HPLC/ESI-MS<br />

deconvoluted spectrum<br />

<strong>IDF</strong> <strong>Cheese</strong> <strong>Ripening</strong> & Technology Symposium - Madison, 21-24 May 2012


<strong>Cheese</strong> age (months)<br />

An application: Grana Padano and Parmigiano Reggiano age<br />

estimation (Masotti et al., 2010)<br />

45<br />

40<br />

35<br />

30<br />

: Grana Padano (n=149)<br />

: Parmigiano-Reggiano (n=27)<br />

R 2 = 0.93<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38<br />

Peak area ratio (100 x pγ 3 -<strong>CN</strong>/(p-γ 3 -<strong>CN</strong> + γ 3 -<strong>CN</strong>)<br />

<strong>IDF</strong> <strong>Cheese</strong> <strong>Ripening</strong> & Technology Symposium - Madison, 21-24 May 2012


Survey of commercial cheeses<br />

Bitto<br />

Gouda<br />

Grana Padano<br />

Tomme de Savoie<br />

Fontina<br />

Cheddar<br />

Parmigiano<br />

Reggiano<br />

Gruyère<br />

Beaufort<br />

Comté<br />

Provolone<br />

Sbrinz<br />

Emmentaler<br />

p-3-<strong>CN</strong> not detected<br />

p-3-<strong>CN</strong> detected<br />

<strong>IDF</strong> <strong>Cheese</strong> <strong>Ripening</strong> & Technology Symposium - Madison, 21-24 May 2012


Studied cheeses:<br />

Parmigiano Reggiano PDO and Fontina PDO cheeses<br />

p-γ3-<strong>CN</strong> detectable<br />

since 2 months of ripening<br />

p-γ3-<strong>CN</strong> not detectable<br />

in 6-month ripened cheese<br />

• Raw milk<br />

• Natural whey starter<br />

(Lactobacillus helveticus…)<br />

• Curd cooking up to 54 °C<br />

• Curd moulding for 48 h<br />

• <strong>Ripening</strong> ≥ 12 months<br />

• pH during ripening: 5.1-5.4<br />

• Raw milk<br />

• No starter (Streptococcus thermophilus,<br />

Enterococcus faecium, E. faecalis…)<br />

• Curd cooking up to 48 °C<br />

• Curd pressing<br />

• <strong>Ripening</strong> ≥ 3 months<br />

• pH during ripening: 6.0-6.5<br />

<strong>IDF</strong> <strong>Cheese</strong> <strong>Ripening</strong> & Technology Symposium - Madison, 21-24 May 2012


Aim of the research<br />

Elucidate some of the (bio)chemical phenomena<br />

involved in p-γ3-<strong>CN</strong> occurrence in cheese<br />

formation of p-γ3-<strong>CN</strong> in:<br />

degradation of p-γ3-<strong>CN</strong> by:<br />

model systems<br />

model cheeses<br />

real cheese<br />

starter bacteria of Parmigiano<br />

Reggiano cheese<br />

bacteria of Fontina cheese<br />

<strong>IDF</strong> <strong>Cheese</strong> <strong>Ripening</strong> & Technology Symposium - Madison, 21-24 May 2012


Peak area of p- 3 -<strong>CN</strong> (µV*s)<br />

Understanding formation of p-γ3-<strong>CN</strong>: model systems<br />

β-<strong>CN</strong> + bovine plasmin<br />

incubation at 40 °C for 20 h<br />

Incubation at 40 °C up to<br />

300 h at different pH values<br />

evaluation of<br />

p-γ3-<strong>CN</strong> by CZE<br />

formation of γ3-<strong>CN</strong><br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

pH=4.6<br />

pH=5.2<br />

pH=6.3<br />

pH=7.0<br />

0 50 100 150 200 250 300<br />

Incubation time (h)<br />

<strong>IDF</strong> <strong>Cheese</strong> <strong>Ripening</strong> & Technology Symposium - Madison, 21-24 May 2012


Peak area of p- 3 -<strong>CN</strong> (µV*s)<br />

Understanding formation of p-γ3-<strong>CN</strong>:<br />

model cheeses<br />

renneting<br />

microfiltered milk +<br />

plasmin at 40 °C for 20 h<br />

acidification<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

curd (pH=6.0)<br />

curd (pH=4.6)<br />

incubation at 40 °C<br />

up to 300 h<br />

evaluation of<br />

p-γ3-<strong>CN</strong> by CZE<br />

pH=4.6<br />

pH=6.0<br />

cheese without added plasmin<br />

0 50 100 150 200 250 300<br />

Incubation time (h)<br />

<strong>IDF</strong> <strong>Cheese</strong> <strong>Ripening</strong> & Technology Symposium - Madison, 21-24 May 2012


Peak area of p-γ3-<strong>CN</strong> (V*s)<br />

Understanding formation of p-γ3-<strong>CN</strong>: real cheese<br />

Fontina cheese<br />

(no detectable p-γ3-<strong>CN</strong>)<br />

adjusted to different pH<br />

values<br />

1400<br />

1200<br />

1000<br />

pH=4.6<br />

incubation in<br />

presence of NaN 3<br />

at 40 °C up to 300 h<br />

evaluation of<br />

p-γ3 –<strong>CN</strong> by CZE<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0 50 100 150 200 250 300<br />

Incubation time (h)<br />

pH=5.2<br />

pH=6.3<br />

pH=7.0<br />

<strong>IDF</strong> <strong>Cheese</strong> <strong>Ripening</strong> & Technology Symposium - Madison, 21-24 May 2012


Understanding formation of p-γ3-<strong>CN</strong>: main outcomes<br />

protein<br />

protein<br />

N-terminal<br />

N-terminal<br />

1. Cyclization of 3-<strong>CN</strong> in cheese is a chemical phenomenon<br />

2. Formation of p-3-<strong>CN</strong> is pH dependent<br />

<strong>IDF</strong> <strong>Cheese</strong> <strong>Ripening</strong> & Technology Symposium - Madison, 21-24 May 2012


Absorbance at 210 nm (mV)<br />

Microbial degradation of p-γ3-<strong>CN</strong> solution<br />

Solution<br />

of p-3-<strong>CN</strong><br />

Enterococcus faecium<br />

Enterococcus faecalis<br />

(from Fontina cheese)<br />

Lactobacillus helveticus<br />

(from natural whey starter of<br />

Parmigiano Reggiano cheese)<br />

pH=6.3<br />

Incubation at 40 °C<br />

up to 72 h<br />

pH=5.2<br />

evaluation of p-3-<strong>CN</strong><br />

degradation by<br />

HPLC/ESI-MS<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

p-3-<strong>CN</strong><br />

0 h<br />

5 h<br />

24 h<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18<br />

Time (min)<br />

<strong>IDF</strong> <strong>Cheese</strong> <strong>Ripening</strong> & Technology Symposium - Madison, 21-24 May 2012


Absorbance at 210 nm (mV)<br />

Degradation of p-γ3-<strong>CN</strong> in cheese by<br />

bacteria from Fontina cheese<br />

Parmigiano Reggiano<br />

cheese (15-year ripened)<br />

Enterococcus faecium<br />

Enterococcus faecalis<br />

( from Fontina cheese)<br />

incubation at 40 °C<br />

up to 72 h at pH=6.3<br />

evaluation of p-3-<strong>CN</strong><br />

degradation by<br />

HPLC/ESI-MS<br />

p-3-<strong>CN</strong><br />

0 h<br />

24 h<br />

72 h<br />

Time (min)<br />

<strong>IDF</strong> <strong>Cheese</strong> <strong>Ripening</strong> & Technology Symposium - Madison, 21-24 May 2012


Absorbance at 210 nm (mV)<br />

Degradation of p-γ3-<strong>CN</strong> in cheese by<br />

starter bacteria from Parmigiano Reggiano cheese<br />

Parmigiano Reggiano<br />

cheese (15-year ripened)<br />

Lactobacillus helveticus<br />

(from natural whey starter of<br />

Parmigiano Reggiano cheese)<br />

incubation at 40 °C<br />

up to 72 h at pH=5.2<br />

evaluation of p-3-<strong>CN</strong><br />

degradation by<br />

HPLC/ESI-MS<br />

p-3-<strong>CN</strong><br />

0 h<br />

24 h<br />

72 h<br />

Time (min)<br />

<strong>IDF</strong> <strong>Cheese</strong> <strong>Ripening</strong> & Technology Symposium - Madison, 21-24 May 2012


Conclusions (1)<br />

Parmigiano Reggiano cheese<br />

Fontina cheese<br />

pH value (5.2-5.4) during<br />

ripening promotes 3-<strong>CN</strong><br />

cyclization<br />

whey starter bacteria do not<br />

proteolyze p-3-<strong>CN</strong><br />

low rate of cyclization of 3-<br />

<strong>CN</strong> during ripening (pH value<br />

6.0-6.5)<br />

proteolysis of p-3-<strong>CN</strong> casein<br />

by Enterococcus spp.<br />

Presence of p-3-<strong>CN</strong><br />

since 2 months of ripening<br />

No detectable p-3-<strong>CN</strong><br />

up to 6 months of ripening<br />

<strong>IDF</strong> <strong>Cheese</strong> <strong>Ripening</strong> & Technology Symposium - Madison, 21-24 May 2012


Conclusions (2)<br />

The level of p-γ3-<strong>CN</strong> in cheese is the result of two<br />

conflicting phenomena:<br />

cyclization of N-terminal GLU of 3-<strong>CN</strong><br />

proteolysis of p-3-<strong>CN</strong> by bacterial proteinases<br />

In very long ripened cheeses, cyclization prevails<br />

over proteolysis and occurrence of p-3-<strong>CN</strong> could<br />

be expected also in high pH cheeses<br />

<strong>IDF</strong> <strong>Cheese</strong> <strong>Ripening</strong> & Technology Symposium - Madison, 21-24 May 2012


Thank you!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!