28.11.2014 Views

Pulsars as a probe for the nuclear and quark matter equation of state

Pulsars as a probe for the nuclear and quark matter equation of state

Pulsars as a probe for the nuclear and quark matter equation of state

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

– p.1<br />

<strong>Pulsars</strong> <strong>as</strong> a Probe <strong>for</strong> <strong>the</strong> Nuclear <strong>and</strong> Quark Matter<br />

Equation <strong>of</strong> State<br />

Jürgen Schaffner-Bielich<br />

Institute <strong>for</strong> Theoretical Physics <strong>and</strong><br />

Heidelberg Graduate School <strong>for</strong> Fundamental Physics <strong>and</strong><br />

ExtreMe Matter Institute EMMI<br />

AG 2011 Splinter Meeting on ’A fresh view <strong>of</strong> <strong>the</strong> radio sky: science<br />

with LOFAR, SKA <strong>and</strong> its pathfinders’ Heidelberg, September 21, 2011


– p.2<br />

Simon Weissenborn, Irina Sagert, Giuseppe Pagliara,<br />

Matthi<strong>as</strong> Hempel, JSB:<br />

Quark <strong>matter</strong> in m<strong>as</strong>sive neutron stars,<br />

e-Print: arXiv:1102.2869 [<strong>as</strong>tro-ph.HE], ApJL in press


EoS <strong>and</strong> m<strong>as</strong>s-radius relation <strong>of</strong> compact stars<br />

– p.3<br />

(Weber, Negreiros, Rosenfield, Steijner 2006)<br />

many, many different <strong>equation</strong> <strong>of</strong> <strong>state</strong> EoS . . .<br />

result in various different m<strong>as</strong>s-radius relation <strong>for</strong> compact stars<br />

Tolman-Oppenheimer-Volk<strong>of</strong>f (TOV) <strong>equation</strong>: one-to-one relation between<br />

EoS <strong>and</strong> m<strong>as</strong>s-radius relation


Constraints on <strong>the</strong> M<strong>as</strong>s–Radius Relation (Lattimer <strong>and</strong> Prak<strong>as</strong>h 2004)<br />

M<strong>as</strong>s (solar)<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

GR<br />

P <<br />

causality<br />

AP3<br />

ENG<br />

AP4<br />

J1614-2230<br />

SQM3<br />

J1903+0327 FSU<br />

SQM1<br />

J1909-3744<br />

PAL6 GM3<br />

GS1<br />

Double NS Systems<br />

MPA1<br />

MS1<br />

PAL1<br />

MS2<br />

MS0<br />

0.5<br />

rotation<br />

Nucleons Nucleons+Exotic Strange Quark Matter<br />

0.0<br />

7 8 9 10 11 12 13 14 15<br />

Radius (km)<br />

spin rate from PSR B1937+21 <strong>of</strong> 641 Hz: R < 15.5 km <strong>for</strong> M = 1.4M ⊙<br />

Schwarzschild limit (GR): R > 2GM = R s<br />

causality limit <strong>for</strong> EoS: R > 3GM<br />

m<strong>as</strong>s limit from PSR J1614-2230 (red b<strong>and</strong>): M = (1.97±0.04)M ⊙<br />

– p.4


Nuclear Equation <strong>of</strong> State <strong>as</strong> Input in Astrophysics<br />

supernovae simulations: T = 1–50 MeV, n = 10 −10 –2n 0<br />

proto-neutron star: T = 1–50 MeV, n = 10 −3 –10n 0<br />

global properties <strong>of</strong> neutron stars: T = 0, n = 10 −3 –10n 0<br />

neutron star mergers: T = 0–100 MeV, n = 10 −10 –10n 0<br />

– p.5


Ph<strong>as</strong>e Diagram <strong>of</strong> Quantum Chromodynamics QCD<br />

– p.6<br />

T<br />

T c<br />

early universe<br />

RHIC, LHC<br />

Quark−Gluon<br />

Pl<strong>as</strong>ma<br />

FAIR<br />

Hadrons<br />

nuclei<br />

Color<br />

Superconductivity<br />

neutron stars<br />

m / 3<br />

Early universe at zero density <strong>and</strong> high temperature<br />

N<br />

µ<br />

c<br />

µ<br />

neutron star <strong>matter</strong> at small temperature <strong>and</strong> high density<br />

first order ph<strong>as</strong>e transition at high density (not deconfinement!)<br />

<strong>probe</strong>d by heavy-ion collisions at GSI, Darmstadt (FAIR)


– p.7<br />

Structure <strong>of</strong> a Neutron Star (Fridolin Weber)<br />

<strong>quark</strong>−hybrid<br />

star<br />

N+e<br />

N+e+n<br />

traditional neutron star<br />

n,p,e, µ<br />

n superfluid<br />

hyperon<br />

star<br />

s u<br />

p<br />

e<br />

r<br />

c<br />

o<br />

n d<br />

u<br />

c<br />

t<br />

i<br />

n<br />

g<br />

p<br />

neutron star with<br />

pion condensate<br />

absolutely stable<br />

strange <strong>quark</strong><br />

<strong>matter</strong><br />

µ<br />

u d s<br />

Σ,Λ,Ξ,∆<br />

u,d,s<br />

<strong>quark</strong>s<br />

H<br />

n,p,e, µ<br />

K −<br />

π −<br />

r o<br />

t<br />

n o s<br />

crust<br />

Fe<br />

10 6 g/cm 3<br />

10 11 g/cm 3<br />

10 14 g/cm 3<br />

m s<br />

strange star<br />

R ~ 10 km<br />

M ~ 1.4 M<br />

nucleon star


Maximum m<strong>as</strong>ses <strong>of</strong> neutron stars with hyperons<br />

– p.8<br />

Brueckner-Hartree-Fock<br />

calculation with most recent s<strong>of</strong>t<br />

core Nijmegen potential ESC08<br />

includes repulsive three-body<br />

<strong>for</strong>ces (TBF, UIX’)<br />

overall findings: M < 1.4M ⊙<br />

when hyperons are included<br />

higher m<strong>as</strong>ses possible within<br />

RMF model <strong>and</strong> SU(3)<br />

symmetry (Weissenborn,<br />

Chatterjee, JSB, in preparation)<br />

(Schulze <strong>and</strong> Rijken 2011)<br />

o<strong>the</strong>r possible solution:<br />

<strong>quark</strong> <strong>matter</strong> core<br />

a stiff


Selfbound Star versus Ordinary Neutron Star<br />

– p.9<br />

(Hartle, Sawyer, Scalapino (1975!))<br />

selfbound stars:<br />

vanishing pressure at a finite<br />

energy density<br />

m<strong>as</strong>s-radius relation starts at <strong>the</strong><br />

origin (ignoring a possible crust)<br />

arbitrarily small m<strong>as</strong>ses <strong>and</strong> radii<br />

possible<br />

neutron stars:<br />

bound by gravity, finite pressure <strong>for</strong><br />

all energy density<br />

m<strong>as</strong>s-radius relation starts at large<br />

radii<br />

minimum neutron star m<strong>as</strong>s:<br />

M ∼ 0.1M ⊙ with R ∼ 200 km


Quark Star M<strong>as</strong>ses: Unpaired C<strong>as</strong>e<br />

– p.10<br />

Use free g<strong>as</strong> <strong>of</strong> <strong>quark</strong>s with a term from interactions <strong>and</strong> from a<br />

vacuum energy:<br />

Ω QM = ∑<br />

i=u,d,s,e<br />

Ω i + 3µ4<br />

4π 2(1−a 4)+B eff<br />

Effective model with an expansion in <strong>the</strong> chemical potential µ<br />

Two parameters: effective bag constant B eff <strong>and</strong> interaction<br />

parameter a 4<br />

2-flavour constraint: nuclei do not collapse to (u,d) <strong>quark</strong> <strong>matter</strong>!<br />

3-flavour constraint: strange (u,d,s) <strong>quark</strong> <strong>matter</strong> shall be more<br />

stable than <strong>nuclear</strong> <strong>matter</strong>, so that selfbound <strong>quark</strong> stars dubbed<br />

strange stars can exist


Quark Star M<strong>as</strong>ses: Unpaired C<strong>as</strong>e<br />

– p.11<br />

(Weissenborn, Sagert, Pagliara, Hempel, JSB 2011)<br />

Kepler line: m<strong>as</strong>s shedding limit <strong>for</strong> 716 Hz<br />

(highest observed pulsar frequency)<br />

green region: allowed parameter space from maximum pulsar m<strong>as</strong>s<br />

corrections from interactions are needed (a 4 < 1) to be compatible with<br />

observations!


Quark Star M<strong>as</strong>ses: effects <strong>of</strong> <strong>quark</strong> pairing<br />

– p.12<br />

Add to a free g<strong>as</strong> <strong>of</strong> <strong>quark</strong>s terms from interaction, from pairing <strong>and</strong><br />

from an vacuum energy:<br />

Ω CFL = 6 π 2 ∫ ν<br />

0<br />

dp p 2 (p−µ)+ 3 π 2 ∫ ν<br />

+(1−a 4 ) 3µ4<br />

4π − 3∆2 µ 2<br />

2 π 2<br />

where ν = 2µ− √ µ 2 −m 2 s/3.<br />

0<br />

+B eff<br />

dp p 2 ( √ p 2 +m 2 s −µ)<br />

∆: gap energy <strong>of</strong> <strong>the</strong> color-superconducting ph<strong>as</strong>e<br />

(normally ∆ ≤ 100 MeV)<br />

fix strange <strong>quark</strong> m<strong>as</strong>s to m s = 100 MeV<br />

set <strong>for</strong> simplicity a 4 = 0


Quark Star M<strong>as</strong>ses: effects <strong>of</strong> <strong>quark</strong> pairing<br />

(Weissenborn, Sagert, Pagliara, Hempel, JSB 2011)<br />

two constraints on <strong>quark</strong> <strong>matter</strong>: 2-flavour <strong>and</strong> 3-flavour line<br />

green region: allowed parameter space from maximum pulsar m<strong>as</strong>s<br />

a gap <strong>of</strong> at le<strong>as</strong>t ∆ = 20 MeV is needed to be compatible with observations<br />

pulsar m<strong>as</strong>ses above 1.9M ⊙ start to constrain QCD parameters!<br />

additional interactions needed <strong>for</strong> pulsar m<strong>as</strong>ses well above 2.3M ⊙<br />

– p.13


Hybrid Stars with a stiff <strong>nuclear</strong> EoS<br />

– p.14<br />

2.8<br />

2.6<br />

a 4 =0.4<br />

Maximum M<strong>as</strong>s [M solar ]<br />

2.4<br />

2.2<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

a 4 =0.5<br />

120 140 160 180 200 220 240 260 280 300<br />

B eff<br />

1/4 [MeV]<br />

a 4 =1.0<br />

PSR J1614-2230<br />

Maxwell hybrid stars<br />

1.67 M<br />

Maxwell, <strong>quark</strong> core<br />

solar<br />

Gibbs, <strong>quark</strong> core<br />

Gibbs, mixed core<br />

n c ~ 0.1 1/fm 3<br />

1.44 M<br />

n c ~ 0.2 1/fm 3<br />

solar n c ~ 0.3 1/fm 3<br />

n c ~ 0.4 1/fm 3<br />

n c ~ 0.5 1/fm 3<br />

(Weissenborn, Sagert, Pagliara, Hempel, JSB 2011)<br />

<strong>nuclear</strong> ph<strong>as</strong>e: relativistic mean field model with parameter set NL3 (fitted to<br />

properties <strong>of</strong> nuclei)<br />

match with Gibbs (lines) or Maxwell construction (shaded area)<br />

solid lines: pure <strong>quark</strong> <strong>matter</strong> cores, d<strong>as</strong>hed lines: mixed ph<strong>as</strong>e cores


Hybrid Stars with a s<strong>of</strong>t <strong>nuclear</strong> EoS<br />

2.3<br />

2.2<br />

a 4 =0.4<br />

Maximum M<strong>as</strong>s [M solar ]<br />

2.1<br />

2<br />

1.9<br />

1.8<br />

a 4 =0.5<br />

a 4 =1.0<br />

B eff<br />

1/4 [MeV]<br />

PSR J1614-2230<br />

1.7 1.67 M solar<br />

Maxwell, hybrid stars<br />

Maxwell, <strong>quark</strong> core<br />

1.6<br />

Gibbs, <strong>quark</strong> core<br />

Gibbs, mixed core<br />

n<br />

1.5<br />

c ~ 0.1 1/fm 3<br />

1.44 M n solar c ~ 0.2 1/fm 3<br />

n c ~ 0.3 1/fm 3<br />

1.4<br />

n c ~ 0.4 1/fm 3<br />

n c ~ 0.5 1/fm 3<br />

n c ~ 0.6 1/fm 3<br />

1.3<br />

120 140 160 180 200 220 240 260 280 300<br />

(Weissenborn, Sagert, Pagliara, Hempel, JSB 2011)<br />

<strong>nuclear</strong> ph<strong>as</strong>e: relativistic mean field model with parameter set TM1 (fitted to<br />

properties <strong>of</strong> nuclei)<br />

match with Gibbs (lines) or Maxwell construction (shaded area)<br />

solid lines: pure <strong>quark</strong> <strong>matter</strong> cores, d<strong>as</strong>hed lines: mixed ph<strong>as</strong>e cores<br />

no pure <strong>quark</strong> cores compatible with data <strong>for</strong> a s<strong>of</strong>t <strong>nuclear</strong> EoS<br />

– p.15


Hybrid Stars with a NJL model<br />

– p.16<br />

(Bonanno <strong>and</strong> Sedrakian 2011)<br />

uses Nambu-Jona-L<strong>as</strong>inio model <strong>for</strong> <strong>quark</strong> <strong>matter</strong><br />

matches to <strong>nuclear</strong> EoS with hyperons (RMF with set NL3)<br />

2SC <strong>quark</strong> <strong>matter</strong> below green line<br />

δ = R CFL /R: amount <strong>of</strong> CFL <strong>quark</strong> <strong>matter</strong>


Maximum central density <strong>of</strong> a compact stars<br />

– p.17<br />

(Lattimer <strong>and</strong> Prak<strong>as</strong>h 2011)<br />

maximally compact EoS: p = s(ǫ−ǫ c ) with s = 1<br />

stiffest possible EoS (Zeldovich 1961)<br />

gives upper limit on compact star m<strong>as</strong>s: M max = 4.2M ⊙ (ǫ sat. /ǫ f ) 1/2<br />

(Rhoades <strong>and</strong> Ruffini 1974, Hartle 1978, Kalogera <strong>and</strong> Baym 1996, Akmal, P<strong>and</strong>harip<strong>and</strong>e,<br />

Ravenhall 1998)


Maximum M<strong>as</strong>ses <strong>of</strong> Neutron Stars – Causality<br />

3.5<br />

3<br />

Skyrme Bsk8<br />

n crit =2.5 n 0<br />

n crit =2 n 0<br />

n crit =3 n 0<br />

2.5<br />

M [M solar ]<br />

2<br />

1.5<br />

1<br />

0.5<br />

9 10 11 12 13 14 15 16<br />

R [km]<br />

(Sagert, Sturm, Chatterjee, Tolos, JSB in preparation)<br />

Skyrme parameter set BSK8: fitted to m<strong>as</strong>ses <strong>of</strong> all known nuclei<br />

above a fiducial density (determined from <strong>the</strong> analysis <strong>of</strong> <strong>the</strong> KaoS heavy-ion<br />

data) transition to stiffest possible EoS<br />

causality argument: p = ǫ−ǫ c above <strong>the</strong> fiducial density ǫ f<br />

Rhoades, Ruffini (1974), Kalogera, Baym (1996): M max = 4.2M ⊙ (ǫ 0 /ǫ f ) 1/2<br />

=⇒ new upper m<strong>as</strong>s limit <strong>of</strong> about 2.8M ⊙ from heavy-ion data!<br />

– p.18


Maximum M<strong>as</strong>ses <strong>of</strong> Neutron Stars – Causality<br />

3.5<br />

3<br />

Skyrme SLy4<br />

n crit =2.5 n 0<br />

n crit =2 n 0<br />

n crit =3 n 0<br />

2.5<br />

M [M solar ]<br />

2<br />

1.5<br />

1<br />

0.5<br />

9 10 11 12 13 14 15 16<br />

R [km]<br />

(Sagert, Sturm, Chatterjee, Tolos, JSB in preparation)<br />

Skyrme parameter set Sly4: fitted to properties <strong>of</strong> spherical nuclei<br />

above a fiducial density (determined from <strong>the</strong> analysis <strong>of</strong> <strong>the</strong> KaoS heavy-ion<br />

data) transition to stiffest possible EoS<br />

causality argument: p = ǫ−ǫ c above <strong>the</strong> fiducial density ǫ f<br />

Rhoades, Ruffini (1974), Kalogera, Baym (1996): M max = 4.2M ⊙ (ǫ 0 /ǫ f ) 1/2<br />

=⇒ new upper m<strong>as</strong>s limit <strong>of</strong> about 2.8M ⊙ from heavy-ion data!<br />

– p.18


Maximum M<strong>as</strong>ses <strong>of</strong> Neutron Stars – Causality<br />

3.5<br />

3<br />

RMF TM1<br />

n crit =2.5 n 0<br />

n crit =2 n 0<br />

n crit =3 n 0<br />

2.5<br />

M [M solar ]<br />

2<br />

1.5<br />

1<br />

0.5<br />

9 10 11 12 13 14 15 16<br />

R [km]<br />

(Sagert, Sturm, Chatterjee, Tolos, JSB in preparation)<br />

RMF parameter set TM1: fitted to properties <strong>of</strong> spherical nuclei<br />

above a fiducial density (determined from <strong>the</strong> analysis <strong>of</strong> <strong>the</strong> KaoS heavy-ion<br />

data) transition to stiffest possible EoS<br />

causality argument: p = ǫ−ǫ c above <strong>the</strong> fiducial density ǫ f<br />

Rhoades, Ruffini (1974), Kalogera, Baym (1996): M max = 4.2M ⊙ (ǫ 0 /ǫ f ) 1/2<br />

=⇒ new upper m<strong>as</strong>s limit <strong>of</strong> about 2.8M ⊙ from heavy-ion data!<br />

– p.18


– p.19<br />

Third Family <strong>of</strong> Compact Stars (Gerlach 1968)<br />

Ethirdfamily neutronstars whitedwarfs<br />

D C A<br />

F G H I<br />

instablemodes<br />

R B<br />

M=M<br />

(Glendenning, Kettner 2000; Schertler, Greiner, JSB, Thoma 2000)<br />

third solution to <strong>the</strong> TOV <strong>equation</strong>s besides white dwarfs <strong>and</strong> neutron stars,<br />

solution is stable!<br />

generates stars more compact than neutron stars!<br />

possible <strong>for</strong> any first order ph<strong>as</strong>e transition!


Quark star twins? (Fraga, JSB, Pisarski (2001))<br />

2<br />

weak transition<br />

Λ=3µ<br />

1.5<br />

n c<br />

=3n 0<br />

2.5n 0<br />

M/M sun<br />

1<br />

0.5<br />

strong transition<br />

Λ=2µ<br />

new<br />

stable<br />

branch<br />

2n 0<br />

0<br />

hadronic EoS<br />

0 5 10 15<br />

Radius (km)<br />

Weak transition: ordinary neutron star with <strong>quark</strong> core (hybrid star)<br />

Strong transition: third cl<strong>as</strong>s <strong>of</strong> compact stars possible with maximum m<strong>as</strong>ses<br />

M ∼ 1M ⊙ <strong>and</strong> radii R ∼ 6 km<br />

Quark ph<strong>as</strong>e dominates (n ∼ 15n 0 at <strong>the</strong> center), small hadronic mantle<br />

– p.20


Summary<br />

– p.21<br />

<strong>equation</strong> <strong>of</strong> <strong>state</strong> (EoS) determines <strong>the</strong> maximum<br />

m<strong>as</strong>s <strong>and</strong> its radius<br />

new hadronic degrees <strong>of</strong> freedoms normally s<strong>of</strong>ten<br />

<strong>the</strong> EoS<br />

but <strong>quark</strong> <strong>matter</strong> can also stiffen <strong>the</strong> EoS<br />

strong QCD ph<strong>as</strong>e transition leads to a third family <strong>of</strong><br />

compact stars<br />

pulsar m<strong>as</strong>s me<strong>as</strong>urements can severely constrain<br />

models <strong>of</strong> QCD<br />

unique opportunity to test QCD at extreme conditions


Onset <strong>of</strong> Hyperons in Neutron Star Matter<br />

Hyperons appear at n ≈ 2n 0 ! (b<strong>as</strong>ed on hyper<strong>nuclear</strong> data!)<br />

relativistic mean–field models<br />

(Glendenning 1985; Knorren, Prak<strong>as</strong>h, Ellis 1996; JS <strong>and</strong> Mishustin 1996)<br />

nonrelativistic potential model (Balberg <strong>and</strong> Gal 1997)<br />

<strong>quark</strong>-meson coupling model (Pal et al. 1999)<br />

relativistic Hartree–Fock (Huber, Weber, Weigel, Schaab 1998)<br />

Brueckner–Hartree–Fock<br />

(Baldo, Burgio, Schulze 1998, 2000; Vidana et al. 2000; Schulze, Polls, Ramos, Vidana 2006)<br />

chiral effective Lagrangian using SU(3) symmetry<br />

(Hanauske et al. 2000; Schramm <strong>and</strong> Zschiesche 2003; Dexheimer <strong>and</strong> Schramm 2008)<br />

density-dependent hadron field <strong>the</strong>ory (H<strong>of</strong>mann, Keil, Lenske 2001)<br />

G-matrix calculation (Nishizaki, Takatsuka, Yamamoto 2002)<br />

RG approach with V low k (Djapo, Schäfer, Wambach 2008)<br />

⇒ neutron stars are giant hypernuclei !!!<br />

– p.22


Impact <strong>of</strong> hyperons on <strong>the</strong> maximum m<strong>as</strong>s<br />

– p.23<br />

neutron star with nucleons<br />

<strong>and</strong> leptons only:<br />

M ≈ 2.3M ⊙<br />

substantial decre<strong>as</strong>e <strong>of</strong> <strong>the</strong><br />

maximum m<strong>as</strong>s due to<br />

hyperons!<br />

maximum m<strong>as</strong>s <strong>for</strong> “giant<br />

hypernuclei”: M ≈ 1.7M ⊙<br />

(Glendenning <strong>and</strong> Moszkowski 1991)<br />

noninteracting hyperons<br />

result in a too low m<strong>as</strong>s:<br />

M < 1.4M ⊙ !


Maximum m<strong>as</strong>s <strong>and</strong> modern many-body approaches<br />

– p.24<br />

modern many-body calculations<br />

(using Nijmegen s<strong>of</strong>t-core YN potential)<br />

Vidana et al. (2000): M max = 1.47M ⊙ (NN <strong>and</strong> YN interactions),<br />

M max = 1.34M ⊙ (NN, NY, YY interactions)<br />

Baldo et al. (2000): M max = 1.26M ⊙<br />

(including three-body nucleon interaction)<br />

Schulze et al. (2006): M max < 1.4M ⊙<br />

Djapo et al. (2008): M max < 1.4M ⊙<br />

Schulze <strong>and</strong> Rijken (2011): M max < 1.4M ⊙ (ESC08)<br />

too s<strong>of</strong>t EoS, too low m<strong>as</strong>ses!<br />

resolution: make EoS stiffer by <strong>the</strong> presence <strong>of</strong> <strong>quark</strong> <strong>matter</strong>!?!


Ph<strong>as</strong>es in Quark Matter (Rüster et al. (2005))<br />

60<br />

50<br />

40<br />

NQ<br />

2SC<br />

uSC<br />

T [MeV]<br />

30<br />

guSC→<br />

20<br />

χSB<br />

g2SC<br />

10<br />

CFL<br />

NQ<br />

←gCFL<br />

0<br />

320 340 360 380 400 420 440 460 480 500<br />

µ [MeV]<br />

first order ph<strong>as</strong>e transition b<strong>as</strong>ed on symmetry arguments!<br />

ph<strong>as</strong>es <strong>of</strong> color superconducting <strong>quark</strong> <strong>matter</strong> in β equilibrium:<br />

normal (unpaired) <strong>quark</strong> <strong>matter</strong> (NQ)<br />

two-flavor color superconducting ph<strong>as</strong>e (2SC), gapless 2SC ph<strong>as</strong>e<br />

color-flavor locked ph<strong>as</strong>e (CFL), gapless CFL ph<strong>as</strong>e, metallic CFL ph<strong>as</strong>e<br />

(Al<strong>for</strong>d, Rajagopal, Wilczek, Reddy, Buballa, Bl<strong>as</strong>chke, Shovkovy, Drago, Rüster, Rischke,<br />

Aguilera, Banik, B<strong>and</strong>yopadhyay, Pagliara, . . . )<br />

– p.25


X-Ray burster EXO 0748–676 <strong>and</strong> Quark Matter<br />

M<strong>as</strong>s M [M ]<br />

2.4<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

Hybrid, mixed<br />

(CFL+APR)<br />

Quark star<br />

(QCD O(α s 2 ))<br />

Neutron star<br />

(DBHF)<br />

2σ<br />

EXO 0748-676<br />

Hybrid<br />

(2SC+DBHF)<br />

Hybrid<br />

(2SC+HHJ)<br />

0.4<br />

7 8 9 10 11 12 13 14 15<br />

Radius R [km]<br />

analysis <strong>of</strong> Özel (Nature 2006): M ≥ 2.10±0.28M ⊙ <strong>and</strong> R ≥ 13.8±1.8 km,<br />

claims: ’unconfined <strong>quark</strong>s do not exist at <strong>the</strong> center <strong>of</strong> neutron stars’!<br />

reply by Al<strong>for</strong>d, Bl<strong>as</strong>chke, Drago, Klähn, Pagliara, JSB (Nature 445, E7<br />

(2007)): limits rule out s<strong>of</strong>t <strong>equation</strong>s <strong>of</strong> <strong>state</strong>, not <strong>quark</strong> stars or hybrid stars!<br />

multiwavelength analysis <strong>of</strong> Pearson et al. (2006): data more consistent with<br />

M = 1.35M ⊙ than with M = 2.1M ⊙<br />

– p.26<br />


Signals <strong>for</strong> a Third Family/Ph<strong>as</strong>e Transition?<br />

– p.27<br />

m<strong>as</strong>s-radius relation: rising twins (Schertler et al.,<br />

2000)<br />

spontaneous spin-up <strong>of</strong> pulsars (Glendenning, Pei,<br />

Weber, 1997)<br />

delayed collapse <strong>of</strong> a proto-neutron star to a black<br />

hole (Thorsson, Prak<strong>as</strong>h, Lattimer, 1994)<br />

bimodal distribution <strong>of</strong> pulsar kick velocities (Bombaci<br />

<strong>and</strong> Popov, 2004)<br />

collapse <strong>of</strong> a neutron star to <strong>the</strong> third family?<br />

(gravitational waves, γ-rays, neutrinos)<br />

secondary shock wave in supernova explosions?<br />

gravitational waves from colliding neutron stars?


Signals <strong>for</strong> Strange Stars?<br />

– p.28<br />

similar m<strong>as</strong>ses <strong>and</strong> radii, cooling, surface (crust), . . . but<br />

look <strong>for</strong><br />

extremely small m<strong>as</strong>s, small radius stars (includes<br />

strangelets)<br />

strange dwarfs: small <strong>and</strong> light white dwarfs with a<br />

strange star core (Glendenning, Kettner, Weber, 1995)<br />

super-Eddington luminosity from bare, hot strange<br />

stars (Page <strong>and</strong> Usov, 2002)<br />

conversion <strong>of</strong> neutron stars to strange stars (explosive<br />

events!)<br />

. . .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!