27.11.2014 Views

corrosive species and scaling in wells at olkaria ... - Orkustofnun

corrosive species and scaling in wells at olkaria ... - Orkustofnun

corrosive species and scaling in wells at olkaria ... - Orkustofnun

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

exchangers <strong>in</strong> pilot plant. Silica polymeriz<strong>at</strong>ion results of studies by (Hauksson, 1996) <strong>at</strong> different<br />

temper<strong>at</strong>ures <strong>and</strong> <strong>in</strong> different fluid mixtures with condensed steam <strong>in</strong> pilot plant he<strong>at</strong> exchangers<br />

<strong>in</strong>dic<strong>at</strong>ed th<strong>at</strong>, when the residence time of the fluid <strong>in</strong> the he<strong>at</strong> exchangers was short, polymeris<strong>at</strong>ion<br />

took place to a small extent. Silica polymeriz<strong>at</strong>ion proceeded more slowly <strong>at</strong> low temper<strong>at</strong>ures than<br />

high temper<strong>at</strong>ures <strong>and</strong> amorphous silica s<strong>at</strong>ur<strong>at</strong>ion was reached <strong>in</strong> br<strong>in</strong>e <strong>at</strong> Nesjavellir <strong>at</strong> about 180˚ C.<br />

Silica polymeriz<strong>at</strong>ion tests on a mixture of condens<strong>at</strong>e <strong>and</strong> separ<strong>at</strong>ed w<strong>at</strong>er showed th<strong>at</strong> the mixture<br />

rema<strong>in</strong>ed unders<strong>at</strong>ur<strong>at</strong>ed. Separ<strong>at</strong>ed w<strong>at</strong>ers cooled from ~188˚C to 83˚C (Gunnarson <strong>and</strong> Arnόrsson,<br />

2005), showed th<strong>at</strong> amorphous silica polymeriz<strong>at</strong>ion by age<strong>in</strong>g the separ<strong>at</strong>ed w<strong>at</strong>er, decreased the<br />

potential for amorphous silica deposition.<br />

1.2.2 Calcite<br />

Troublesome calcium carbon<strong>at</strong>e scale form<strong>at</strong>ion is known to occur <strong>in</strong> many geothermal fields (e.g.<br />

Simmons <strong>and</strong> Christenson, 1993; Simmons <strong>and</strong> Christenson, 1994; Ármannsson,1989; Mecerdo et al.,<br />

1989, Benoit, 1989; Durak et al., 1993; Solis et al., 2000). The scale is often calcite but aragonite has<br />

also been reported.<br />

Accord<strong>in</strong>g to Arnόrsson (1978), (1989), Ármannsson (1989), Benoit (1989), Simmons <strong>and</strong><br />

Christensen (1994) <strong>and</strong> Todaka et al. (1995) it is expected th<strong>at</strong> scale form<strong>at</strong>ion of this k<strong>in</strong>d is most<br />

<strong>in</strong>tense <strong>at</strong> the depth level of first boil<strong>in</strong>g. Such deposition may significantly decrease the output of<br />

production of <strong>wells</strong> or even clog them. In other rare occurrences calcite deposition has been observed<br />

<strong>in</strong> two-phase l<strong>in</strong>es where fluids from two different <strong>wells</strong> mix (Solis et al., 2000). Calcite deposition<br />

could also occur due to he<strong>at</strong><strong>in</strong>g of the re-<strong>in</strong>jected fluid.<br />

W<strong>at</strong>ers <strong>in</strong> the aquifer of high-temper<strong>at</strong>ure geothermal systems are close to be<strong>in</strong>g calcite s<strong>at</strong>ur<strong>at</strong>ed (e.g.<br />

Arnόrsson, 1989; Kar<strong>in</strong>githi et al., 2006) but equilibrium between calcite <strong>and</strong> solution is rapidly<br />

<strong>at</strong>ta<strong>in</strong>ed (Busenberg <strong>and</strong> Plummer, 1986; Zhang <strong>and</strong> Dawe, 1998), certa<strong>in</strong>ly <strong>at</strong> the temper<strong>at</strong>ures of<br />

high-temper<strong>at</strong>ure geothermal systems. Upon extensive boil<strong>in</strong>g of the aquifer w<strong>at</strong>er <strong>and</strong> subsequent<br />

degass<strong>in</strong>g with respect to CO 2 , calcite s<strong>at</strong>ur<strong>at</strong>ed w<strong>at</strong>ers will become overs<strong>at</strong>ur<strong>at</strong>ed. Calcite solubility<br />

<strong>in</strong>creases with decreas<strong>in</strong>g temper<strong>at</strong>ure counteract<strong>in</strong>g the effect of degass<strong>in</strong>g dur<strong>in</strong>g adiab<strong>at</strong>ic boil<strong>in</strong>g.<br />

Deposition of calcite has been observed <strong>in</strong> production <strong>wells</strong> <strong>at</strong> Svartsengi but not <strong>at</strong> Reykjanes Olkaria<br />

<strong>and</strong> Nesjavellir. In Svartsengi the calcite <strong>scal<strong>in</strong>g</strong> (Björnsson <strong>and</strong> Ste<strong>in</strong>grίmsson, 1999) was severe<br />

dur<strong>in</strong>g the early years of production. Calcite deposition <strong>in</strong> Svartsengi followed drawdown <strong>in</strong> reservoir<br />

pressures. In zones where the reservoir pressures decreased, boil<strong>in</strong>g <strong>and</strong> hence deposition took place <strong>at</strong><br />

subsequently gre<strong>at</strong>er depths <strong>in</strong> production <strong>wells</strong>. It was solved by regular mechanical clean<strong>in</strong>g of the<br />

<strong>wells</strong> <strong>and</strong> drill<strong>in</strong>g of wider diameter <strong>wells</strong> th<strong>at</strong> also gave higher yield than earlier <strong>wells</strong>. The <strong>scal<strong>in</strong>g</strong><br />

problem vanished when reservoir pressure draw down was sufficient to <strong>in</strong>duce extensive boil<strong>in</strong>g <strong>in</strong><br />

produc<strong>in</strong>g aquifers. Worldwide, calcite <strong>scal<strong>in</strong>g</strong> problems have been succesfully solved either by<br />

mechanical clean<strong>in</strong>g or by the use of <strong>in</strong>hibitors (Pieri et al., 1989; Parlaktuna <strong>and</strong> Ok<strong>and</strong>an, 1989;<br />

C<strong>and</strong>aleria et al., 2000; Siega et al., 2005).<br />

1.2.3 Other scales<br />

Scales of sulphide m<strong>in</strong>erals mostly pyrite, occur widely <strong>and</strong> are the rule r<strong>at</strong>her than the exception <strong>in</strong><br />

high-temper<strong>at</strong>ure geothermal <strong>in</strong>stall<strong>at</strong>ions. However, the quantity of the precipit<strong>at</strong>e is generally limited<br />

due to low aqueous concentr<strong>at</strong>ions of the metals form<strong>in</strong>g the sulphide phases. In br<strong>in</strong>es of hightemper<strong>at</strong>ure<br />

geothermal fluids, such as <strong>in</strong> Reykjanes <strong>and</strong> Svartsengi, Icel<strong>and</strong>, Milos <strong>and</strong> Nissyros<br />

Greece, Asal Djibouti, <strong>and</strong> Salton Sea California, the concentr<strong>at</strong>ions of metals form<strong>in</strong>g sulphide are<br />

high lead<strong>in</strong>g to extensive sulphide m<strong>in</strong>eral deposition. By contrast, they are low <strong>in</strong> dilute fluids, e.g. <strong>at</strong><br />

Broadl<strong>and</strong>s, New Zeal<strong>and</strong> (Weissberg et al., 1979). The metals are often transported as metal<br />

complexes. The st<strong>at</strong>e of pyrite s<strong>at</strong>ur<strong>at</strong>ion is largely affected by degass<strong>in</strong>g of the boil<strong>in</strong>g w<strong>at</strong>er, the pH<br />

change associ<strong>at</strong>ed with boil<strong>in</strong>g <strong>and</strong> the change of pyrite solubility with temper<strong>at</strong>ure. Increase <strong>in</strong> pH<br />

due to boil<strong>in</strong>g results <strong>in</strong> a decrease <strong>in</strong> the solubility of pyrite.<br />

4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!