28.11.2014 Views

Evaluation of PGPR strains on wheat yield and quality parameters

Evaluation of PGPR strains on wheat yield and quality parameters

Evaluation of PGPR strains on wheat yield and quality parameters

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Evaluati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>PGPR</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> <strong>on</strong> <strong>wheat</strong> <strong>yield</strong> <strong>and</strong> <strong>quality</strong><br />

<strong>parameters</strong><br />

Metin Turan 1 , Medine Güllüce 2 , Güleray AĞAR 2 Fikrettin Sahin 3*<br />

1 Ataturk University, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil Science <strong>and</strong> Plant Nutriti<strong>on</strong>,<br />

Erzurum 25240, Turkey<br />

2 Ataturk University, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, Erzurum 25240, Turkey<br />

3* Yeditepe University, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering <strong>and</strong> Architecture, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Genetics <strong>and</strong><br />

Bioengineering, Kayisdagi, Istanbul 34755, Turkey<br />

Corresp<strong>on</strong>ding author: m_turan25@hotmail.com<br />

Abstract<br />

N 2 -fixing <strong>and</strong> P-solubilizing bacteria are important in plant nutriti<strong>on</strong> increasing N <strong>and</strong> P uptake<br />

by the plants, <strong>and</strong> playing a significant role as plant growth-promoting rhizobacteria (<str<strong>on</strong>g>PGPR</str<strong>on</strong>g>)<br />

in the bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ertilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> crops. In 2007 <strong>and</strong> 2008, a field study was c<strong>on</strong>ducted in two different<br />

locati<strong>on</strong>s (Erzurum <strong>and</strong> Ispir) in the Eastern part <str<strong>on</strong>g>of</str<strong>on</strong>g> Turkey for investigating the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> two<br />

N 2 -fixing <strong>and</strong> P-solubilizing <str<strong>on</strong>g>PGPR</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> al<strong>on</strong>e <strong>and</strong> in combinati<strong>on</strong>s <strong>on</strong> plant <strong>yield</strong> <strong>and</strong><br />

nutrient c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>wheat</strong> (Triticum aestivum L.) in comparis<strong>on</strong> to c<strong>on</strong>trol <strong>and</strong> optimum <strong>and</strong><br />

half doses <str<strong>on</strong>g>of</str<strong>on</strong>g> N fertilizer applicati<strong>on</strong> under field c<strong>on</strong>diti<strong>on</strong>. All inoculati<strong>on</strong>s <strong>and</strong> fertilizer<br />

applicati<strong>on</strong>s significantly increased grain <strong>yield</strong> (GY), straw <strong>yield</strong> (SY), total <strong>yield</strong> (TY), <strong>and</strong><br />

macro <strong>and</strong> micro nutrients <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>wheat</strong> over the c<strong>on</strong>trol. Mixed <str<strong>on</strong>g>PGPR</str<strong>on</strong>g> inoculati<strong>on</strong>s with the strain<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> OSU-142 + M3 + Azospirillum Sp245 has significantly increased grain <strong>yield</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>wheat</strong> as<br />

good as full doses <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen. The highest leaf, grain, <strong>and</strong> straw N <strong>and</strong> S c<strong>on</strong>tents were<br />

obtained from mixed inoculati<strong>on</strong> (with the OSU-142 + M3 + Azospirillum Sp245 ) +40 kg N<br />

ha -1 , but P, K, Mn, Fe, <strong>and</strong> Zn c<strong>on</strong>tents were obtained from Bacillus M3 treatment. The data<br />

suggested that seed inoculati<strong>on</strong> with OSU-142 + M3 + Azospirillum Sp245 may reduce<br />

fertilizer rates down to 50% in <strong>wheat</strong> producti<strong>on</strong>.<br />

Key words: Inoculati<strong>on</strong>; grain <strong>yield</strong>, plant growth-promoting rhizobacteria; macro <strong>and</strong> micro<br />

element<br />

1. Introducti<strong>on</strong><br />

Nitrogen <strong>and</strong> phosphorus are known to be essential nutrients for plant growth <strong>and</strong><br />

development. Intensive farming practices that achieve high <strong>yield</strong> require chemical fertilizers,<br />

which are not <strong>on</strong>ly costly but may also create envir<strong>on</strong>mental problems. A group <str<strong>on</strong>g>of</str<strong>on</strong>g> bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ertilizers<br />

called plant growth promoting rhizobacteria (<str<strong>on</strong>g>PGPR</str<strong>on</strong>g>) (Kloepper et al. 1980) c<strong>on</strong>tain<br />

<str<strong>on</strong>g>strains</str<strong>on</strong>g> from genera such as Pseudom<strong>on</strong>as, Azospirillium, Azotobacter, Bacillus,<br />

Burkholderia, Enterobacter, Rhizobium, Erwinia <strong>and</strong> Flavobacterium (Rodriguez <strong>and</strong> Fraga<br />

1999). Thus organisms are important for agriculture in order to promote the circulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

plant nutrients <strong>and</strong> reduce the need from chemical fertilizers. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the studies reporting<br />

beneficial effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the above menti<strong>on</strong>ed <str<strong>on</strong>g>PGPR</str<strong>on</strong>g> were carried out in warm <strong>and</strong> subtropical<br />

climates with favorable ambient temperatures. These bacteria may not be effective in cold<br />

temperature c<strong>on</strong>diti<strong>on</strong>s. Therefore, a study was c<strong>on</strong>ducted in order to investigate the effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> al<strong>on</strong>e <strong>and</strong> in combinati<strong>on</strong>s with N 2 -fixing <strong>and</strong> P-solubilizing <str<strong>on</strong>g>PGPR</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> <strong>on</strong> nodulati<strong>on</strong>,<br />

plant growth, nutrient uptake <strong>and</strong> grain <strong>yield</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>wheat</strong> in the cold highl<strong>and</strong> (Erzurum) <strong>and</strong> low<br />

l<strong>and</strong> ( Ispir) plateaus.<br />

2. Material <strong>and</strong> methods<br />

The experiments were c<strong>on</strong>ducted using a r<strong>and</strong>omized complete block design in a<br />

factorial arrangement each having 10 main treatments as c<strong>on</strong>trol (without inoculati<strong>on</strong><br />

1


<strong>and</strong> any fertilizer applicati<strong>on</strong>), Nitrogen (80 kg N ha -1 ), Nitrogen (40 kg N ha -1 ),<br />

Bacillus OSU-142, Bacillus M3, Azospirillum sp. 245, Mixed (OSU-142 + M3+<br />

Azospirillum Sp245), Bacillus megaterium RC07, Paenibacillus polymyxa RC05 <strong>and</strong><br />

Raoultella terrigena for 2007 <strong>and</strong> 7 treatment also added in 2008, Burkholderia<br />

cepacia OSU7, OSU142 AMP Res, M3 Amp Res, Sp245 Amp Res, P. polymyxa 2/2,<br />

B. megaterium T17, <strong>and</strong> Mixed + 40 kg N ha -1 . Wheat (Triticum aestivum spp.<br />

vulgare var. Kirik) was sown in 7 m x 4 m plots having 34 rows so as to give 18 kg<br />

seeds da -1 (430 seeds per m 2 ) <strong>on</strong> 10 <strong>and</strong> 17 May in 2007, 4 <strong>and</strong> 2 May in 2008 at site<br />

I <strong>and</strong> site II. Maximum care has been taken not to c<strong>on</strong>taminate <strong>and</strong> mix bacterial<br />

inoculati<strong>on</strong>s during sowing. The data were subjected to analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> variance (ANOVA)<br />

using SPSS 13.0 (SPSS Inc., 2004) statistical program. Since “year x treatment”<br />

interacti<strong>on</strong> was not significant in many <strong>parameters</strong> evaluated, data were combined<br />

over years, <strong>and</strong> means were presented. Mean values were separated according to<br />

LSD test at P=0.05.<br />

3. Result<br />

3.1.Yield <strong>and</strong> <strong>yield</strong> <strong>parameters</strong><br />

The results showed that GY, SY, harvest index (HI) <strong>and</strong> TY <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>wheat</strong> cultivars in each<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> two locati<strong>on</strong>s in both years significantly increased by N 2 -fixing <strong>and</strong> P-solubilizing <str<strong>on</strong>g>PGPR</str<strong>on</strong>g><br />

<str<strong>on</strong>g>strains</str<strong>on</strong>g> applicati<strong>on</strong> compared with the c<strong>on</strong>trol. The lowest GY, SY, TY <strong>and</strong> HI were recorded<br />

in the c<strong>on</strong>trol treatment <strong>and</strong> the bacterial inoculati<strong>on</strong>s increased GY by 8.6-43.7%, SY by<br />

1.82.-12.9%, TY by 1.93- 19.80% <strong>and</strong> HI by 1.33-45.7% over the c<strong>on</strong>trol <strong>on</strong> 2-year average<br />

at two locati<strong>on</strong>s, respectively (Table 1). The GY <str<strong>on</strong>g>of</str<strong>on</strong>g> plant in 2007 was higher than GY <str<strong>on</strong>g>of</str<strong>on</strong>g> 2008,<br />

but the highest TY <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>wheat</strong> was found in 2008 at each locati<strong>on</strong> (Table 1). The highest GY<br />

(3.68-2.88 Mg ha -1 ), SY (9.73-8.57 Mg ha -1 ), <strong>and</strong> TY (13.41-11.45 Mg ha -1 ) in both years<br />

average at two locati<strong>on</strong>s were obtained from 80 kg N ha -1 , <strong>and</strong> followed by in combinati<strong>on</strong><br />

(OSU-142 + M3+ Azospirillum Sp245) treatment at 3.47-2.87 Mg ha -1 for GY, 8.73-6.75 Mg<br />

ha -1 for straw <strong>and</strong> 12.20-9.65 Mg ha -1 for total <strong>yield</strong>s, respectively (Table 1). In other words,<br />

mixed <str<strong>on</strong>g>PGPR</str<strong>on</strong>g> inoculati<strong>on</strong>s with the strain <str<strong>on</strong>g>of</str<strong>on</strong>g> OSU-142 + M3 + Azospirillum Sp245 has<br />

significantly increased GY, SY, TY <strong>and</strong> HI <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>wheat</strong> as good as full doses <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen. When it<br />

is compared to 40 kg N ha -1 treatment, bio-fertilizer applicants were more effective to<br />

increase the grain <strong>yield</strong>. On the other h<strong>and</strong> harvest index (HI) <str<strong>on</strong>g>of</str<strong>on</strong>g> two years average in two<br />

locati<strong>on</strong>s was better in inoculati<strong>on</strong> treatments in comparis<strong>on</strong> to the c<strong>on</strong>trol <strong>and</strong> mineral<br />

fertilizer (80 <strong>and</strong> 40 kg N ha -1 ) treatments. While the lowest HI values were recorded in the<br />

c<strong>on</strong>trol treatment, the highest value was obtained from the OSU-142 + M3+ Azospirillum<br />

Sp.245 <strong>and</strong> Bacillus M3 treatments. The <strong>yield</strong> <strong>and</strong> plant growth enhancement effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bacteria used in this study <strong>on</strong> <strong>wheat</strong> could be explained with N 2 -fixing <strong>and</strong> P-solubilizing<br />

capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria. The positive effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the OSU-142 <strong>and</strong> M3 <strong>on</strong> the <strong>yield</strong> <strong>and</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

crops such as sweet cherry, spinach, tomatoes, sugar beet, barley <strong>and</strong> <strong>wheat</strong> were<br />

explained by N 2 -fixati<strong>on</strong> ability, phosphate solubilizing capacity, indole acetic acid (IAA) <strong>and</strong><br />

antimicrobial substance producti<strong>on</strong> (Esitken et al., 2002; 2003; 2006; Turan et al., 2005;<br />

Sahin et al., 2004; Elkoca et al., 2008). In the present study, it was also found that the<br />

inoculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>PGPR</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> increased N, P, K, S, Fe, Mn, <strong>and</strong> Zn c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>wheat</strong>, which<br />

provide the additi<strong>on</strong>al evidence supporting the finding <str<strong>on</strong>g>of</str<strong>on</strong>g> previous study. Two years <str<strong>on</strong>g>of</str<strong>on</strong>g> trials<br />

under the field c<strong>on</strong>diti<strong>on</strong>s indicated that mixed inoculati<strong>on</strong> with OSU-142 + M3 + Azospirillum<br />

Sp245 increased <strong>wheat</strong> GY, SY, TY <strong>and</strong> HI by two years average at 31.7%, 7.5%, <strong>and</strong> 13.4<br />

% over the c<strong>on</strong>trol, respectively. N 2 -fixing <strong>and</strong> P-solubilizing <str<strong>on</strong>g>PGPR</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> al<strong>on</strong>e had also<br />

significant effect <strong>on</strong> seed <strong>yield</strong> <strong>and</strong> <strong>yield</strong> comp<strong>on</strong>ent but were lower value than mixed<br />

inoculati<strong>on</strong> When compared to mineral fertilizer treatments, mixed inoculati<strong>on</strong>s has<br />

significantly increased GY <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>wheat</strong> as good as full doses <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen. Similar result was<br />

obtained previous studies that combined culture inoculants significantly increased grain <strong>yield</strong><br />

as compared with single inoculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individual organisms (Elkoca et al., 2008).<br />

3.2.Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> bio-fertilizer <strong>on</strong> plant nutrient element (PNE) c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> different parts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the plant<br />

2


N 2 -fixing <strong>and</strong> P-solubilizing <str<strong>on</strong>g>PGPR</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> applicati<strong>on</strong> promoted PNE c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the plant. Although the highest leaf, grain, <strong>and</strong> straw N c<strong>on</strong>tents were obtained from<br />

mixed inoculati<strong>on</strong> with the OSU-142 + M3 + Azospirillum Sp245 +40 kg N ha -1 , which<br />

increased N c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf, grain <strong>and</strong> straw <str<strong>on</strong>g>of</str<strong>on</strong>g> plant by 52.6%, 83.4%, <strong>and</strong> 83.0% ,<br />

respectively, compared with the c<strong>on</strong>trol treatment. While S c<strong>on</strong>tents were obtained from<br />

treatment OSU-142 + M3 + Azospirillum Sp245 <strong>and</strong> increasing rate were 64.9% for grain <strong>and</strong><br />

65.0% for straw. P, K, Mn, Fe, <strong>and</strong> Zn c<strong>on</strong>tents were obtained from Bacillus M3 treatment,<br />

<strong>and</strong> increase rate for leaf, grain <strong>and</strong> straw <str<strong>on</strong>g>of</str<strong>on</strong>g> plant were 42.7%, 50.6%, 82.5% for P, 26.3%,<br />

112.0%, 110.0% for K, 49.1%, 121.2%, 120.0% for Mn, 90.1%, 102.6%, 105.2% for Fe, <strong>and</strong><br />

49.2%, 75.4%, 75.4% for Zn (Table 2, grain <strong>and</strong> straw nutrient data was not given). The<br />

c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> plant nutrients measured were generally within the accepted critical levels<br />

(J<strong>on</strong>es et al. 1991; Mills <strong>and</strong> J<strong>on</strong>es,1996). PNE c<strong>on</strong>tents was varied in different parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

plant, as compared the nutrient c<strong>on</strong>centrati<strong>on</strong> in part <str<strong>on</strong>g>of</str<strong>on</strong>g> the plant, these sequences for N, S,<br />

Mn, Zn, Cu <strong>and</strong> Fe found most <str<strong>on</strong>g>of</str<strong>on</strong>g>ten were leaf> grain> straw, for P, <strong>and</strong> Mg were grain>leaf><br />

straw, <strong>and</strong> for K, <strong>and</strong> Ca straw> leaf> grain.<br />

Enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> mineral uptake by plants should result in an increased accumulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> both dry matter <strong>and</strong> minerals in the stem <strong>and</strong> leaves <str<strong>on</strong>g>of</str<strong>on</strong>g> the plant. During the reproductive<br />

period, the accumulated minerals would be transferred to the reproductive parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the plants<br />

(Bashan et al., 1990). The present study, for the first time, dem<strong>on</strong>strates increased P, K <strong>and</strong><br />

micro-nutrient such as Mn, Fe, <strong>and</strong> Zn c<strong>on</strong>centrati<strong>on</strong>s in field-grown <strong>wheat</strong> grain, straw <strong>and</strong><br />

leaf as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> Bacillus megaterium (M3) inoculati<strong>on</strong>s. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> the previous studies with<br />

the same <str<strong>on</strong>g>PGPR</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> tested <strong>on</strong> chickpea, barley, raspberry, apricot <strong>and</strong> sweet cherry have<br />

been reported similar findings c<strong>on</strong>firming our data in the present work. The use <str<strong>on</strong>g>of</str<strong>on</strong>g> the OSU-<br />

142 <strong>and</strong> M3 in chickpea (Elkoca et al., 2008), raspberry (Orhan et al., 2006), apricot (Esitken<br />

et al., 2003), sweet cherry (Esitken et al., 2006) <strong>and</strong> strawberry (Güneş et al, 2009)<br />

stimulated macro- <strong>and</strong> micro-nutrient uptake such as N, P, K, Ca, Mg, Fe, Mn, Zn, Cu.<br />

The higher N c<strong>on</strong>tent in the treatments c<strong>on</strong>taining OSU-142 + M3 + Azospirillum<br />

Sp245 +40 kg N ha -1 <strong>and</strong> OSU-142 may have resulted from the N 2 -fixati<strong>on</strong> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

bacterium, as reported in the other studies (Cakmakci et al., 2007; Elkoca et al., 2008). It is<br />

well known that increasing N c<strong>on</strong>tent in plants results in greater uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrient elements<br />

from soil (Marschner, 1995). This evidence c<strong>on</strong>firms the data showing that the percentage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

macro- <strong>and</strong> micro-nutrients was significantly <strong>and</strong>/or relatively increased in the bacteriatreated<br />

plants, which may be explained by higher c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N 2 stimulated by bacterial<br />

applicati<strong>on</strong>. Orhan et al. (2006) reported that bacterial inoculati<strong>on</strong>s with OSU-142 <strong>and</strong> M3<br />

decreased pH level <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental soil from 6.7 to 5.6-6.0. decreased soil pH stimulates the<br />

availability <str<strong>on</strong>g>of</str<strong>on</strong>g> PNE such as P, Ca, Fe <strong>and</strong> Mn. Additi<strong>on</strong>ally, it has also been reported that<br />

OSU-142 <strong>and</strong> M3 increased root length <strong>and</strong> weight in some crops such as barley (Cakmakci<br />

et al., 2007) <strong>and</strong> chickpea (Elkoca et al., 2008). It is also well known that efficient utilizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> PNE by a crop depends, to a large extent, <strong>on</strong> the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> roots that c<strong>on</strong>tact the nutrient,<br />

as well as the capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the root to absorb the c<strong>on</strong>tacted nutrient (Adepetu <strong>and</strong> Akapa,<br />

1977).<br />

4.C<strong>on</strong>clusi<strong>on</strong>s<br />

Our results indicated that microbial inoculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds with N 2 -fixing <strong>and</strong> P-solubilizing<br />

<str<strong>on</strong>g>PGPR</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> al<strong>on</strong>e <strong>and</strong> in combinati<strong>on</strong>, may substitute costly NP fertilizer in <strong>wheat</strong><br />

producti<strong>on</strong> even in cold highl<strong>and</strong> <strong>and</strong> low l<strong>and</strong> areas. In view <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental polluti<strong>on</strong> in<br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> excessive use <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilizers <strong>and</strong> due to high costs in the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N <strong>and</strong> P<br />

fertilizers, bacteria tested in our study may well be suited al<strong>on</strong>e or in combinati<strong>on</strong> to achieve<br />

sustainable <strong>and</strong> ecological agricultural producti<strong>on</strong> in the regi<strong>on</strong>. An important nutriti<strong>on</strong>al<br />

problem <str<strong>on</strong>g>of</str<strong>on</strong>g> developing countries is micro-nutrient malnutriti<strong>on</strong>, also called hidden hunger. Our<br />

results also indicated that al<strong>on</strong>e or in combinati<strong>on</strong> inoculati<strong>on</strong>s with N 2 -fixing <strong>and</strong> P-<br />

solubilizing <str<strong>on</strong>g>PGPR</str<strong>on</strong>g> <str<strong>on</strong>g>strains</str<strong>on</strong>g> could increase mineral c<strong>on</strong>centrati<strong>on</strong> <strong>and</strong> accumulati<strong>on</strong>s in the<br />

grain. This paper supports the view that inoculati<strong>on</strong>s with <str<strong>on</strong>g>PGPR</str<strong>on</strong>g> have some potential to<br />

serve as a means to reduce hidden hunger trough enhanced mineral c<strong>on</strong>centrati<strong>on</strong> <strong>and</strong><br />

accumulati<strong>on</strong> in grain.<br />

3


Acknowledgements<br />

We are very grateful to EU FP6-FOOD-CT-2006, STREP Project: RHIBAC for their generous<br />

financial support for this study.<br />

References<br />

Adepetu, A., & Akapa, L.K. (1977). Root growth <strong>and</strong> nutrient uptake characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> some<br />

cowpea varieties. Agr<strong>on</strong>omy Journal ,69, 940-943.<br />

Bashan, Y., Harris<strong>on</strong>, S.K., & Whitmoyer, R.E. (1990). Enhanced growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>wheat</strong> <strong>and</strong><br />

soybean plants inoculated with Azospirillum brasilense is not necessarily due to<br />

general enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> mineral uptake. Applied <strong>and</strong> Envir<strong>on</strong>mental Microbiology,<br />

56,769-775.<br />

Cakmakci, R., D<strong>on</strong>mez, M.F. & Erdogan, U. (2007). The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> plant growth promoting<br />

rhizobacteria <strong>on</strong> barley seedling growth, nutrient uptake, some soil properties, <strong>and</strong><br />

bacterial counts. Turkish Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture <strong>and</strong> Forestry, 31, 189-199.<br />

Elkoca, E., Kantar, F., & Sahin, F. (2008). Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Nitrogen Fixing <strong>and</strong> Phosphorus<br />

Solubilizing Bacteria <strong>on</strong> the Nodulati<strong>on</strong>, Plant Growth, <strong>and</strong> Yield <str<strong>on</strong>g>of</str<strong>on</strong>g> Chickpea. Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Plant Nutriti<strong>on</strong>, 31, 157–171.<br />

Esitken, A., Karlidag, H., Ercisli, S.,& Sahin, F. (2002). Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> foliar applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Bacillus<br />

subtilis Osu-142 <strong>on</strong> the <strong>yield</strong>, growth <strong>and</strong> c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> shot-hole disease (Coryneum<br />

blight) <str<strong>on</strong>g>of</str<strong>on</strong>g> apricot. Gartenbauwissenschaft, 67, 139-142.<br />

Esitken, A., Karlidag, H., Ercisli, S., Turan, M., & Sahin, F. (2003). The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> spraying a<br />

growth promoting bacterium <strong>on</strong> the <strong>yield</strong>, growth <strong>and</strong> nutrient element compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

leaves <str<strong>on</strong>g>of</str<strong>on</strong>g> apricot (Prunus armeniaca L. cv. Hacihaliloglu). Australian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Agricultural Research, 54, 377-380.<br />

Esitken, A., Pirlak, L., Turan, M., & Sahin, F. (2006). Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> floral <strong>and</strong> foliar applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

plant growth promoting rhizobacteria (<str<strong>on</strong>g>PGPR</str<strong>on</strong>g>) <strong>on</strong> <strong>yield</strong>, growth <strong>and</strong> nutriti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sweet<br />

cherry. Scientia Horticulturae, 110, 324-327.<br />

Guneş, A. Ataoğlu,N., Turan, M., Eşitken, A., & Ketterings, Q.M. (2009). Effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phosphate-solubilizing microorganisms <strong>on</strong> strawberry <strong>yield</strong> <strong>and</strong> nutrient<br />

c<strong>on</strong>centrati<strong>on</strong>s. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g>. Plant Nutriti<strong>on</strong> <strong>and</strong> Soil Science, 172, 385–392.<br />

J<strong>on</strong>es, T. A., Niels<strong>on</strong>, D.C.,& Carls<strong>on</strong>, J.R. (1991). Development <str<strong>on</strong>g>of</str<strong>on</strong>g> a grazing-tolerant native<br />

grass for revegetating bluebunch <strong>wheat</strong>grass sites. Rangel<strong>and</strong>s, 13,147–150.<br />

Kloepper, J. W., Le<strong>on</strong>g, J., Teintze, M. & Schroth, M.N. (1980). Enhanced plant growth by<br />

siderophoros produced by plant growth-promoting rhizobacteria, Nature, 286,885-<br />

886.<br />

Marschner, H., 1995. Mineral nutriti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> higher plants, 2 nd ed. Academic Press, L<strong>on</strong>d<strong>on</strong>.<br />

Mills, H. A., & J<strong>on</strong>es. J.B. (1996). Plant Analysis H<strong>and</strong>book II. Micromacro Publishing. 183<br />

Paradise Blvd Ste 104, Athens, Georgia.<br />

Orhan, E., Esitken, A., Ercisli, S., Turan, M., & Sahin, F. (2006). Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> plant growth<br />

promoting rhizobacteria (<str<strong>on</strong>g>PGPR</str<strong>on</strong>g>) <strong>on</strong> <strong>yield</strong>, growth <strong>and</strong> nutrient c<strong>on</strong>tents in organically<br />

growing raspberry. Scientia Horticulturae, 111, 38-43.<br />

Rodriguez, C. E. A., G<strong>on</strong>zales, A.G., Lopez, J.R., Di Ciacco, C. A., Pacheco, B.J.C., &<br />

Parada, J. L. (1996). Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> field-grown <strong>wheat</strong> to inoculati<strong>on</strong> with Azospirillum<br />

brasilense <strong>and</strong> Bacillus polymyxa in the semiarid regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Argentina. Soils <strong>and</strong><br />

Fertilizers, 59, 800-815.<br />

Sahin, F., Cakmakci, R., & Kantar, F. (2004). Sugar beet <strong>and</strong> barley <strong>yield</strong>s in relati<strong>on</strong> to<br />

inoculati<strong>on</strong> with N 2 -fixing <strong>and</strong> phosphate solubilizing bacteria. Plant <strong>and</strong> Soil, 265,<br />

123-129.<br />

SPSS Inc., 2004. SPSS Inc. SPSS ® 13.0 Base User’s Guide, Prentice Hall.<br />

Turan, M., Ataoglu, N., & Sahin, F. (2005). <str<strong>on</strong>g>Evaluati<strong>on</strong></str<strong>on</strong>g> the capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphate solubilizing<br />

bacteria <strong>and</strong> fungi <strong>on</strong> different forms <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorus in liquid culture. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Sustainable Agriculture, 28, 99-108.<br />

4


Table 1 Yield <strong>and</strong> <strong>yield</strong> comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>wheat</strong> plant growth <str<strong>on</strong>g>of</str<strong>on</strong>g> two locati<strong>on</strong>s in 2008 <strong>and</strong> 2007 (t ha -1 )<br />

Inoculants I. Field II. Field<br />

Grain Straw Total biomass Grain Straw Total biomass<br />

C<strong>on</strong>trol (without inoculati<strong>on</strong> <strong>and</strong> fertilizer) 2.79 c 7.79d 10.58 c 1.20 g 7.11b 8.31abc<br />

(3.34 d)* (6.57 e) (9.90 d) (2.46 d) (8.90 c) (11.35 c)<br />

Nitrogen (80 kg N ha -1 ) 4.18 a** 8.90 a 13.08a 1.95 a 8.51a 10.46 a<br />

(4.02 a) (8.82 a) (12.83a) (3.34 a) (10.66 a) (14.00 a)<br />

Nitrogen ( 40 kg N ha -1 ) 3.57 a-c 7.46d 11.03bc 1.58 cd 8.25a 9.83 ab<br />

(3.79 a-c) (7.87 b) (11.66 ab) (2.27 ab) (11.07 a) (13.33 ab)<br />

Bacillus OSU-142 3.35 a-c 8.37 a-c 11.72 a-c 1.53 cde 6.18bc 7.72 bcd<br />

(3.69 a-d) (7.47 bc) (11.15 bc) (3.02 a-c) (9.04 b) (12.06 bc)<br />

Bacillus M3 3.65 a-c 7.03d 10.68 c 1.50 cde 5.51 d 7.01 cd<br />

(3.50 b-d) (6.69 e) (10.18 d) (2.85 c) (7.98 d) (10.83 c)<br />

Azospirillum Sp245 4.17 a 7.78d 11.95 a-c 1.39 ef 4.70 e 6.09 d<br />

(3.76 a-c) (8.07a) (11.83 a) (3.04 a-c) (9.18 b) (12.22 bc)<br />

OSU-142 + M3 + Azospirillum Sp245 3.94 ab 8.68 ab 12.62ab 1.80 b 4.83 e 6.63 cd<br />

(3.85 ab) (8.04a) (11.89 a) (3.10 a-c) (9.41 b) (12.51a-c)<br />

Bacillus megaterium RC07 3.28 a-c 8.41 bc 11.69a-c 1.66 bc 6.65 bc 8.31 abcd<br />

(3.43 cd) (7.39 cd) (10.83 c) (2.87 c) (8.26 c) (11.13 c)<br />

Paenibacillus polymyxa RC05 3.81a-c 8.02 bc 11.83a-c 1.39 ef 6.39 bc 7.77 bcd<br />

(3.72 a-c) (7.52 bc) (11.24 bc) (2.93 bc) (8.69 c) (11.61 bc)<br />

Raoultella terrigena 3.59 a-c 7.37d 10.96bc 1.39 ef 5.71 d 7.09 cd<br />

Burkholderia cepacia OSU7 2.99 bc 7.47d 10.46 c 1.59 c 7.35b 8.94 abc<br />

OSU142 AMP Res 3.67 a-c 8.23 a-c 11.90a-c 1.49 cde 6.27bc 7.77 bcd<br />

M3 Amp Res 3.54 a-c 8.19 a-c 11.73 a-c 1.53 cde 6.53 bc 8.06bcd<br />

Sp245 Amp Res 3.20 a-c 8.52 a-c 11.72 a-c 1.42 def 8.49a 9.90 ab<br />

P. polymyxa 2/2 3.20 a-c 8.92ab 12.12 a-c 1.39 ef 6.25bc 7.64 bcd<br />

B. megaterium T17 3.41 a-c 8.42 a-c 11.83 a-c 1.30 fg 6.63bc 7.93 bcd<br />

6


OSU-142 + M3 + Azospirillum sp245 +40 kg N ha -1 3.83 a-c 8.92a 12.75a 1.66 bc 4.47 e 6.12 d<br />

* Data for 2007, **Averages <str<strong>on</strong>g>of</str<strong>on</strong>g> same column values (each secti<strong>on</strong> separately) followed by same letter did not differ significantly from Duncan’s<br />

multiple range test at 0.5% significant<br />

Table 2. Average leaf macro <strong>and</strong> micro element c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>wheat</strong> plant growth at two locati<strong>on</strong>s<br />

Inoculants N Ca Mg Na K S Fe Mn Zn Cu P<br />

% mg kg -1<br />

C<strong>on</strong>trol 2.74 d* 3555 de 1262 h 631 a 5925 def 2061 de 33.5 f 62.7 d 38.4 e 19.9 e 3041f<br />

80 kg N ha -1 3.68 abc 4675 b 1337 h 431 f 6807 b 2711 b 43.0 e 84.7 b 51.9 c 26.9 b 3673 cd<br />

40 kg N ha -1 3.40 bcd 2915 gh 1662 fg 432 f 6051 cde 1690 gh 34.7 f 93.5 a 62.7 a 29.7 a 3906 bc<br />

OSU-142 3.78 ab 2695 hı 1612 fg 581 b 6448 bc 1563 hı 41.7 e 75.9 c 46.5 d 24.1 c 2409 hı<br />

M3 3.27 bcd 5795 a 1862 cd 280 h 7483 a 3361 a 63.7 b 93.5 a 57.3 b 29.8 a 4340 a<br />

Sp245 3.30 bcd 3135 fg 1712 efg 556 c 5169 gh 1818 fg 55.8 c 67.1 d 41.1 e 21.3 de 3357 e<br />

OSU-142 + M3<br />

+Sp245<br />

3.15 bcd 4235 c 1962 bc 431 f 5673 ef 2456 c 51.2 cd 75.9 c 46.6 d 24.2 c 3989 b<br />

RC07 3.21 bcd 5775 a 2312 a 581 b 6177 cd 3349 a 55.0 c 89.1 ab 62.8 a 28.3 ab 3357 e<br />

RC05 3.27 bcd 4455 bc 2012 b 431 f 6429 bc 2583 bc 54.2 c 75.9 c 46.5 d 24.1 c 3673 cd<br />

R. terrigena 2.99 bcd 3355 ef 1762 def 531 cd 4917 h 1945 ef 47.2 de 93.5 a 57.3 b 29.7 a 3989 b<br />

OSU7 3.31 bcd 3135 fg 1712 efg 381 g 6303 cd 1818 fg 46.2 de 67.1 d 41.2 e 21.3 de 3515 de<br />

OSU142 AMP Res 3.05 bcd 2915 gh 1662 fg 431 f 5673 fe 1690 gh 62.3 b 75.9 c 46.6 d 24.1 c 2725 g<br />

M3 Amp Res 2.89 cd 3795 d 1862 cd 506 de 6429 bc 2201 d 73.5 a 89.1 ab 54.7 bc 28.3 ab 3896 bc<br />

Sp245 Amp Res 3.24 bcd 4675 b 2062 b 581 b 5673 ef 2711 b 45.3 e 93.5 a 62.7 a 29.7 a 2725 g<br />

P. polymyxa 2/2 3.08 bcd 3575 de 1812 de 431 f 5547 fg 2073 de 41.8 e 75.9 c 46.6 d 24.1 c 2567 gh<br />

B. megaterium T17 3.24 bcd 2475 ı 1562 g 381 g 6177 cd 1435 ı 44.5 e 67.1 d 41.1 e 21.3 de 3357 e<br />

OSU-142 + M3+<br />

Sp245 +40 kg N ha -1 4.18 a 3176 fg 1628 g 379 g 5219 gh 1842 fg 42.1 e 64.5 d 41.1 e 22.7 cd 2194 ı<br />

*Averages <str<strong>on</strong>g>of</str<strong>on</strong>g> same column values (each secti<strong>on</strong> separately) followed by same letter did not differ significantly from Duncan’s multiple range test<br />

at 0.5% significant<br />

7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!