28.11.2014 Views

199 mathematical modeling of mold-filling and solidification - Acta ...

199 mathematical modeling of mold-filling and solidification - Acta ...

199 mathematical modeling of mold-filling and solidification - Acta ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Acta</strong> Metallurgica Slovaca, 15, 2009, 3 (<strong>199</strong> - 207) 201<br />

where v r =(u, v, w) is the velocity.<br />

b) The momentum conservation equation (Navier–Stokes) can be expressed as [5]:<br />

r<br />

⎧∂<br />

v r r⎫<br />

2 r r<br />

ρ ⎨ + v ∇. v⎬<br />

= -∇ P + µ ∇ v + ρg<br />

⎩ ∂ t ⎭<br />

(2)<br />

where, ρ is the density assumed to be constant, P r is the pressure, µ is the dynamic viscosity<br />

constant <strong>and</strong> g r is the gravity vector.<br />

c) The energy conservation equation for the liquid region is given by [6]:<br />

⎛ ∂T<br />

r ⎞ 2 L ∂φ<br />

ρc⎜<br />

+ v.<br />

∇T<br />

⎟ = k∇<br />

T −<br />

⎝ ∂t<br />

⎠ c ∂t<br />

(3)<br />

where c is the specific heat, k is the thermal conductivity, L is the latent heat, φ is the<br />

volumetric liquid fraction <strong>and</strong> T is the temperature.<br />

When the molten metal starts to fill the <strong>mold</strong>, the turbulence phenomenon begins.<br />

Turbulence means that the instantaneous velocity is fluctuating at every point in the flow field.<br />

Many <strong>mathematical</strong> models existing in the literature are used to simulate the turbulence,, i.e., a<br />

total <strong>of</strong> eight turbulence models are available [5; 7, 8; 9; 10; 11; 12]. These models acronyms<br />

<strong>and</strong> names are: St<strong>and</strong>ard k-ε Model, Zero Equation Model, RNG - (Re-normalized Group<br />

Model), NKE - (New κ-ε Model), GIR, SZL, St<strong>and</strong>ard k-ω Model, SST. The κ-ε model <strong>and</strong> its<br />

extensions entail solving partial differential equations for the turbulent kinetics energy κ <strong>and</strong> its<br />

dissipation rate ε.<br />

d) The turbulent kinetics energy equation for NKE - (New κ-ε Model) is given by:<br />

∂(<br />

ρκ ) ∂(<br />

ρuκ)<br />

∂(<br />

ρvκ<br />

) ∂(<br />

ρwκ)<br />

∂ ⎛ µ<br />

+ + + = ⎜ t<br />

∂t<br />

∂x<br />

∂y<br />

∂z<br />

∂x<br />

⎝ σ k<br />

C βµ ⎛ ∂T<br />

∂T<br />

∂T<br />

⎞<br />

− ρε +<br />

4 t<br />

⎜ g x + g y + g z<br />

⎟<br />

σ t ⎝ ∂x<br />

∂y<br />

∂z<br />

⎠<br />

∂κ<br />

⎞ ∂ ⎛ µ<br />

⎟ + ⎜ t<br />

∂x<br />

∂<br />

⎠ y ⎝ σ k<br />

∂κ<br />

⎞ ∂ ⎛ µ<br />

⎟ + ⎜ t<br />

∂y<br />

∂<br />

⎠ z ⎝ σ k<br />

∂κ<br />

⎞<br />

⎟<br />

+ µ tΦ<br />

∂z<br />

⎠<br />

(4)<br />

The viscous dissipation term in tensor notation is:<br />

⎛<br />

⎜ ∂u<br />

Φ = µ i<br />

⎜<br />

⎝<br />

∂xk<br />

∂u<br />

⎞<br />

k ∂u<br />

+ ⎟ i<br />

∂x<br />

j ⎟<br />

⎠<br />

∂xk<br />

where σ t , is the turbulent Pr<strong>and</strong>tl (Schmidt) number; g x , g y <strong>and</strong> g z , are the components <strong>of</strong><br />

acceleration due to gravity <strong>and</strong> u i , the magnitude <strong>of</strong> the velocity vector.<br />

The turbulent viscosity is calculated as a function <strong>of</strong> the turbulent kinetics energy<br />

parameter, κ, <strong>and</strong> its dissipation rate ε, that is:<br />

2<br />

κ<br />

µ t = ρCµ<br />

ε<br />

where, C µ , is the turbulent constant; κ is the turbulent kinetics energy parameter <strong>and</strong> ε is the<br />

turbulent kinetics energy dissipation rate.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!