28.11.2014 Views

Nozzle classification system in Japan based on the relative spray ...

Nozzle classification system in Japan based on the relative spray ...

Nozzle classification system in Japan based on the relative spray ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Nozzle</str<strong>on</strong>g> <str<strong>on</strong>g>classificati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>system</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>Japan</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>relative</strong> <strong>spray</strong><br />

drift potential<br />

Geng Bai 1 , Kazuhiro Nakano 1 *, Tomomichi Mizukami 2 , Sumihiko Miyahara 2 ,<br />

Sh<str<strong>on</strong>g>in</str<strong>on</strong>g>taroh Ohashi 1 , Ken-ichi Takizawa 1 , Haijun Yan 3<br />

1 Graduate School of Science and Technology, Niigata University, Ikarashi 2-8050 Nishi-ku,<br />

Niigata 950-2181, <str<strong>on</strong>g>Japan</str<strong>on</strong>g><br />

2 Institute of Agricultural Mach<str<strong>on</strong>g>in</str<strong>on</strong>g>ery, 1-40-2 Nissh<str<strong>on</strong>g>in</str<strong>on</strong>g>, Kita-ku, Saitama 331-8537, <str<strong>on</strong>g>Japan</str<strong>on</strong>g><br />

3<br />

College of Water Resources and Civil Eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>g, Ch<str<strong>on</strong>g>in</str<strong>on</strong>g>a Agricultural University, No. 17<br />

Ts<str<strong>on</strong>g>in</str<strong>on</strong>g>ghua East Road, Beij<str<strong>on</strong>g>in</str<strong>on</strong>g>g 100083, Ch<str<strong>on</strong>g>in</str<strong>on</strong>g>a<br />

*Corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g author. Email: knakano@agr.niigata-u.ac.jp<br />

Abstract<br />

European <strong>spray</strong> nozzle drift <str<strong>on</strong>g>classificati<strong>on</strong></str<strong>on</strong>g>s have made <strong>the</strong> objective evaluati<strong>on</strong>s of <strong>the</strong> drift<br />

reducti<strong>on</strong> performance with different nozzle and operat<str<strong>on</strong>g>in</str<strong>on</strong>g>g parameters available <str<strong>on</strong>g>in</str<strong>on</strong>g> certa<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

areas. Drift Potential Index Reducti<strong>on</strong> Percentage (DIXRP) of <strong>on</strong>e series of drift reducti<strong>on</strong><br />

nozzles us<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>Japan</str<strong>on</strong>g> were <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated by <strong>the</strong> w<str<strong>on</strong>g>in</str<strong>on</strong>g>d tunnel test. Based <strong>on</strong> <strong>the</strong> reference<br />

<strong>spray</strong>, most of <strong>the</strong> YAMAHO KIRINASHI ES nozzles had good DIXRP values above 50%<br />

under <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated c<strong>on</strong>diti<strong>on</strong>s. Additi<strong>on</strong>ally, DIXRP values were above 80% when <strong>the</strong> nozzle<br />

height was 0.3m except ES05. The large droplet diameter, <strong>the</strong> high droplet velocity and <strong>the</strong><br />

low recommended nozzle height could be c<strong>on</strong>sidered as important factors that can achieve<br />

<strong>the</strong> good performance of drift reducti<strong>on</strong> ability. Besides, <strong>the</strong> DIXRP value was proporti<strong>on</strong>al to<br />

<strong>the</strong> nozzle size and <str<strong>on</strong>g>in</str<strong>on</strong>g>versely proporti<strong>on</strong>al to <strong>the</strong> nozzle height. The relati<strong>on</strong>ship between<br />

DIXRP value and <strong>the</strong> nozzle pressure was not obvious.<br />

Key words: drift, <str<strong>on</strong>g>classificati<strong>on</strong></str<strong>on</strong>g>, nozzle, w<str<strong>on</strong>g>in</str<strong>on</strong>g>d tunnel<br />

1. Introducti<strong>on</strong><br />

The <strong>spray</strong> drift of <strong>the</strong> agricultural <strong>spray</strong>ers has been attracted much attenti<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>Japan</str<strong>on</strong>g><br />

because of <strong>the</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> neighbor<str<strong>on</strong>g>in</str<strong>on</strong>g>g residents, polluti<strong>on</strong> of <strong>the</strong> nearby crops and<br />

c<strong>on</strong>tam<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> of <strong>the</strong> adjacent water (<str<strong>on</strong>g>Japan</str<strong>on</strong>g> Plant Protecti<strong>on</strong> Associati<strong>on</strong>, 2009).<br />

The measurement of <strong>the</strong> <strong>relative</strong> drift potential by <strong>the</strong> w<str<strong>on</strong>g>in</str<strong>on</strong>g>d tunnel test was proved to be a<br />

valuable alternative to <strong>the</strong> field measurement of <strong>the</strong> drift potential for evaluat<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>the</strong> drift<br />

reduc<str<strong>on</strong>g>in</str<strong>on</strong>g>g performance of <strong>the</strong> <strong>spray</strong> nozzles (Nuyttens et al., 2010). Compar<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <strong>the</strong> field drift<br />

experiment which could evaluate <strong>the</strong> drift reducti<strong>on</strong> performance of <strong>the</strong> whole <strong>spray</strong> <str<strong>on</strong>g>system</str<strong>on</strong>g>,<br />

<strong>the</strong> w<str<strong>on</strong>g>in</str<strong>on</strong>g>d tunnel test provides a repeatable and ec<strong>on</strong>omical way to measure <strong>the</strong> <strong>relative</strong> drift<br />

reducti<strong>on</strong> capacities of <strong>the</strong> nozzles under different nozzle types, sizes, pressures, heights and<br />

w<str<strong>on</strong>g>in</str<strong>on</strong>g>d speeds. However, from <strong>the</strong> literature cited (<str<strong>on</strong>g>Japan</str<strong>on</strong>g> Plant Protecti<strong>on</strong> Associati<strong>on</strong>, 2009),<br />

<strong>the</strong> w<str<strong>on</strong>g>in</str<strong>on</strong>g>d tunnel test menti<strong>on</strong>ed above has not been carried out <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>Japan</str<strong>on</strong>g> where <strong>the</strong> operat<str<strong>on</strong>g>in</str<strong>on</strong>g>g


parameters of <strong>the</strong> nozzles are different from <strong>the</strong> European nozzles.<br />

In this study, <strong>on</strong>e series of <strong>the</strong> drift reducti<strong>on</strong> nozzles under different nozzle-pressure<br />

comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s were tested <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>the</strong> w<str<strong>on</strong>g>in</str<strong>on</strong>g>d tunnel <str<strong>on</strong>g>in</str<strong>on</strong>g> order to estimate <strong>the</strong> drift reducti<strong>on</strong><br />

performance <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>on</strong>e reference <strong>spray</strong>. Additi<strong>on</strong>ally, <strong>the</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>fluences of <strong>the</strong> nozzle size,<br />

pressure and height <strong>on</strong> <strong>the</strong> DPRP values were also <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated.<br />

2. Materials and methods<br />

2.1 W<str<strong>on</strong>g>in</str<strong>on</strong>g>d tunnel parameters and measur<str<strong>on</strong>g>in</str<strong>on</strong>g>g protocol<br />

The w<str<strong>on</strong>g>in</str<strong>on</strong>g>d tunnel experiment was carried out <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>the</strong> Bio-oriented Technology Research<br />

Advancement Instituti<strong>on</strong> (BRAIN), Saitama city, <str<strong>on</strong>g>Japan</str<strong>on</strong>g>. The dimensi<strong>on</strong>s of <strong>the</strong> w<str<strong>on</strong>g>in</str<strong>on</strong>g>d tunnel<br />

were illustrated <str<strong>on</strong>g>in</str<strong>on</strong>g> Fig. 1. To obta<str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>the</strong> vertical deposits of each nozzle-pressure comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong><br />

under different nozzle heights at <strong>the</strong> same time, <strong>the</strong> nozzle was <str<strong>on</strong>g>in</str<strong>on</strong>g>stalled at 1.2m above <strong>the</strong><br />

floor and 6 polyethylene l<str<strong>on</strong>g>in</str<strong>on</strong>g>es (V 1 ~V 6 ) were placed horiz<strong>on</strong>tally across <strong>the</strong> w<str<strong>on</strong>g>in</str<strong>on</strong>g>d tunnel 2m<br />

downw<str<strong>on</strong>g>in</str<strong>on</strong>g>d with <strong>the</strong> heights from 0.7m to 1.2m at an <str<strong>on</strong>g>in</str<strong>on</strong>g>terval of 0.1m, respectively. A tracer<br />

(Solium fluoresce<str<strong>on</strong>g>in</str<strong>on</strong>g>, 200ppm) and a n<strong>on</strong>-i<strong>on</strong>ic surfactant (Tween 20, 0.1%) were used <str<strong>on</strong>g>in</str<strong>on</strong>g> this<br />

study. After <strong>spray</strong><str<strong>on</strong>g>in</str<strong>on</strong>g>g, <strong>the</strong> collector l<str<strong>on</strong>g>in</str<strong>on</strong>g>es were washed <str<strong>on</strong>g>in</str<strong>on</strong>g> 100ml de-i<strong>on</strong>ized water and <strong>the</strong> liquid<br />

was taken to measure <strong>the</strong> tracer c<strong>on</strong>centrati<strong>on</strong> value. The volume of <strong>the</strong> <strong>spray</strong> liquid<br />

deposited <strong>on</strong> each collector l<str<strong>on</strong>g>in</str<strong>on</strong>g>e was obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by calculati<strong>on</strong>.<br />

FIGURE 1: The dimensi<strong>on</strong>s of <strong>the</strong> w<str<strong>on</strong>g>in</str<strong>on</strong>g>d tunnel and <strong>the</strong> sketch of drift potential<br />

measurement <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>the</strong> w<str<strong>on</strong>g>in</str<strong>on</strong>g>d tunnel by us<str<strong>on</strong>g>in</str<strong>on</strong>g>g polyethylene l<str<strong>on</strong>g>in</str<strong>on</strong>g>es<br />

Table 1 showed <strong>the</strong> nozzle <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> and envir<strong>on</strong>mental parameters of <strong>the</strong> nozzles<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated <str<strong>on</strong>g>in</str<strong>on</strong>g> this study. The Hypro ISO F 110 03 standard flat fan nozzle with a nozzle<br />

pressure of 0.3MPa and a nozzle height of 0.5m was used as <strong>the</strong> reference <strong>spray</strong>. The<br />

YAMAHO KIRINASHI ES nozzles were recommended to use with a nozzle height between<br />

0.3~0.4m. The <strong>spray</strong> time of <strong>the</strong> nozzle-pressure comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s was 10s when <strong>the</strong> flow rate<br />

was above 0.8L m<str<strong>on</strong>g>in</str<strong>on</strong>g> -1 and 20s for <strong>the</strong> o<strong>the</strong>r comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s.


TABLE 1: Overview of <strong>the</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated nozzle-pressure comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong> and <strong>the</strong> envir<strong>on</strong>ment<br />

parameters <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>the</strong> drift experiment<br />

<str<strong>on</strong>g>Nozzle</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>formati<strong>on</strong> Envir<strong>on</strong>ment parameters [3]<br />

Notati<strong>on</strong> [1] Flow rate [2] ,<br />

L m<str<strong>on</strong>g>in</str<strong>on</strong>g> -1<br />

Pressure,<br />

MPa<br />

Air<br />

temperature,<br />

℃<br />

Water<br />

temperature,<br />

℃<br />

Relative<br />

humidity,<br />

%<br />

HS03-0.30 1.20 0.30 22.4 20.6 57.3<br />

ES05-1.00 0.35 1.00 23.7 21.6 50.7<br />

ES05-1.50 0.43 1.50 27.0 22.8 46.7<br />

ES06-1.00 0.51 1.00 25.4 22.0 53.3<br />

ES06-1.50 0.62 1.50 25.6 22.2 43.7<br />

ES07-1.00 0.68 1.00 27.0 22.8 37.7<br />

ES07-1.50 0.83 1.50 21.8 20.7 78.0<br />

ES08-1.00 0.90 1.00 22.2 20.7 71.7<br />

ES08-1.50 1.10 1.50 26.5 22.0 42.7<br />

ES09-1.00 1.13 1.00 25.8 21.2 45.3<br />

ES09-1.50 1.39 1.50 23.1 31.7 42.5<br />

ES10-1.00 1.41 1.00 24.3 21.0 49.0<br />

ES10-1.50 1.73 1.50 17.5 17.6 66.7<br />

ES11-1.00 1.69 1.00 17.4 17.5 70.3<br />

ES11-1.50 2.07 1.50 22.0 19.3 60.0<br />

[1]<br />

HS03, Hypro ISO F 110 03 standard flat fan nozzle; ES, YAMAHO KIRINASHI ES nozzle; [2] The flow<br />

rate data were cited from manufacturer data; [3] The values of <strong>the</strong> envir<strong>on</strong>ment parameters were<br />

obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by averag<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>the</strong> value of three repetiti<strong>on</strong>s.<br />

2.2 Index calculati<strong>on</strong> and nozzle drift <str<strong>on</strong>g>classificati<strong>on</strong></str<strong>on</strong>g><br />

In this study, <strong>the</strong> DIXRP value was calculated to estimate <strong>the</strong> drift reducti<strong>on</strong> performance of<br />

<strong>the</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated nozzle-pressure comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s (Herbst, 2001). In <strong>the</strong> calculati<strong>on</strong> process, <strong>the</strong><br />

nozzle heights were 0.5m for <strong>the</strong> reference <strong>spray</strong> while <strong>the</strong> nozzle heights were 0.4m and<br />

0.3m for <strong>the</strong> ES series nozzles <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> manufacturer recommendati<strong>on</strong>. The details of<br />

<strong>the</strong> calculati<strong>on</strong> equati<strong>on</strong>s could be found <str<strong>on</strong>g>in</str<strong>on</strong>g> <strong>the</strong> above reference. The virtual floors (h=0m) <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

<strong>the</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>dex calculati<strong>on</strong> were assumed to be 0.6m, 0.7m and 0.8m above <strong>the</strong> floor of <strong>the</strong> w<str<strong>on</strong>g>in</str<strong>on</strong>g>d<br />

tunnel corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g to <strong>the</strong> three nozzle heights, respectively. Thus, <strong>the</strong> nozzle heights which<br />

equal <strong>the</strong> vertical distance between <strong>the</strong> nozzle and <strong>the</strong> lowest collector l<str<strong>on</strong>g>in</str<strong>on</strong>g>e were 0.5m, 0.4m<br />

and 0.3m. The nozzle drift <str<strong>on</strong>g>classificati<strong>on</strong></str<strong>on</strong>g> for <strong>the</strong> nozzle-pressure comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g>vestigated<br />

was carried out follow<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>the</strong> methods adopted by German Federal Biological Research<br />

Centre for Agriculture and Forestry Braunschweig (BBA) (Herbst, 2001).


Drift Potential Index<br />

Reducti<strong>on</strong> Percentage, %<br />

Drift Potential Index<br />

Reducti<strong>on</strong> Percentage, %<br />

3. Results and discussi<strong>on</strong><br />

The DIXRP values of ES nozzle and <strong>the</strong> corresp<strong>on</strong>d<str<strong>on</strong>g>in</str<strong>on</strong>g>g standard errors with different nozzle<br />

sizes were shown <str<strong>on</strong>g>in</str<strong>on</strong>g> Fig. 2.and 3. Except ES05 nozzles, <strong>the</strong> DIXRP values of different<br />

nozzle-pressure comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s experienced a gentle <str<strong>on</strong>g>in</str<strong>on</strong>g>crease as <strong>the</strong> nozzle sizes <str<strong>on</strong>g>in</str<strong>on</strong>g>creased.<br />

The reas<strong>on</strong> why <strong>the</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>crease was not obvious could be that compar<str<strong>on</strong>g>in</str<strong>on</strong>g>g with o<strong>the</strong>r type of<br />

nozzles, this type of nozzle had a <strong>relative</strong>ly steady volume median diameter with different<br />

nozzle sizes. Based <strong>on</strong> <strong>the</strong> manufacturer data, <strong>the</strong> average value of <strong>the</strong> volume median<br />

diameter of <strong>the</strong> ES nozzle was 300 μm. The <str<strong>on</strong>g>in</str<strong>on</strong>g>crease of <strong>the</strong> flow rate might also lead an<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease of <strong>the</strong> drift reducti<strong>on</strong> performance due to <strong>the</strong> normalizati<strong>on</strong> by divid<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>the</strong> <strong>spray</strong><br />

output and <strong>the</strong> str<strong>on</strong>ger resistance force to w<str<strong>on</strong>g>in</str<strong>on</strong>g>d produced by more dense <strong>spray</strong>. The<br />

difference of <strong>the</strong> droplet sizes and <strong>the</strong> small flow rate might have c<strong>on</strong>tributed to <strong>the</strong> rapid<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>crease of <strong>the</strong> DIXRP values from ES05 to ES06.<br />

120.00<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

0.00<br />

-20.00<br />

1.0MPa<br />

1.5MPa<br />

ES05-1.00<br />

ES07-1.00<br />

ES09-1.00<br />

ES11-1.00<br />

ES06-1.50<br />

ES08-1.50<br />

ES10-1.50<br />

ES06-1.00<br />

ES08-1.00<br />

ES10-1.00<br />

ES05-1.50<br />

ES07-1.50<br />

ES09-1.50<br />

ES11-1.50<br />

FIGURE 2: DIXRP values obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed under different nozzle-pressure comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s of ES series<br />

nozzle with <strong>the</strong> nozzle height of 0.3m<br />

150.00<br />

100.00<br />

50.00<br />

0.00<br />

-50.00<br />

-100.00<br />

1.0MPa<br />

1.5MPa<br />

ES05-1.00<br />

ES07-1.00<br />

ES09-1.00<br />

ES11-1.00<br />

ES06-1.50<br />

ES08-1.50<br />

ES10-1.50<br />

ES06-1.00<br />

ES08-1.00<br />

ES10-1.00<br />

ES05-1.50<br />

ES07-1.50<br />

ES09-1.50<br />

ES11-1.50<br />

FIGURE 3: DIXRP values obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed under different nozzle-pressure comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s of ES series<br />

nozzle with <strong>the</strong> nozzle height of 0.4m<br />

Fig. 4 and 5 shows <strong>the</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of <strong>the</strong> nozzle pressure <strong>on</strong> <strong>the</strong> DIXRP values. Expect ES05,<br />

<strong>the</strong> DIXRP values obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed under two nozzle pressures had just a little fluctuati<strong>on</strong> to each<br />

nozzle size and no trend was found. The ma<str<strong>on</strong>g>in</str<strong>on</strong>g> reas<strong>on</strong>s might be that <strong>the</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of <strong>the</strong><br />

decrease of <strong>the</strong> droplet size <strong>on</strong> <strong>the</strong> DIXRP values was offset by <strong>the</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>crease of <strong>the</strong> flow rate<br />

and <strong>the</strong> droplet velocity when <strong>the</strong> nozzle pressure <str<strong>on</strong>g>in</str<strong>on</strong>g>creased.


Drift Potential Index<br />

Reducti<strong>on</strong> Percentage, %<br />

Drift Potential Index<br />

Reducti<strong>on</strong> Percentage, %<br />

Drift Potential Index<br />

Reducti<strong>on</strong> Percentage, %<br />

120.00<br />

ES05-1.00 ES05-1.50<br />

100.00<br />

ES06-1.00 ES06-1.50<br />

80.00<br />

ES07-1.00 ES07-1.50<br />

60.00<br />

ES08-1.00 ES08-1.50<br />

40.00<br />

ES09-1.00 ES09-1.50<br />

20.00<br />

ES10-1.00 ES10-1.50<br />

0.00<br />

ES11-1.00 ES11-1.50<br />

-20.00<br />

05 06 07 08 09 10 11<br />

FIGURE 4: DIXRP values obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed under different nozzle-pressure comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s of ES series<br />

nozzle with <strong>the</strong> nozzle height of 0.3m<br />

150.00<br />

100.00<br />

ES05-1.00<br />

ES06-1.00<br />

ES05-1.50<br />

ES06-1.50<br />

50.00<br />

ES07-1.00<br />

ES07-1.50<br />

0.00<br />

ES08-1.00<br />

ES09-1.00<br />

ES08-1.50<br />

ES09-1.50<br />

-50.00<br />

ES10-1.00<br />

ES10-1.50<br />

-100.00<br />

05 06 07 08 09 10 11<br />

ES11-1.00<br />

ES11-1.50<br />

FIGURE 5: DIXRP values obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed under different nozzle-pressure comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s of ES series<br />

nozzle with <strong>the</strong> nozzle height of 0.4m<br />

The <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of <strong>the</strong> nozzle height <strong>on</strong> <strong>the</strong> DIXRP values under different nozzle heights were<br />

illustrated <str<strong>on</strong>g>in</str<strong>on</strong>g> Fig. 6 and 7. The nozzle height was <str<strong>on</strong>g>in</str<strong>on</strong>g>versely proporti<strong>on</strong>al to <strong>the</strong> DIXRP although<br />

<strong>the</strong> change of <strong>the</strong> nozzle height was just 0.1m. Compar<str<strong>on</strong>g>in</str<strong>on</strong>g>g with <strong>the</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of <strong>the</strong> nozzle<br />

size and pressure <strong>on</strong> <strong>the</strong> DIXRP values, <strong>the</strong> nozzle height might be <strong>the</strong> most important factor<br />

that <str<strong>on</strong>g>in</str<strong>on</strong>g>fluences <strong>the</strong> drift reducti<strong>on</strong> ability.<br />

120.00<br />

100.00<br />

80.00<br />

60.00<br />

40.00<br />

20.00<br />

ES05-0.3<br />

ES06-0.3<br />

ES07-0.3<br />

ES08-0.3<br />

ES09-0.3<br />

ES10-0.3<br />

ES11-0.3<br />

ES05-0.4<br />

ES06-0.4<br />

ES07-0.4<br />

ES08-0.4<br />

ES09-0.4<br />

ES10-0.4<br />

ES11-0.4<br />

0.00<br />

05 06 07 08 09 10 11<br />

FIGURE 6: DIXRP values obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed under different nozzle-pressure comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s of ES series<br />

nozzle with <strong>the</strong> nozzle pressure of 1.0MPa


Drift Potential Index<br />

Reducti<strong>on</strong> Percentage, %<br />

150.00<br />

100.00<br />

50.00<br />

0.00<br />

-50.00<br />

ES05-0.3<br />

ES06-0.3<br />

ES07-0.3<br />

ES08-0.3<br />

ES09-0.3<br />

ES10-0.3<br />

ES11-0.3<br />

ES05-0.4<br />

ES06-0.4<br />

ES07-0.4<br />

ES08-0.4<br />

ES09-0.4<br />

ES10-0.4<br />

ES11-0.4<br />

-100.00<br />

05 06 07 08 09 10 11<br />

FIGURE 7: DIXRP values obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed under different nozzle-pressure comb<str<strong>on</strong>g>in</str<strong>on</strong>g>ati<strong>on</strong>s of ES series<br />

nozzle with <strong>the</strong> nozzle pressure of 1.5MPa<br />

Based <strong>on</strong> <strong>the</strong> <str<strong>on</strong>g>classificati<strong>on</strong></str<strong>on</strong>g> method of <strong>the</strong> <strong>spray</strong> nozzle drift adopted by BBA, <strong>the</strong> ES series<br />

nozzles (except ES05) with a nozzle height of 0.3m and 0.4m have drift reducti<strong>on</strong> ability over<br />

50%. Moreover, <strong>the</strong> drift reducti<strong>on</strong> abilities of some ES nozzles could be over 90% with <strong>the</strong><br />

nozzle height of 0.3m.<br />

4. C<strong>on</strong>clusi<strong>on</strong>s<br />

The w<str<strong>on</strong>g>in</str<strong>on</strong>g>d tunnel tests for <strong>the</strong> <strong>relative</strong> drift <strong>spray</strong> of <strong>the</strong> nozzle used <str<strong>on</strong>g>in</str<strong>on</strong>g> <str<strong>on</strong>g>Japan</str<strong>on</strong>g> were carried out.<br />

The results showed that <strong>the</strong> nozzle size and height had <strong>relative</strong>ly obvious <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence <strong>on</strong> <strong>the</strong><br />

DIXRP values while <strong>the</strong> relati<strong>on</strong>ship between <strong>the</strong> DIXRP value and <strong>the</strong> nozzle pressure was<br />

not obta<str<strong>on</strong>g>in</str<strong>on</strong>g>ed. The ma<str<strong>on</strong>g>in</str<strong>on</strong>g> reas<strong>on</strong> could be <strong>the</strong> <strong>relative</strong>ly steady droplet size of <strong>the</strong> ES nozzles.<br />

Based <strong>on</strong> <strong>the</strong> <str<strong>on</strong>g>classificati<strong>on</strong></str<strong>on</strong>g> method adopted by BBA (Herbst, 2001), <strong>the</strong> ES nozzles (except<br />

ES05) could be c<strong>on</strong>sidered as <strong>the</strong> drift reducti<strong>on</strong> nozzle with a drift reducti<strong>on</strong> ability over 50%.<br />

Additi<strong>on</strong>ally, some of <strong>the</strong> ES nozzles operated under a nozzle height of 0.3m could be<br />

classified as <strong>the</strong> 90% reducti<strong>on</strong> group <str<strong>on</strong>g>in</str<strong>on</strong>g> this study.<br />

5. References<br />

Herbst A. (2001). A method to determ<str<strong>on</strong>g>in</str<strong>on</strong>g>e <strong>spray</strong> drift potential from nozzles and its l<str<strong>on</strong>g>in</str<strong>on</strong>g>k to buffer<br />

z<strong>on</strong>e restricti<strong>on</strong>s. ASAE Internati<strong>on</strong>al Meet<str<strong>on</strong>g>in</str<strong>on</strong>g>g Paper No. 01-1047, Sacramento, California.<br />

<str<strong>on</strong>g>Japan</str<strong>on</strong>g> Plant Protecti<strong>on</strong> Associati<strong>on</strong> (2009). Menu of technical countermeasures for <strong>spray</strong> drift.<br />

Nuyttens, D., De Schampheleire, M., Baetens, K., Brusselman, E., Dekeyser, D., Verboven, P.<br />

(2010). Drift from field crop <strong>spray</strong>ers us<str<strong>on</strong>g>in</str<strong>on</strong>g>g an <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrated approach: results of a 5 year study.<br />

ASABE Internati<strong>on</strong>al Meet<str<strong>on</strong>g>in</str<strong>on</strong>g>g Paper No. 1009017, Pittsburgh, Pennsylvania.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!