29.11.2014 Views

Chapter 23: Metamorphic Textures - Faculty web pages

Chapter 23: Metamorphic Textures - Faculty web pages

Chapter 23: Metamorphic Textures - Faculty web pages

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Chapter</strong> <strong>23</strong>: <strong>Metamorphic</strong> <strong>Textures</strong><br />

<strong>Textures</strong> are small-scale scale penetrative features<br />

Relict <strong>Textures</strong><br />

<br />

<br />

<br />

Inherited from original rock<br />

“Blasto-” = relict<br />

Pseudomorphs of minerals or pre-metamorphic<br />

textures/structures


<strong>Chapter</strong> <strong>23</strong>: <strong>Metamorphic</strong> <strong>Textures</strong><br />

The Processes of Deformation, Recovery, and<br />

Recrystallization<br />

1. Cataclastic Flow<br />

Mechanical fragmentation and sliding,<br />

rotation of fragments<br />

Bending, kinking, deformation twins,<br />

undulose extinction<br />

Technically not metamorphic


<strong>Chapter</strong> <strong>23</strong>: <strong>Metamorphic</strong> <strong>Textures</strong><br />

2. Pressure Solution<br />

c. Pressure solution of a quartz crystal<br />

in a deformed quartzite (σ 1<br />

is vertical).<br />

Pressure solution results in a serrated<br />

solution surface in high-strain areas<br />

(small arrows) and precipitation in lowstrain<br />

areas (large arrow). ~ 0.5 mm<br />

across.<br />

Figure <strong>23</strong>-2 a. Highest strain in areas near<br />

grain contacts (hatch pattern).<br />

b. High-strain areas dissolve and material<br />

precipitates in adjacent low-strain areas<br />

(shaded).<br />

The process is accompanied by vertical<br />

shortening.<br />

.After Hibbard (1995) Petrography to Petrogenesis. Prentice Hall.


<strong>Chapter</strong> <strong>23</strong>: <strong>Metamorphic</strong> <strong>Textures</strong><br />

3. Plastic Intracrystalline Deformation<br />

No loss of cohesion<br />

Several processes may operate simultaneously<br />

Defect migration<br />

Slip planes<br />

Dislocation glide<br />

Deformation twinning


<strong>Chapter</strong> <strong>23</strong>: <strong>Metamorphic</strong> <strong>Textures</strong><br />

4. Recovery<br />

Loss of stored strain energy by vacancy<br />

migration, dislocation migration and<br />

dislocation annihilation<br />

Formation of low-strain subgrains


<strong>Chapter</strong> <strong>23</strong>: <strong>Metamorphic</strong> <strong>Textures</strong><br />

Recovery = dislocation migration to form two<br />

strain-free subgrains<br />

Figure <strong>23</strong>-5. Illustration of a recovery<br />

process in which dislocations migrate to<br />

form a subgrain boundary. Winter (2001) An<br />

Introduction to Igneous and <strong>Metamorphic</strong> Petrology.<br />

Prentice Hall.


<strong>Chapter</strong> <strong>23</strong>: <strong>Metamorphic</strong> <strong>Textures</strong><br />

a. Undulose extinction in<br />

quartz<br />

b. Elongate subgrains in quartz<br />

due to dislocation formation and<br />

migration<br />

Figure <strong>23</strong>-4 Winter (2001) An Introduction to Igneous and <strong>Metamorphic</strong> Petrology. Prentice Hall.


<strong>Chapter</strong> <strong>23</strong>: <strong>Metamorphic</strong> <strong>Textures</strong><br />

5. Recrystallization<br />

Grain boundary migration<br />

Subgrain rotation<br />

Solid-state diffusion creep at higher T<br />

Crystal-plastic deformation<br />

Grain boundary sliding and area reduction


Recrystallization:<br />

Grain Boundary<br />

Migration - recovery<br />

and recrystallization<br />

by which large grains<br />

form by the addition<br />

of smaller strained<br />

grains<br />

Sub-grain rotation<br />

Figure <strong>23</strong>-6. Recrystallization by<br />

(a) grain-boundary migration<br />

(including nucleation) and<br />

(b) subgrain rotation. From Passchier<br />

and Trouw (1996) Microtectonics. Springer-<br />

Verlag. Berlin.


Recrystallization by grain<br />

boundary migration and<br />

sub-grain rotation<br />

Figure <strong>23</strong>-7a. Recrystallized quartz<br />

with irregular (sutured) boundaries,<br />

formed by grain boundary migration.


Differences in development of crystal<br />

form among some metamorphic<br />

minerals. From Best (1982). Igneous and<br />

<strong>Metamorphic</strong> Petrology. W. H. Freeman. San Francisco.<br />

The Crystalloblastic Series<br />

Most Euhedral<br />

Titanite, rutile, pyrite, spinel<br />

Garnet, sillimanite, staurolite,<br />

tourmaline<br />

Epidote, magnetite, ilmenite<br />

Andalusite, pyroxene, amphibole<br />

Mica, chlorite, dolomite, kyanite<br />

Calcite, vesuvianite, scapolite<br />

Feldspar, quartz, cordierite<br />

Least Euhedral


<strong>Metamorphic</strong> <strong>Textures</strong><br />

<strong>Textures</strong> of Regional Metamorphism<br />

Dynamothermal (crystallization under dynamic<br />

conditions)<br />

Orogeny- long-term mountain-building<br />

May comprise<br />

several Tectonic Events<br />

several Deformational Phases<br />

May have an accompanying <strong>Metamorphic</strong> Cycles with<br />

one or more Reaction Events


<strong>Metamorphic</strong> <strong>Textures</strong><br />

<strong>Textures</strong> of Regional Metamorphism<br />

Tectonite- a deformed rock with a texture that<br />

records the deformation<br />

Fabric- the complete spatial and geometric<br />

configuration of textural elements


Progressive<br />

syntectonic<br />

metamorphism of a<br />

volcanic graywacke,<br />

New Zealand. From<br />

Best (1982). Igneous and<br />

<strong>Metamorphic</strong> Petrology. W. H.<br />

Freeman. San Francisco.


Fig <strong>23</strong>-21 21 Types of foliations<br />

a. Compositional layering<br />

b. Preferred orientation of<br />

platy minerals<br />

c. Shape of deformed grains<br />

d. Grain size variation<br />

Figure <strong>23</strong>-21. Types of fabric elements that may<br />

define a foliation. From Turner and Weiss (1963) and Passchier<br />

and Trouw (1996).


a<br />

b<br />

Figure <strong>23</strong>-<strong>23</strong>. Continuous<br />

schistosity developed by<br />

dynamic recrystallization of<br />

biotite, muscovite, and quartz. a.<br />

Plane-polarized light, width of field 1 mm. b.<br />

Crossed-polars, width of field 2 mm. Although<br />

there is a definite foliation in both samples, the<br />

minerals are entirely strain-free.


Progressive development (a → c) of a<br />

crenulation cleavage for both<br />

asymmetric (top) and symmetric<br />

(bottom) situations. From Spry (1969)<br />

<strong>Metamorphic</strong> <strong>Textures</strong>. Pergamon. Oxford.


Figure <strong>23</strong>-24a. Symmetrical crenulation cleavages in amphibole-quartz-rich schist. Note<br />

concentration of quartz in hinge areas. From Borradaile et al. (1982) Atlas of Deformational and <strong>Metamorphic</strong> Rock<br />

Fabrics. Springer-Verlag.


Figure <strong>23</strong>-24b. Asymmetric crenulation cleavages in mica-quartz-rich schist. Note horizontal<br />

compositional layering (relict bedding) and preferential dissolution of quartz from one limb of the<br />

folds. From Borradaile et al. (1982) Atlas of Deformational and <strong>Metamorphic</strong> Rock Fabrics. Springer-Verlag.


Types of lineations<br />

a. Preferred orientation<br />

of elongated<br />

mineral aggregates<br />

b. Preferred<br />

orientation of<br />

elongate minerals<br />

c. Lineation defined by<br />

platy minerals<br />

d. Fold axes<br />

(especially of<br />

crenulations)<br />

Figure <strong>23</strong>-26. Types of fabric elements that<br />

define a lineation. From Turner and Weiss (1963)<br />

Structural Analysis of <strong>Metamorphic</strong> Tectonites. McGraw Hill.


Development of an axial-planar cleavage in folded<br />

metasediments. Circular images are microscopic<br />

views showing that the axial-planar cleavage is a<br />

crenulation cleavage, and is developed<br />

preferentially in the micaceous layers. From Gilluly,<br />

Waters and Woodford (1959) Principles of Geology, W.H. Freeman;<br />

and Best (1982). Igneous and <strong>Metamorphic</strong> Petrology. W. H.<br />

Freeman. San Francisco.


Pre-kinematic<br />

crystals<br />

a. Bent crystal with<br />

undulose<br />

extinction<br />

b. Foliation<br />

wrapped around<br />

a porphyroblast<br />

c. Pressure shadow<br />

or fringe<br />

d. Kink bands or<br />

folds<br />

e. Microboudinage<br />

f. Deformation<br />

twins<br />

Figure <strong>23</strong>-34. Typical textures of prekinematic<br />

crystals. From Spry (1969)<br />

<strong>Metamorphic</strong> <strong>Textures</strong>. Pergamon.<br />

Oxford.


Post-kinematic crystals<br />

a. Helicitic folds b. Randomly oriented crystals c. Polygonal arcs<br />

d. Chiastolite e. Late, inclusion-free rim on a poikiloblast<br />

f. Random aggregate pseudomorph<br />

Figure <strong>23</strong>-<br />

35. Typical<br />

textures of<br />

postkinematic<br />

crystals. From<br />

Spry (1969)<br />

<strong>Metamorphic</strong><br />

<strong>Textures</strong>.<br />

Pergamon.<br />

Oxford.


Syn-kinematic crystals<br />

Spiral Porphyroblast<br />

Figure <strong>23</strong>-38. Traditional interpretation of spiral S i<br />

train<br />

in which a porphyroblast is rotated by shear as it grows.<br />

From Spry (1969) <strong>Metamorphic</strong> <strong>Textures</strong>. Pergamon. Oxford.


Syn-kinematic crystals<br />

Figure <strong>23</strong>-38.<br />

Spiral S i<br />

train in<br />

garnet, Connemara,<br />

Ireland. Magnification<br />

~20X. From Yardley et<br />

al. (1990) Atlas of<br />

<strong>Metamorphic</strong> Rocks and<br />

their <strong>Textures</strong>.<br />

Longmans.


Syn-kinematic crystals<br />

Figure <strong>23</strong>-38.<br />

“Snowball<br />

garnet” with<br />

highly rotated<br />

spiral S i<br />

.<br />

Porphyroblast<br />

is ~ 5 mm in<br />

diameter. From<br />

Yardley et al. (1990)<br />

Atlas of <strong>Metamorphic</strong><br />

Rocks and their<br />

<strong>Textures</strong>. Longmans.


Post-kinematic: S i<br />

is identical<br />

to and continuous with S e<br />

Pre-kinematic: Porphyroblasts<br />

are post-S 2<br />

. S i<br />

is inherited<br />

from an earlier deformation.<br />

S e<br />

is compressed about the<br />

porphyroblast in (c) and a<br />

pressure shadow develops.<br />

Syn-kinematic: Rotational<br />

porphyroblasts in which S i<br />

is<br />

continuous with S e<br />

suggesting<br />

that deformation did not<br />

outlast porphyroblast growth.<br />

From Yardley (1989) An Introduction to<br />

<strong>Metamorphic</strong> Petrology. Longman.


Figure <strong>23</strong>-54. Portion of a multiple coronite developed as concentric rims due to reaction at what was<br />

initially the contact between an olivine megacryst and surrounding plagioclase in anorthosites of the<br />

upper Jotun Nappe, W. Norway. From Griffen (1971) J. Petrol., 12, 219-243.


Photomicrograph of multiple reaction<br />

rims between olivine (green, left) and<br />

plagioclase (right).


Coronites in outcrop. Cores of orthopyroxene (brown) with successive rims of<br />

clinopyroxene (dark green) and garnet (red) in an anorthositic matrix. Austrheim,<br />

Norway.


<strong>Chapter</strong> <strong>23</strong>: <strong>Metamorphic</strong> <strong>Textures</strong><br />

<strong>Textures</strong> of Contact Metamorphism<br />

<br />

<br />

<br />

<br />

Typically shallow pluton aureoles (low-P)<br />

Crystallization/recrystallization is near-static<br />

Granoblastic – minerals equant and meet at<br />

triple junctions w/120° angles<br />

Decussate – criss-cross cross arrangement of<br />

prismatic or platy minerals<br />

Hornfels, granofels<br />

Relict textures are common


Progressive thermal<br />

metamorphism of<br />

slate. From Best (1982).<br />

Igneous and <strong>Metamorphic</strong><br />

Petrology. W. H. Freeman. San<br />

Francisco.


Progressive thermal<br />

metamorphism of<br />

slate. From Best (1982).<br />

Igneous and <strong>Metamorphic</strong><br />

Petrology. W. H. Freeman. San<br />

Francisco.


Progressive thermal<br />

metamorphism of<br />

slate. From Best (1982).<br />

Igneous and <strong>Metamorphic</strong><br />

Petrology. W. H. Freeman. San<br />

Francisco.


Figure <strong>23</strong>-11. Drawings of quartz-mica schists.<br />

Closer spacing of micas in the lower half causes quartz grains to passively elongate in<br />

order for quartz-quartz boundaries to meet mica (001) faces at 90 o . From Shelley (1993).


Depletion haloes<br />

Progressive development of a<br />

depletion halo about a growing<br />

porphyroblast. From Best<br />

(1982). Igneous and<br />

<strong>Metamorphic</strong> Petrology. W. H.<br />

Freeman. San Francisco.<br />

Figure <strong>23</strong>-13. Light colored depletion haloes around cm-sized<br />

garnets in amphibolite. Fe and Mg were less plentiful, so that<br />

hornblende was consumed to a greater extent than was plagioclase<br />

as the garnets grew, leaving hornblende-depleted zones. Sample<br />

courtesy of Peter Misch. Winter (2001) An Introduction to<br />

Igneous and <strong>Metamorphic</strong> Petrology. Prentice Hall.<br />

Depletion halo around garnet porphyroblast. Boehls Butte area, Idaho

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!