27.11.2014 Views

corrosive species and scaling in wells at olkaria ... - Orkustofnun

corrosive species and scaling in wells at olkaria ... - Orkustofnun

corrosive species and scaling in wells at olkaria ... - Orkustofnun

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1. INTRODUCTION<br />

For many countries geothermal energy is an important resource. Utilis<strong>at</strong>ion, both direct <strong>and</strong> for power<br />

gener<strong>at</strong>ion, is <strong>in</strong>creas<strong>in</strong>g faster than th<strong>at</strong> of any other energy resource. Worldwide <strong>in</strong>stalled capacity of<br />

geothermal power plants has <strong>in</strong>creased by ~ 10 % or more per year over the last two decades (Bert<strong>in</strong>i,<br />

2005). The technology needed to harness geothermal energy has advanced much over the last 20-30<br />

years <strong>and</strong> steps have been taken to reduce the environmental impact of geothermal energy utiliz<strong>at</strong>ion,<br />

particularly by <strong>in</strong>jection of spent fluid <strong>in</strong>to <strong>wells</strong> <strong>and</strong> directional drill<strong>in</strong>g. The ma<strong>in</strong> oper<strong>at</strong>ional<br />

problems encountered when utilis<strong>in</strong>g high-temper<strong>at</strong>ure geothermal reservoirs for power gener<strong>at</strong>ion<br />

<strong>in</strong>volve the form<strong>at</strong>ion of various types of scales <strong>in</strong> production <strong>wells</strong>, surface equipment <strong>and</strong> <strong>in</strong>jection<br />

<strong>wells</strong>. Corrosion is sometimes also a problem, both for high <strong>and</strong> low-temper<strong>at</strong>ure fluid utilis<strong>at</strong>ion.<br />

The most common scales formed are amorphous silica <strong>and</strong> calcite. However, many other types of<br />

scales have been encountered <strong>in</strong>clud<strong>in</strong>g metal-sulphides, silic<strong>at</strong>es of iron <strong>and</strong> alum<strong>in</strong>ium <strong>and</strong><br />

anhydrite. In geothermal fluids various <strong>species</strong> can be <strong>corrosive</strong> <strong>and</strong> these <strong>in</strong>clude chlorides, carbon<br />

dioxide, ammonia, hydrogen ion, dissolved oxygen, bisulph<strong>at</strong>e, which dissoci<strong>at</strong>es <strong>in</strong>to sulph<strong>at</strong>e <strong>and</strong> H +<br />

upon cool<strong>in</strong>g. Chloride ion breaks passive films th<strong>at</strong> are protective on metal surfaces <strong>and</strong> can<br />

concentr<strong>at</strong>e <strong>in</strong> crevices <strong>and</strong> cause pitt<strong>in</strong>g corrosion. Hydrogen chloride <strong>in</strong> steam can produce acid<br />

condens<strong>at</strong>e <strong>and</strong> lead to severe corrosion. Dissolved carbon dioxide gas <strong>in</strong> geothermal w<strong>at</strong>er causes<br />

corrosion of low carbon steels, which is generally localized.<br />

In this study special <strong>at</strong>tention is given to assess<strong>in</strong>g the conditions for the form<strong>at</strong>ion of amorphous silica<br />

<strong>and</strong> calcite scales, <strong>and</strong> the concentr<strong>at</strong>ions of the <strong>corrosive</strong> <strong>species</strong> CO 2 <strong>and</strong> HCl <strong>in</strong> geothermal w<strong>at</strong>er<br />

<strong>and</strong> steam. Special <strong>at</strong>tention is given to <strong>scal<strong>in</strong>g</strong> <strong>in</strong> <strong>wells</strong> <strong>and</strong> wellhead equipment th<strong>at</strong> are <strong>in</strong> contact<br />

with slightly wet steam. The study is based on d<strong>at</strong>a from Olkaria, Kenya <strong>and</strong> Reykjanes, Svartsengi<br />

<strong>and</strong> Nesjavellir, Icel<strong>and</strong>. Further <strong>scal<strong>in</strong>g</strong> tests were carried out <strong>at</strong> Nesjavellir, Icel<strong>and</strong>, both <strong>at</strong><br />

wellheads <strong>and</strong> downstream, where the separ<strong>at</strong>ed w<strong>at</strong>er was overs<strong>at</strong>ur<strong>at</strong>ed with respect to amorphous<br />

silica.<br />

1.1 Corrosion <strong>in</strong> geothermal environments<br />

Corrosive <strong>at</strong>tack <strong>in</strong> high-temper<strong>at</strong>ure geothermal <strong>in</strong>stall<strong>at</strong>ions is found ma<strong>in</strong>ly <strong>in</strong> well cas<strong>in</strong>gs,<br />

condens<strong>at</strong>e <strong>in</strong>jection pipel<strong>in</strong>es made of carbon steel, wellhead equipment <strong>and</strong> turb<strong>in</strong>e blades. In<br />

gener<strong>at</strong>ion of electricity by direct contact condens<strong>in</strong>g turb<strong>in</strong>es where a cool<strong>in</strong>g w<strong>at</strong>er circuit is utilized,<br />

low pH (4-5) of the condens<strong>at</strong>e is caused by the dissolution of CO 2 <strong>and</strong> H 2 S gases present <strong>in</strong> the steam.<br />

In condens<strong>at</strong>e <strong>in</strong>jection pipel<strong>in</strong>es made of carbon steel, Villa et al. (2001) <strong>and</strong> Villa <strong>and</strong> Salonga<br />

(2000) report rapid deterior<strong>at</strong>ion due to low pH of condens<strong>at</strong>es. Oxygen <strong>in</strong>gress exacerb<strong>at</strong>es the<br />

problem. When conductive he<strong>at</strong> losses occur along steam pipel<strong>in</strong>es, steam may condense <strong>and</strong> through<br />

dissolution of CO 2 <strong>and</strong> H 2 S, lower the pH (Tha<strong>in</strong> et al., 1981; Henley et al., 1984). In Olkaria,<br />

Svartsengi <strong>and</strong> Nesjavellir direct contact condens<strong>in</strong>g turb<strong>in</strong>es are utilized <strong>and</strong> low pH condens<strong>at</strong>es<br />

which are <strong>corrosive</strong> develop. Corrosion rel<strong>at</strong>ed to the low pH condens<strong>at</strong>es on disposal is not reported.<br />

In superhe<strong>at</strong>ed steam where HCl is present Allegr<strong>in</strong>i <strong>and</strong> Benvenuti (1970), Meeker <strong>and</strong> Haizlip<br />

(1990) <strong>and</strong> Truesdell (1991) describe severe corrosion <strong>in</strong> well cas<strong>in</strong>gs, steam g<strong>at</strong>her<strong>in</strong>g systems <strong>and</strong><br />

turb<strong>in</strong>e blades, ma<strong>in</strong>ly caused by H + <strong>and</strong> Cl - . Thόrhallsson (2005) reported corrosion <strong>in</strong> steam<br />

pipel<strong>in</strong>es due to HCl transported <strong>in</strong> the steam <strong>in</strong> a dry steam well <strong>at</strong> Svartsengi. In Svartsengi,<br />

Thórólfsson (2005) has reported various corrosion rel<strong>at</strong>ed problems observed dur<strong>in</strong>g ma<strong>in</strong>tenance of<br />

the plant.<br />

Corrosion of cas<strong>in</strong>g <strong>in</strong> high-temper<strong>at</strong>ure geothermal systems can also be rel<strong>at</strong>ed to low pH associ<strong>at</strong>ed<br />

with acid-sulph<strong>at</strong>e w<strong>at</strong>ers. In <strong>and</strong>esitic geothermal systems like those found <strong>in</strong> the Philipp<strong>in</strong>es, e.g. the<br />

Tiwi <strong>and</strong> Bacman fields, Sugiaman et al. (2004) <strong>and</strong> Rosell <strong>and</strong> Ramos (1998) report cas<strong>in</strong>g corrosion<br />

observed due to penetr<strong>at</strong>ion by low pH acid sulph<strong>at</strong>e w<strong>at</strong>er. Similar cas<strong>in</strong>g corrosion was reported <strong>in</strong><br />

Cerro Prieto, Mexico by Dom<strong>in</strong>quiz (1980) <strong>and</strong> Miravalles, Costa Rica by Moya et al. (2005). In<br />

1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!