27.11.2014 Views

corrosive species and scaling in wells at olkaria ... - Orkustofnun

corrosive species and scaling in wells at olkaria ... - Orkustofnun

corrosive species and scaling in wells at olkaria ... - Orkustofnun

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

pH on adiab<strong>at</strong>ic steam loss<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

OW-901 Olkaria Domes<br />

OW-301 Olkaria West<br />

OW-306 Olkaria West<br />

OW-20 Olkaria East<br />

OW-30 Olkaria East<br />

OW-714 Olkaria North East<br />

OW-34 Olkaria East<br />

OW-709 Olkaria North East<br />

OW-304D Olkaria West<br />

SV-05 Svartsengi<br />

SV-11 Svartsengi<br />

RN-10 Reykjanes<br />

RN-11 Reykjanes<br />

NJ-14 Nesjavellir<br />

NJ-22 Nesjavellir<br />

80 120 160 200 240 280 320<br />

Temper<strong>at</strong>ure °C<br />

FIGURE 25: Calcul<strong>at</strong>ed aquifer w<strong>at</strong>er pH for selected<br />

Olkaria, Reykjanes, Svartsengi <strong>and</strong> Nesjavellir <strong>wells</strong><br />

<strong>and</strong> changes <strong>in</strong> pH dur<strong>in</strong>g several steps of<br />

s<strong>in</strong>gle-step adiab<strong>at</strong>ic steam loss<br />

produc<strong>in</strong>g aquifers because the pore<br />

spaces <strong>in</strong> the rock are expected to be<br />

able to cope much longer with calcite<br />

precipit<strong>at</strong>ion than the wellbore (see<br />

Arnórsson, 1978). The extent of CO 2<br />

degass<strong>in</strong>g is also important it is<br />

anticip<strong>at</strong>ed th<strong>at</strong> calcite <strong>scal<strong>in</strong>g</strong> will be<br />

less for good producers than for poor<br />

<strong>wells</strong>.<br />

At Svartsengi calcite <strong>scal<strong>in</strong>g</strong> was<br />

troublesome <strong>in</strong> shallow <strong>wells</strong> dur<strong>in</strong>g<br />

the early years of production when the<br />

first level of boil<strong>in</strong>g occurred with<strong>in</strong><br />

the produc<strong>in</strong>g <strong>wells</strong>. Pressure<br />

drawdown <strong>in</strong> the reservoir by<br />

exploit<strong>at</strong>ion caused extensive boil<strong>in</strong>g <strong>in</strong><br />

produc<strong>in</strong>g aquifers of these shallow<br />

<strong>wells</strong> with the result th<strong>at</strong> calcite scale<br />

form<strong>at</strong>ion was no longer observed. It is<br />

th<strong>at</strong> Calcite is still considered to be<br />

deposited but <strong>in</strong> the aquifer outside the<br />

<strong>wells</strong>. At Reykjanes calcite <strong>scal<strong>in</strong>g</strong> has<br />

not been observed as a problem. The<br />

cause is considered to be high reservoir<br />

temper<strong>at</strong>ures <strong>and</strong> high yield of <strong>wells</strong><br />

which tends to cause <strong>in</strong>complete CO 2<br />

degass<strong>in</strong>g dur<strong>in</strong>g boil<strong>in</strong>g.<br />

7.2 Scal<strong>in</strong>g tests <strong>at</strong> Nesjavellir<br />

It is common practice <strong>in</strong> the geothermal <strong>in</strong>dustry to carry out <strong>scal<strong>in</strong>g</strong> <strong>and</strong> corrosion tests to aid m<strong>at</strong>erial<br />

selection <strong>and</strong> quantify the r<strong>at</strong>e of scale deposition which is not possible theoretically. This <strong>in</strong>volves<br />

<strong>in</strong>sertion of pl<strong>at</strong>es <strong>in</strong>to the stream of the geothermal fluids <strong>and</strong> the study of their <strong>corrosive</strong> n<strong>at</strong>ure <strong>and</strong><br />

any deposits th<strong>at</strong> may form on the pl<strong>at</strong>es. The present <strong>scal<strong>in</strong>g</strong> study <strong>at</strong> Nesjavellir <strong>in</strong>volved the<br />

<strong>in</strong>sertion of sta<strong>in</strong>less steel coupons <strong>in</strong>to the two phase flow pipel<strong>in</strong>es <strong>at</strong> two wellheads <strong>and</strong> <strong>in</strong>to the<br />

stream of separ<strong>at</strong>ed w<strong>at</strong>er upstream <strong>and</strong> downstream of a retention tank. This w<strong>at</strong>er is significantly<br />

supers<strong>at</strong>ur<strong>at</strong>ed with respect to monomeric silica (i.e. it is present mostly as s<strong>in</strong>gle SiO 2 molecules).<br />

Monomeric silica grows on surfaces which act as active sites as mechanism of silica deposition.<br />

Downstream of the retention tank, the w<strong>at</strong>er is diposed of <strong>in</strong>to an <strong>in</strong>jection well. In the tank most of<br />

the silica <strong>in</strong> excess of amorphous silica solubility polymerizes. Polymeristion goes through a stage<br />

process i.e. monomer → dimers → trimers → tetramers → polymers → gel etc. Polymeris<strong>at</strong>ion<br />

cont<strong>in</strong>ues until silica s<strong>at</strong>ur<strong>at</strong>ion is reached. It is known th<strong>at</strong> (Yanagase et al., 1970; Rothbaum et al.,<br />

1979) fully polymerized silica precipit<strong>at</strong>es much more slowly from solution than monomeric silica, <strong>at</strong><br />

least from dilute w<strong>at</strong>er as such th<strong>at</strong> <strong>at</strong> Nesjavellir. The purpose of the retention tank is thus to reduce<br />

amorphous silica deposition <strong>in</strong> the <strong>in</strong>jection well <strong>and</strong> the receiv<strong>in</strong>g aquifers. The purpose of the <strong>scal<strong>in</strong>g</strong><br />

tests up <strong>and</strong> downstream from the retention tank was thus to observe the extent to which silica<br />

polymeris<strong>at</strong>ion reduced the r<strong>at</strong>e of amorphous silica precipit<strong>at</strong>ion. The purpose of the tests <strong>at</strong> the<br />

wellheads was pr<strong>in</strong>cipally to observe the r<strong>at</strong>e <strong>and</strong> n<strong>at</strong>ure of sulphide scale form<strong>at</strong>ion <strong>and</strong> to identify<br />

whether phases other than sulphides formed <strong>in</strong> significant amounts.<br />

A simplified process flow diagram for the Nesjavellir co-gener<strong>at</strong>ion power plant is shown <strong>in</strong> Figure<br />

26. The diagram shows the process flow from the geothermal <strong>wells</strong> be<strong>in</strong>g separ<strong>at</strong>ed <strong>in</strong>to steam <strong>and</strong><br />

w<strong>at</strong>er <strong>at</strong> ~ 14 bar absolute pressure <strong>in</strong> a central separ<strong>at</strong>ion st<strong>at</strong>ion. The steam is piped to power plant<br />

30

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!