28.11.2014 Views

199 mathematical modeling of mold-filling and solidification - Acta ...

199 mathematical modeling of mold-filling and solidification - Acta ...

199 mathematical modeling of mold-filling and solidification - Acta ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Acta</strong> Metallurgica Slovaca, 15, 2009, 3 (<strong>199</strong> - 207) 202<br />

For the incompressible solution algorithm the following equation is used:<br />

dρ 1<br />

=<br />

dP β<br />

where β is the bulk modulus.<br />

e) The dissipation rate equation for NKE - (New k-ε Model) is given by:<br />

∂( ρε ) ∂( ρuε<br />

) ∂( ρvε<br />

) ∂( ρwε<br />

) ∂ ⎛ µ ⎞ ⎛ ⎞ ⎛ ⎞<br />

+ + + = ⎜ t ∂ε<br />

∂ µ<br />

⎟ +<br />

+ ⎜ ⎟<br />

⎜ t ∂ε<br />

∂ µ<br />

⎟ t ∂ε<br />

+<br />

∂t<br />

∂x<br />

∂y<br />

∂z<br />

∂x<br />

⎝ σ ε ∂x<br />

⎠ ∂y<br />

⎝ σε ∂y<br />

⎠ ∂z<br />

⎝ σ ε ∂z<br />

⎠<br />

2<br />

ε ε Cµ<br />

(1 C3)<br />

β1ρκ<br />

⎛ ∂T<br />

∂T<br />

∂T<br />

⎞<br />

C1ε<br />

µ t Φ C2ρ<br />

+<br />

⎜ g x + g y + g z<br />

⎟<br />

κ κ σ t ⎝ ∂x<br />

∂y<br />

∂z<br />

⎠<br />

(5)<br />

The new functions; deformation tensor S ij , <strong>and</strong> the antisymetric tensor W ij , are based<br />

on the velocity components u k in the flow field.<br />

1<br />

Sij<br />

= ( ui,<br />

j + u j,<br />

i )<br />

2<br />

Wij<br />

= 1<br />

( ui,<br />

j − u j,<br />

i ) + Cµ Ω mε<br />

mij<br />

2<br />

where, C µ , is the turbulent constant; Ω m is the angular velocity <strong>of</strong> the coordinate system <strong>and</strong> ε mij<br />

is the alternating tensor operator.<br />

The invariants are:<br />

η = κ<br />

2S ij S ij <strong>and</strong> κ<br />

ξ =<br />

ε<br />

2W ij<br />

ε<br />

Wij<br />

C 1<br />

µ =<br />

, ⎛ η<br />

2 2<br />

4 + 1.5 η + ξ<br />

⎟ ⎞<br />

C 1ε<br />

= max ⎜C1M<br />

⎝ η + 5 ⎠<br />

where, C 1ε , C 2 , σ k , σ ε , σ t , C 3 , C 4 , C 1M <strong>and</strong> β 1 are constants.<br />

2.2 Free surface <strong>modeling</strong><br />

In the last years due to s<strong>of</strong>tware <strong>and</strong> hardware technological evolutions, intensive<br />

studies <strong>and</strong> applications concerning the <strong>mold</strong> <strong>filling</strong> by metallic fluids can be found in the<br />

literature. During the <strong>mold</strong> <strong>filling</strong> process, liquid metal <strong>and</strong> air coexist in the <strong>mold</strong> <strong>and</strong> the<br />

interface position changes rapidly with time [13]. It is essential to introduce a free-surfacetracking<br />

algorithm to analyze the <strong>filling</strong> process. The Volume <strong>of</strong> Fluid Method (VOF) is the<br />

most widely used method for free-surface tracking during <strong>mold</strong> <strong>filling</strong> [13]. In a three<br />

dimensional rectangular coordinate frame, the transport equation on the VOF, F(r,t), for an<br />

incompressible fluid can be written as:<br />

∂ F r<br />

+ ∇ F.<br />

v = 0<br />

∂ t<br />

(6)<br />

The F(r,t) function governed by the above equation is unity in the region occupied by<br />

the fluid <strong>and</strong> zero in the empty region. For the given computational domain, the F(r,t) field

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!