27.11.2014 Views

corrosive species and scaling in wells at olkaria ... - Orkustofnun

corrosive species and scaling in wells at olkaria ... - Orkustofnun

corrosive species and scaling in wells at olkaria ... - Orkustofnun

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

other cases, cas<strong>in</strong>g corrosion has been caused by CO 2 rich w<strong>at</strong>ers <strong>in</strong> geothermal fields. These w<strong>at</strong>ers<br />

form when ascend<strong>in</strong>g CO 2 rich steam dissolves <strong>in</strong> near surface shallow w<strong>at</strong>ers. In the Broadl<strong>and</strong>s-<br />

Ohaaki geothermal field, New Zeal<strong>and</strong>, Hedenquist <strong>and</strong> Stewart (1985) reported severe external well<br />

cas<strong>in</strong>g corrosion caused by CO 2 rich steam-he<strong>at</strong>ed w<strong>at</strong>er. Zarouk (2004) reviewed cas<strong>in</strong>g corrosion<br />

occurrences <strong>in</strong> New Zeal<strong>and</strong> geothermal fields. In all cases, these are rel<strong>at</strong>ed to CO 2 rich dilute<br />

geothermal w<strong>at</strong>er. In Olkaria, Omenda (1998) <strong>and</strong> Kar<strong>in</strong>githi (2002) report CO 2 rich fluids but the<br />

extent to which they are <strong>corrosive</strong> is not known.<br />

Modes of corrosion <strong>at</strong>tack <strong>in</strong> geothermal <strong>in</strong>stall<strong>at</strong>ions have been disscussed by Conover et al. (1979),<br />

Boulton <strong>and</strong> White (1983) <strong>and</strong> Corsi (1986). These are uniform (general) corrosion, pitt<strong>in</strong>g corrosion,<br />

crevice corrosion, stress corrosion crack<strong>in</strong>g (SCC), sulphide stress crack<strong>in</strong>g (SSC), <strong>in</strong>tergranular<br />

corrosion, galvanic coupl<strong>in</strong>g, corrosion f<strong>at</strong>igue, microbiological by <strong>in</strong>duced corrosion, erosion<br />

corrosion <strong>and</strong> cavit<strong>at</strong>ion.<br />

1.2 Scale form<strong>at</strong>ion<br />

The ma<strong>in</strong> drawbacks <strong>in</strong> the utiliz<strong>at</strong>ion of geothermal resources arise from the precipit<strong>at</strong>ion of solid<br />

scales from the geothermal fluid. In many cases the scales cause restriction <strong>in</strong> flow, e.g. <strong>in</strong> the<br />

boreholes, two phase pipel<strong>in</strong>es, the separ<strong>at</strong>ors <strong>and</strong> waste w<strong>at</strong>er l<strong>in</strong>es <strong>and</strong> steam pipel<strong>in</strong>es. Their<br />

form<strong>at</strong>ion often impedes the clos<strong>in</strong>g <strong>and</strong> open<strong>in</strong>g of valves lead<strong>in</strong>g to leaks. Deposition on turb<strong>in</strong>e<br />

blades is common which results <strong>in</strong> the turb<strong>in</strong>e chest pressures <strong>in</strong>creas<strong>in</strong>g. Three ma<strong>in</strong> areas of scale<br />

deposition can be dist<strong>in</strong>guished (Corsi, 1986). These are: deposition from a s<strong>in</strong>gle phase fluid<br />

(<strong>in</strong>jection pipel<strong>in</strong>es), deposition from flash<strong>in</strong>g fluid (<strong>wells</strong>, separ<strong>at</strong>ors, two phase-pipel<strong>in</strong>es) <strong>and</strong><br />

deposition by steam carryover (separ<strong>at</strong>ors, steam l<strong>in</strong>es <strong>and</strong> turb<strong>in</strong>es).<br />

A gre<strong>at</strong> deal of work has been carried out on the n<strong>at</strong>ure of scales formed from geothermal fluids<br />

(Thόrhallsson et al., 1975; Arnόrsson, 1981; Gallup, 1989; Gallup, 1998; Simmons <strong>and</strong> Christenson<br />

1993; Simmons <strong>and</strong> Christenson, 1994). Amorphous silica <strong>and</strong> calcium carbon<strong>at</strong>e scales are the most<br />

extensively studied but metal sulphides <strong>and</strong> silic<strong>at</strong>es to a lesser extent, although they are presently<br />

receiv<strong>in</strong>g more <strong>at</strong>tention (Simmons <strong>and</strong> Christenson 1993; Simmons <strong>and</strong> Christenson, 1994;<br />

Ármannsson, 1989; Mecerdo et al., 1989; Benoit, 1989; Durak et al., 1993; Hardardόttir et al., 2001;<br />

Weissberg et al., 1979; D’Amore et al., 1998; Karebalas et al., 1989; Gallup, 1993; 1998).<br />

1.2.1 Silica<br />

Amorphous silica deposition is probably the most commonly encountered <strong>and</strong> troublesome scale<br />

formed from high-temper<strong>at</strong>ure geothermal w<strong>at</strong>er. Such scale has been studied by many workers<br />

(Weres <strong>and</strong> Tsao, 1981; Hurtado et al., 1989; Thórhallsson et al., 1975; Arnόrsson, 1981; Gallup,<br />

1989; Gallup, 1998; Mahon, 1966; Henley, 1983; Garcia et al., 1996, Yanagase et al., 1970; Itoi et al.,<br />

1989; K<strong>at</strong>o et al., 2003; Corsi, 1986). A lot of effort has been devoted to the study of silica scale<br />

form<strong>at</strong>ion. In the utiliz<strong>at</strong>ion of high-temper<strong>at</strong>ure geothermal resources the efficient extraction of<br />

energy is limited by the silica scale th<strong>at</strong> may form as a consequence of cool<strong>in</strong>g.<br />

It has been established th<strong>at</strong> aqueous silica concentr<strong>at</strong>ions <strong>in</strong> high-temper<strong>at</strong>ure geothermal fluids are<br />

controlled by close approach to equilibrium with quartz (e.g. Fournier <strong>and</strong> Rowe, 1966; Mahon, 1966;<br />

Fournier, 1973; Fournier <strong>and</strong> Rowe, 1977; Fournier <strong>and</strong> Potter, 1982, Gίslason et al., 1997;<br />

Gunnarsson <strong>and</strong> Arnόrsson, 2000). The quartz solubility constant has been the subject of thorough<br />

experimental studies (Fournier, 1983; Fournier, 1985; Fournier <strong>and</strong> Potter, 1982; Fournier <strong>and</strong> Rowe,<br />

1977). Quartz solubility <strong>in</strong>creases with <strong>in</strong>creas<strong>in</strong>g temper<strong>at</strong>ure. Often quartz is not present as a primary<br />

m<strong>in</strong>eral <strong>in</strong> geothermal systems but forms by precipit<strong>at</strong>ion from the w<strong>at</strong>er. Silica scales are only known<br />

to form if the extent of boil<strong>in</strong>g <strong>and</strong> cool<strong>in</strong>g of the aquifer w<strong>at</strong>er is sufficient to s<strong>at</strong>ur<strong>at</strong>e it with<br />

amorphous silica, the reason be<strong>in</strong>g the fast r<strong>at</strong>e of deposition for this phase but slow r<strong>at</strong>e for quartz,<br />

particularly below 150°C. In contrast to calcite scale form<strong>at</strong>ion discussed below, amorphous silica<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!