Effects of Habitat Enrichment on White-Tailed Deer Selective ...

Effects of Habitat Enrichment on White-Tailed Deer Selective ... Effects of Habitat Enrichment on White-Tailed Deer Selective ...

ckwri.tamuk.edu
from ckwri.tamuk.edu More from this publisher
27.11.2014 Views

2010 TCTWS Cottam Presentation By Ryan L. Darr Coauthors: Dr. David G. Hewitt, Dr. Timothy E. Fulbright, Dr. Charles A. DeYoung, Don Draeger, and Dr. Kelley M. Stewart.

2010 TCTWS Cottam Presentati<strong>on</strong><br />

By<br />

Ryan L. Darr<br />

Coauthors: Dr. David G. Hewitt, Dr. Timothy E. Fulbright, Dr. Charles A. DeYoung,<br />

D<strong>on</strong> Draeger, and Dr. Kelley M. Stewart.


Introducti<strong>on</strong>: <str<strong>on</strong>g>Habitat</str<strong>on</strong>g> <str<strong>on</strong>g>Enrichment</str<strong>on</strong>g><br />

• <str<strong>on</strong>g>Habitat</str<strong>on</strong>g> <str<strong>on</strong>g>Enrichment</str<strong>on</strong>g> –The act <str<strong>on</strong>g>of</str<strong>on</strong>g> providing<br />

wildlife with a high‐quality dietary<br />

supplement that alters dependency <strong>on</strong> natural<br />

forages 3,16<br />

• Examples<br />

– Supplemental Feed<br />

– Food Plots<br />

– Baits<br />

– Agricultural Products


<strong>Selective</strong> Foraging<br />

• <strong>Selective</strong> Foraging –<br />

Choice made to<br />

c<strong>on</strong>sume <strong>on</strong>e food<br />

over another 10<br />

• Herbivores select<br />

forages <str<strong>on</strong>g>of</str<strong>on</strong>g> high<br />

nutriti<strong>on</strong>al quality and<br />

low toxicity 4,7,19,21


<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Habitat</str<strong>on</strong>g> <str<strong>on</strong>g>Enrichment</str<strong>on</strong>g> <strong>on</strong><br />

<strong>Selective</strong> Foraging<br />

• <str<strong>on</strong>g>Habitat</str<strong>on</strong>g> enrichment with a high‐quality food<br />

source may increase selective foraging <strong>on</strong><br />

high‐quality vegetati<strong>on</strong> 9,16<br />

– <str<strong>on</strong>g>Habitat</str<strong>on</strong>g> enrichment meets a large porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nutriti<strong>on</strong>al needs<br />

– Remainder <str<strong>on</strong>g>of</str<strong>on</strong>g> needs can be met by selecting the<br />

highest‐quality vegetati<strong>on</strong>


Primary Effect<br />

Increase in <strong>Selective</strong> Foraging<br />

Sec<strong>on</strong>dary <str<strong>on</strong>g>Effects</str<strong>on</strong>g><br />

Vegetati<strong>on</strong> Community<br />

5,11,12,20,23<br />

Tertiary <str<strong>on</strong>g>Effects</str<strong>on</strong>g><br />

Other Ecosystem Comp<strong>on</strong>ents<br />

2,10,13,14,15,22


Objectives<br />

• Assess the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat enrichment <strong>on</strong><br />

selective foraging<br />

• Develop hypotheses c<strong>on</strong>cerning vegetati<strong>on</strong><br />

community and ecosystem effects


Approach and Hypotheses<br />

Two Approaches:<br />

1. Diet Quality (Vegetati<strong>on</strong> Only)<br />

– <str<strong>on</strong>g>Habitat</str<strong>on</strong>g> enrichment would cause deer to select a<br />

higher quality diet<br />

2. Vegetati<strong>on</strong> Quality<br />

– Low, medium, and high‐quality vegetati<strong>on</strong> based<br />

<strong>on</strong> nutriti<strong>on</strong><br />

– <str<strong>on</strong>g>Habitat</str<strong>on</strong>g> enrichment would cause deer to select<br />

• More high‐quality vegetati<strong>on</strong><br />

• Less low and medium quality vegetati<strong>on</strong>


Study Area<br />

• Faith and Comanche<br />

Ranches near Carrizo<br />

Springs, TX<br />

• My study took place in:<br />

– 2, 81‐ha enclosures <strong>on</strong><br />

each site (high fenced)<br />

– All maintained at a low<br />

density (0.12 deer/ha)<br />

– One enclosure <strong>on</strong> each<br />

site provided with<br />

pelleted supplemental<br />

feed*


Stable Isotopes: A Novel Approach<br />

• Stable isotopes used to<br />

estimate supplemental<br />

feed use<br />

• Stable Isotopes ‐ Different<br />

forms <str<strong>on</strong>g>of</str<strong>on</strong>g> an element<br />

varying by atomic mass<br />

• Make up tissues <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

organisms<br />

• Transferred from food to<br />

a c<strong>on</strong>sumer


Methods: <str<strong>on</strong>g>Habitat</str<strong>on</strong>g> <str<strong>on</strong>g>Enrichment</str<strong>on</strong>g><br />

• Supplemental Feed<br />

– Designed to differ from natural vegetati<strong>on</strong><br />

isotope values<br />

– Designed to exceed the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the vegetati<strong>on</strong><br />

c<strong>on</strong>sumed by deer <strong>on</strong> the study sites 24


Forage Selecti<strong>on</strong><br />

• Bite Counts<br />

– 8‐10, hand‐raised female<br />

deer distributed am<strong>on</strong>g<br />

enclosures<br />

– Permanently maintained in<br />

enclosures<br />

– Data collected seas<strong>on</strong>ally<br />

from Spring 2007 to<br />

Summer 2008<br />

• 2 hours <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stant foraging<br />

data per deer<br />

• Data collected <strong>on</strong><br />

vegetati<strong>on</strong> species, plant<br />

part, and bite size


Diet Quality<br />

• Collected forage samples and representative<br />

bite weights seas<strong>on</strong>ally for each study site<br />

– Quantity based <strong>on</strong> dry matter not arbitrary bite<br />

size<br />

• Nutriti<strong>on</strong>al Analyses<br />

– Detergent fiber, crude protein, gross energy,<br />

radial diffusi<strong>on</strong> (tannin)<br />

• Measures <str<strong>on</strong>g>of</str<strong>on</strong>g> Diet Quality<br />

– Apparent Digestible Protein (DP)<br />

– Apparent Metabolizable Energy (ME)


Stable Isotopes to Determine<br />

Supplement Use<br />

• Tissue Collecti<strong>on</strong><br />

– Tissues collected from supplemented (fed) and<br />

unsupplemented (unfed) deer during spring and<br />

summer.<br />

• Average unfed values gave vegetati<strong>on</strong> isotope value<br />

• Fed values used to determine percent feed use<br />

– Different turnover rates allowed rec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

diet during all bite count seas<strong>on</strong>s<br />

• SISUS: Stable Isotope Sourcing Using Sampling<br />

– Stable isotope mixing model based <strong>on</strong> Bayesian<br />

statistics 8


• Resp<strong>on</strong>se Variables<br />

– Diet quality<br />

Data Analysis<br />

– Percent Low, Medium, and High‐quality vegetati<strong>on</strong><br />

c<strong>on</strong>sumed<br />

– Established for DP and ME during each seas<strong>on</strong><br />

• Explanatory Variables<br />

– Treatment (Fed or Unfed)<br />

– Percent feed for fed deer <strong>on</strong>ly<br />

• Study site included as a block


Data Analysis<br />

• Repeated Measures ANOVA using SAS 9.2<br />

(PROC MIXED)<br />

• Selected best covariance structure based <strong>on</strong><br />

Akaike’s informati<strong>on</strong> criteri<strong>on</strong> (AIC C )<br />

– Candidate Covariance Structures: CS, AR(1),<br />

ARMA(1,1), TOEP


Results: Bite Counts and Feed Use<br />

• Counted over 157,000 bites<br />

• Feed use:<br />

– Range: 0% to above 90%<br />

– Average: 58.6% (95% CI = 49.3–67.8%)


Diet Quality<br />

• Supplemental feed ME was similar to natural vegetati<strong>on</strong> ME in Spring and Summer 2008<br />

(F 1,44<br />

≤ 1.33, P ≥ 0.2549)


Vegetati<strong>on</strong> Quality Category


Discussi<strong>on</strong><br />

• Many n<strong>on</strong>‐significant effects<br />

• Results did indicate a few trends<br />

• Clearly habitat enrichment did not cause a direct<br />

increase in selective foraging as hypothesized


Discussi<strong>on</strong><br />

• Trends were not c<strong>on</strong>sistent across seas<strong>on</strong>s or years<br />

– <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat enrichment <strong>on</strong> selective foraging<br />

likely governed by external factors<br />

– e.g.) Rainfall, forage availability, nutrient requirements,<br />

etc.


Discussi<strong>on</strong><br />

C<strong>on</strong>clusi<strong>on</strong>:<br />

1. <str<strong>on</strong>g>Habitat</str<strong>on</strong>g> enrichment<br />

influences white‐tailed<br />

deer selective foraging<br />

2. Current hypothesis is too<br />

simple:<br />

• <str<strong>on</strong>g>Habitat</str<strong>on</strong>g> enrichment does<br />

not automatically increase<br />

selective foraging<br />

3. The exact effects likely<br />

depend <strong>on</strong> multiple<br />

external factors


Discussi<strong>on</strong><br />

• <str<strong>on</strong>g>Habitat</str<strong>on</strong>g> enrichment could<br />

still have vegetati<strong>on</strong><br />

community and ecosystem<br />

effects<br />

• <str<strong>on</strong>g>Effects</str<strong>on</strong>g> may be more<br />

complex/less direct than<br />

hypothesized


Literature Cited<br />

1<br />

Augustine, D. J., and S. J. McNaught<strong>on</strong>. 1998. Ungulates and plant communities. Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Wildlife Management. 62:1165–1183.<br />

2<br />

Baines, D., R. B. Sage, and M. M. Baines. 1994. The implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> red deer grazing to<br />

ground vegetati<strong>on</strong> and invertebrate communities <str<strong>on</strong>g>of</str<strong>on</strong>g> Scottish native pinewoods. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology.<br />

31:776–783.<br />

10<br />

Boutin, S. 1990. Food supplementati<strong>on</strong> experiments with terrestrial vertebrates: patterns,<br />

problems, and the future. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology 68:203–220.<br />

12<br />

Bryant, J. P., F. D. Provenza, J. Pastor, P. B. Reichardt, T. P. Clausen, and J. T. du Toit.<br />

1991. Interacti<strong>on</strong>s between woody plants and browsing mediated by sec<strong>on</strong>dary metabolites. Annual Review <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ecology and Systematics 22:434–436.<br />

14<br />

Cash, V. W., and T. E. Fulbright. 2005. Nutrient enrichment, tannins, and thorns: effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> browsing <strong>on</strong> shrub seedlings. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Wildlife Management 69:789–793.<br />

15<br />

Cote S. D., T. P. Ro<strong>on</strong>ey, J. Tremblay, C. Dussault, and D. M. Waller. 2004. Ecological<br />

impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> deer overabundance. Annual Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology and Evoluti<strong>on</strong>ary Systems 35:113–147.<br />

17<br />

Duncan, A. J., C. Ginane, D. A. Elst<strong>on</strong>, A. Kunaver, and I. J. Gord<strong>on</strong>. 2006. How do<br />

herbivores trade‐<str<strong>on</strong>g>of</str<strong>on</strong>g>f the positive and negative c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> diet selecti<strong>on</strong> decisi<strong>on</strong>s. Animal Behaviour<br />

71:93–99.<br />

18<br />

Erhardt, E. B. 2007. SISUS: Stable isotope sourcing using sampling: getting started.<br />

. Accessed 12 April 2009.<br />

22<br />

Hehman, M. W., and T. E. Fulbright. 1997. Use <str<strong>on</strong>g>of</str<strong>on</strong>g> warm‐seas<strong>on</strong> food plots by whitetailed<br />

deer. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Wildlife Management 61:1108–1115.<br />

24<br />

Hobbs, T. N., 1996. Modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystems by ungulates. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Wildlife<br />

Management 60:695–713.<br />

26<br />

Horsley, S. B., S. L. Stout, and D. S. deCalesta. 2003. <strong>White</strong>‐tailed deer impact <strong>on</strong> the<br />

vegetati<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> a northern hardwood forest. Ecological Applicati<strong>on</strong>s 13:98–118.<br />

33<br />

McNaught<strong>on</strong>, S. J. 1979. Grazing as an optimizati<strong>on</strong> process: Grass‐ungulate<br />

relati<strong>on</strong>ships in the Serengeti. American Naturalist 113:691–703.


35 McShea, W. J., and J. H. Rappole. 2000. Managing the abundance and diversity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

breeding bird populati<strong>on</strong>s through manipulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> deer populati<strong>on</strong>s. C<strong>on</strong>servati<strong>on</strong> Biology 14:1161–1170.<br />

37<br />

Moser, B. W., and G. W. Witmer. 2000. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> elk and cattle foraging <strong>on</strong> the<br />

vegetati<strong>on</strong>, birds, and small mammals <str<strong>on</strong>g>of</str<strong>on</strong>g> the Bridge Creek Wildlife Area, Oreg<strong>on</strong>. Internati<strong>on</strong>al<br />

Biodeteriorati<strong>on</strong> and Biodegradati<strong>on</strong> 45:151–157.<br />

38<br />

Murden, S. B., and K. L. Risenhoover. 1993. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat enrichment <strong>on</strong> patterns <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

diet selecti<strong>on</strong>. Ecological Applicati<strong>on</strong>s 3:497–505.<br />

40<br />

Pastor, J., B. Dewey, R. J. Naiman, P. F. McInes, and Y. Cohen. 1993. Moose browsing<br />

and soil fertility in the boreal forests <str<strong>on</strong>g>of</str<strong>on</strong>g> Isle Royale Nati<strong>on</strong>al Park. Ecology 74:467–480.<br />

41<br />

Pastor, J., and Y. Cohen. 1997. Herbivores, the functi<strong>on</strong>al diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> plants species, and<br />

the cycling <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients in ecosystems. Theoretical Populati<strong>on</strong> Biology 51:167–179.<br />

43<br />

Provenza, F. D. 1995. Postingestive feedback as an elementary determinant <str<strong>on</strong>g>of</str<strong>on</strong>g> food<br />

preference and intake in ruminants. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Range Management 48:2–13.<br />

44<br />

Reed‐Rossell Jr., C., B. Gorsira, and S. Patch. 2005. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> white‐tailed deer <strong>on</strong><br />

vegetati<strong>on</strong> structure and woody seedling compositi<strong>on</strong> in three forest types <strong>on</strong> the Piedm<strong>on</strong>t Plateau. Forest<br />

Ecology and Management 210:415–424.<br />

51<br />

Stephens, D. W., and J. R. Krebs. 1986. Foraging theory. Princet<strong>on</strong> University Press,<br />

Princet<strong>on</strong>, New Jersey, USA.<br />

53<br />

Stewart, K. M., R. T. Bowyer, R. W. Ruess, B. L. Dick, and J. G. Kie. 2006. Herbivore<br />

optimizati<strong>on</strong> by North American elk: c<strong>on</strong>sequences for theory and management. Wildlife M<strong>on</strong>ographs 167:1–<br />

24.<br />

54<br />

Stockt<strong>on</strong>, S. A., S. Allombert, A. J. Gast<strong>on</strong>, J. Martin. 2005. A natural experiment <strong>on</strong> the<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> high deer densities <strong>on</strong> the native flora <str<strong>on</strong>g>of</str<strong>on</strong>g> coastal temperate rain forests. Biological C<strong>on</strong>servati<strong>on</strong><br />

126:118–128.<br />

56<br />

Tieszen, L. L., T. W. Boutt<strong>on</strong>, K. G. Tesdahl, and N. A. Slade. 1983. Fracti<strong>on</strong>ati<strong>on</strong> and<br />

turnover <str<strong>on</strong>g>of</str<strong>on</strong>g> stable carb<strong>on</strong> isotopes in animal tissues: Implicati<strong>on</strong>s for δ 13 C analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> diet. Oecologia 57:32–37.


Acknowledgements: Financial C<strong>on</strong>tributors<br />

Faith Ranch and<br />

The Stedman West<br />

Foundati<strong>on</strong><br />

Comanche Ranch and<br />

T. Dan Friedkin<br />

US EPA Greater Research<br />

Opportunities (GRO)<br />

Fellowship Program


Acknowledgements<br />

• Committee Members: Dr. Hewitt, Dr. Fulbright, Dr.<br />

DeYoung, Dr. Stewart<br />

• Comanche‐Faith Project Members: Kent Williams<strong>on</strong> and<br />

Luke Garver, Eric Grahmann, Matt Moore, Will Moseley,<br />

Luke Garver, Kent Williams<strong>on</strong>, Nate Kelley, Robin<br />

D<strong>on</strong>ohue, Reagan Gage, and Lalo G<strong>on</strong>zalez.<br />

• Statistics C<strong>on</strong>sulting: Dr. Litt<br />

• Technical Assistance: Jimmy Rutledge, Dr. Alice Hempel,<br />

Dr. Joe Bisch<str<strong>on</strong>g>of</str<strong>on</strong>g>f, Brian J<strong>on</strong>es, Dr. Merav Ben‐David, Dr.<br />

Sajid Bashir, J.R. Hernandez, Dr. Ann Hagerman<br />

• Technicians: Uma Munduru, D<strong>on</strong> Gillespie, Lavanya<br />

Reddy, Paula Skrobarczyk, and Chuck Coots<br />

• CKWRI Student Volunteers


Thank You!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!