27.11.2014 Views

corrosive species and scaling in wells at olkaria ... - Orkustofnun

corrosive species and scaling in wells at olkaria ... - Orkustofnun

corrosive species and scaling in wells at olkaria ... - Orkustofnun

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

GEOTHERMAL TRAINING PROGRAMME Reports 2006<br />

<strong>Orkustofnun</strong>, Grensásvegur 9, Number 2<br />

IS-108 Reykjavík, Icel<strong>and</strong><br />

CORROSIVE SPECIES AND SCALING IN WELLS<br />

AT OLKARIA, KENYA AND REYKJANES, SVARTSENGI<br />

AND NESJAVELLIR, ICELAND<br />

MSc thesis<br />

Department of Geology <strong>and</strong> Geography, Faculty of Science<br />

University of Icel<strong>and</strong><br />

by<br />

Kizito M. Opondo<br />

Kenya Electricity Gener<strong>at</strong><strong>in</strong>g Co., Ltd. - KenGen<br />

Olkaria Geothermal Project<br />

P.O. Box 785<br />

Naivasha<br />

KENYA<br />

United N<strong>at</strong>ions University<br />

Geothermal Tra<strong>in</strong><strong>in</strong>g Programme<br />

Reykjavík, Icel<strong>and</strong><br />

Published <strong>in</strong> March 2007<br />

ISBN 978-9979-68-210-3


This MSc thesis has also been published <strong>in</strong> August 2006 by the<br />

Department of Geology <strong>and</strong> Geography,<br />

University of Icel<strong>and</strong><br />

ii


INTRODUCTION<br />

The Geothermal Tra<strong>in</strong><strong>in</strong>g Programme of the United N<strong>at</strong>ions University (UNU) has<br />

oper<strong>at</strong>ed <strong>in</strong> Icel<strong>and</strong> s<strong>in</strong>ce 1979 with six month annual courses for professionals from<br />

develop<strong>in</strong>g countries. The aim is to assist develop<strong>in</strong>g countries with significant<br />

geothermal potential to build up groups of specialists th<strong>at</strong> cover most aspects of<br />

geothermal explor<strong>at</strong>ion <strong>and</strong> development. Dur<strong>in</strong>g 1979-2006, 359 scientists <strong>and</strong><br />

eng<strong>in</strong>eers from 40 countries have completed the six month courses. They have come<br />

from Asia (44%), Africa (26%), Central America (14%), <strong>and</strong> Central <strong>and</strong> Eastern Europe<br />

(16%). There is a steady flow of requests from all over the world for the six month<br />

tra<strong>in</strong><strong>in</strong>g <strong>and</strong> we can only meet a portion of the requests. Most of the tra<strong>in</strong>ees are awarded<br />

UNU Fellowships f<strong>in</strong>anced by the UNU <strong>and</strong> the Government of Icel<strong>and</strong>.<br />

C<strong>and</strong>id<strong>at</strong>es for the six month specialized tra<strong>in</strong><strong>in</strong>g must have <strong>at</strong> least a BSc degree <strong>and</strong> a<br />

m<strong>in</strong>imum of one year practical experience <strong>in</strong> geothermal work <strong>in</strong> their home countries<br />

prior to the tra<strong>in</strong><strong>in</strong>g. Many of our tra<strong>in</strong>ees have already completed their MSc or PhD<br />

degrees when they come to Icel<strong>and</strong>, but several excellent students who have only BSc<br />

degrees have made requests to come aga<strong>in</strong> to Icel<strong>and</strong> for a higher academic degree. In<br />

1999, it was decided to start admitt<strong>in</strong>g UNU Fellows to cont<strong>in</strong>ue their studies <strong>and</strong> study<br />

for MSc degrees <strong>in</strong> geothermal science or eng<strong>in</strong>eer<strong>in</strong>g <strong>in</strong> co-oper<strong>at</strong>ion with the University<br />

of Icel<strong>and</strong>. An agreement to this effect was signed with the University of Icel<strong>and</strong>. The six<br />

month studies <strong>at</strong> the UNU Geothermal Tra<strong>in</strong><strong>in</strong>g Programme form a part of the gradu<strong>at</strong>e<br />

programme.<br />

It is a pleasure to <strong>in</strong>troduce the n<strong>in</strong>th UNU Fellow to complete the MSc studies <strong>at</strong> the<br />

University of Icel<strong>and</strong> under the co-oper<strong>at</strong>ion agreement. Mr. Kizito M. Opondo, BSc <strong>in</strong><br />

Chemistry, of the Kenya Electricity Gener<strong>at</strong><strong>in</strong>g Co. Ltd KenGen, completed the six<br />

month specialized tra<strong>in</strong><strong>in</strong>g <strong>at</strong> the UNU Geothermal Tra<strong>in</strong><strong>in</strong>g Programme <strong>in</strong> October 2002.<br />

His research report was entitled “Corrosion tests <strong>in</strong> cool<strong>in</strong>g circuit w<strong>at</strong>er <strong>at</strong> Olkaria I plant<br />

<strong>and</strong> scale predictions for Olkaria <strong>and</strong> Reykjanes fluids”. After two years of geothermal<br />

research work <strong>in</strong> Kenya, he came back to Icel<strong>and</strong> for MSc studies <strong>at</strong> the Faculty of<br />

Science of the University of Icel<strong>and</strong> <strong>in</strong> February 2005. In August 2006, he defended his<br />

MSc thesis presented here, entitled “Corrosive <strong>species</strong> <strong>and</strong> <strong>scal<strong>in</strong>g</strong> <strong>in</strong> <strong>wells</strong> <strong>at</strong> Olkaria,<br />

Kenya, <strong>and</strong> Reykjanes, Svartsengi <strong>and</strong> Nesjavellir, Icel<strong>and</strong>”. His studies <strong>in</strong> Icel<strong>and</strong> were<br />

f<strong>in</strong>anced by a fellowship from the Government of Icel<strong>and</strong> through the UNU Geothermal<br />

Tra<strong>in</strong><strong>in</strong>g Programme. We congr<strong>at</strong>ul<strong>at</strong>e him on his achievements <strong>and</strong> wish him all the best<br />

for the future. We thank the Faculty of Science of the University of Icel<strong>and</strong> for the cooper<strong>at</strong>ion,<br />

<strong>and</strong> his supervisors for the dedic<strong>at</strong>ion.<br />

F<strong>in</strong>ally, I would like to mention th<strong>at</strong> Kizito’s MSc thesis with the photos <strong>in</strong> colour is<br />

available for download<strong>in</strong>g on our website <strong>at</strong> page www.os.is/unugtp/yearbook/2006.<br />

With warmest wishes from Icel<strong>and</strong>,<br />

Ingvar B. Fridleifsson, director<br />

United N<strong>at</strong>ions University<br />

Geothermal Tra<strong>in</strong><strong>in</strong>g Programme<br />

iii


DEDICATION<br />

I would like to dedic<strong>at</strong>e this work to my parents, my l<strong>at</strong>e f<strong>at</strong>her Peter Opondo Mut<strong>and</strong>a <strong>and</strong> my l<strong>at</strong>e<br />

mother Christ<strong>in</strong>e Nasike Opondo for show<strong>in</strong>g me the way of school <strong>at</strong> a very early stage <strong>in</strong> life <strong>and</strong> to<br />

all those who may not be mentioned here but who made immense contributions <strong>in</strong> my early school<strong>in</strong>g<br />

life.<br />

ACKNOWLEDGEMENTS<br />

I would like to express my gr<strong>at</strong>itude to Dr. Ingvar Birgir Fridleifsson, the Director, United N<strong>at</strong>ions<br />

University (UNU) Geothermal Tra<strong>in</strong><strong>in</strong>g Programme (GTP) for hav<strong>in</strong>g offered me the opportunity to<br />

<strong>at</strong>tend the MSc. Programme under the University of Icel<strong>and</strong>-UNU GTP co-oper<strong>at</strong>ion programme <strong>and</strong><br />

for his encouragement <strong>and</strong> guidance throughout the entire course, but also to Mr. Lúdvík S.Georgsson<br />

<strong>and</strong> Gudrún Bjarnadóttir of UNU (GTP) for be<strong>in</strong>g of gre<strong>at</strong> help whenever I needed it.<br />

I extend my gr<strong>at</strong>itude <strong>and</strong> <strong>in</strong>debtedness to my supervisors Prof. Stefán Arnόrsson <strong>and</strong> Mr. Sverrir<br />

Thórhallsson for hav<strong>in</strong>g been there the whole way <strong>and</strong> provid<strong>in</strong>g a very supportive environment for<br />

my research along with much guidance. The lecturers <strong>at</strong> the University of Icel<strong>and</strong> provided a gre<strong>at</strong><br />

learn<strong>in</strong>g experience <strong>and</strong> my s<strong>in</strong>cere gr<strong>at</strong>itude to them. My s<strong>in</strong>cere appreci<strong>at</strong>ion to Gestur Gíslason <strong>and</strong><br />

Grétar Ívarsson of Orkuveita Reykjavíkur for assistance with all the field work <strong>at</strong> Nesjavellir, to Dr.<br />

Sigurdur Jakobsson for analysis <strong>and</strong> <strong>in</strong>terpret<strong>at</strong>ion of <strong>in</strong>frared spectroscopy, to Ingvi Gunnarsson <strong>and</strong><br />

Jόn M<strong>at</strong>thίasson for analysis with the Inductively Coupled Plasma (ICP) <strong>and</strong> the Scann<strong>in</strong>g Electron<br />

Microscope (SEM) <strong>and</strong> Sigurdur Jόnsson for the X-Ray Diffraction spectra (XRD), to the staff of<br />

Icel<strong>and</strong> Geosurvey (ISOR) <strong>and</strong> <strong>Orkustofnun</strong> (OS) with whom <strong>in</strong>teraction was of gre<strong>at</strong> help. To Niels<br />

Giroud for provid<strong>in</strong>g chemical d<strong>at</strong>a for Nesjavellir well fluids <strong>and</strong> Halldόr Ármannsson for chemical<br />

d<strong>at</strong>a for Reykjanes <strong>and</strong> Svartsengi well fluids. Special thanks are extended to my fellow students with<br />

whom <strong>in</strong>teraction was very encourag<strong>in</strong>g throughout my study.<br />

I would like to thank <strong>in</strong>stitutions <strong>and</strong> organis<strong>at</strong>ions th<strong>at</strong> funded <strong>and</strong> supported my studies; The<br />

Government of Icel<strong>and</strong> through the UNU Geothermal Tra<strong>in</strong><strong>in</strong>g Programme (UNU-GTP) <strong>and</strong><br />

Orkuveita Reykjavíkur (Icel<strong>and</strong>). To my employer, the Kenya Electricity Gener<strong>at</strong><strong>in</strong>g Company Ltd<br />

(KenGen) for grant<strong>in</strong>g me study leave to carry out this study.<br />

My deepest thanks to my wife, Eunice who played dad <strong>and</strong> mum dur<strong>in</strong>g my long period of absence,<br />

my daughters Christ<strong>in</strong>e Nasike, Esther Narotso, Lynn Nabwire all who had to bare with my long<br />

absence. You all were of gre<strong>at</strong> encouragement whenever I phoned <strong>and</strong> talked to you. To almighty<br />

God for keep<strong>in</strong>g me <strong>in</strong> good health dur<strong>in</strong>g my entire stay.<br />

iv


ABSTRACT<br />

The Olkaria geothermal system <strong>in</strong> Kenya is loc<strong>at</strong>ed with<strong>in</strong> the Okaria volcanic complex <strong>in</strong> the central<br />

sector of the Kenya Rift Valley. Reykjanes, Svarstengi <strong>and</strong> Nesjavellir geothermal fields are loc<strong>at</strong>ed<br />

<strong>in</strong> southwest Icel<strong>and</strong> <strong>and</strong> fall on a cont<strong>in</strong>uous earthquake epicentric l<strong>in</strong>e extend<strong>in</strong>g through the<br />

Reykjanes Penn<strong>in</strong>sula th<strong>at</strong> stretches northeast to Langjökull. These four geothermal fields are all<br />

high-temper<strong>at</strong>ure. Measured temper<strong>at</strong>ures <strong>in</strong> Olkaria are as high as 350°C, Reykjanes 320°C,<br />

Svartsengi 240°C <strong>and</strong> Nesjavellir > 380°C. The reservoir w<strong>at</strong>ers <strong>in</strong> the four fields vary. The w<strong>at</strong>er type<br />

<strong>at</strong> Olkaria is ma<strong>in</strong>ly dilute near neutral pH sodium -chloride <strong>and</strong> sodium-bicarbon<strong>at</strong>e w<strong>at</strong>ers with<br />

chloride rang<strong>in</strong>g between 50 <strong>and</strong> 4000 ppm <strong>at</strong> <strong>at</strong>mospheric pressure. At Reykjanes <strong>and</strong> Svartsengi<br />

these are sal<strong>in</strong>e sodium-chloride w<strong>at</strong>ers with chloride be<strong>in</strong>g 20,000 <strong>and</strong> 13,000 ppm, respectively,<br />

while <strong>at</strong> Nesjavellir they are very dilute sodium chloride w<strong>at</strong>ers with chloride of ~ 150 ppm.<br />

Gas concentr<strong>at</strong>ions <strong>in</strong> the fluids of all the four fields are low, except for fluids of the Olkaria West<br />

sector <strong>in</strong> Olkaria. Speci<strong>at</strong>ion calcul<strong>at</strong>ions <strong>in</strong>dic<strong>at</strong>e th<strong>at</strong> <strong>in</strong> Olkaria CO 2 partial pressures range between<br />

0.5 bar <strong>and</strong> 5 bar except for fluids <strong>in</strong> the Olkaria West sector with > 90 bars a. At Reykjanes,<br />

Svartsengi <strong>and</strong> Nesjavellir the CO 2 partial pressures fall between 0.0867 to 1.66 bars a. The high CO 2<br />

partial pressures cause CO 2 rich w<strong>at</strong>ers to develop when CO 2 <strong>in</strong> steam encounters shallower ground<br />

w<strong>at</strong>ers. This becomes <strong>corrosive</strong> <strong>in</strong> the process as the pH of the w<strong>at</strong>er is lowered. At Reykjanes <strong>and</strong><br />

Svartsengi, well fluids are low <strong>in</strong> pH but this is little <strong>in</strong>fluenced by the partial pressures of CO 2 . The<br />

pH of condens<strong>at</strong>es th<strong>at</strong> form due to dissolution of CO 2 <strong>at</strong> separ<strong>at</strong>ion pressures range between 4.55 <strong>and</strong><br />

5.51 for Olkaria <strong>wells</strong> while <strong>at</strong> Reykjanes, Svartsengi <strong>and</strong> Nesjavellir these are between 5.20 <strong>and</strong> 5.55.<br />

Thermodynamic calcul<strong>at</strong>ions of HCl concentr<strong>at</strong>ions us<strong>in</strong>g pH, chloride concentr<strong>at</strong>ions <strong>and</strong> aquifer<br />

temper<strong>at</strong>ure <strong>in</strong>dic<strong>at</strong>e high concentr<strong>at</strong>ions of HCl <strong>in</strong> the aquifer w<strong>at</strong>er of Reykjanes <strong>and</strong> Svartsengi<br />

(0.81 <strong>and</strong> 0.083 ppm) <strong>and</strong> low HCl concentr<strong>at</strong>ions <strong>in</strong> the Olkaria <strong>and</strong> Nesjavellir well fluids. In steam<br />

high HCl concentr<strong>at</strong>ions are derived for Reykjanes well fluids due to high wellhead pressures. Low<br />

pH <strong>and</strong> high chloride concentr<strong>at</strong>ion coupled with high temper<strong>at</strong>ures contribute to high HCl<br />

concentr<strong>at</strong>ions <strong>in</strong> fluid <strong>in</strong> the Reykjanes <strong>and</strong> Svartsengi fluids. In dry steam conveyed <strong>in</strong> steam<br />

g<strong>at</strong>her<strong>in</strong>g systems HCl becomes <strong>corrosive</strong> as steam condenses due to form<strong>at</strong>ion of H + <strong>and</strong> Cl - ions.<br />

Studies of scales formed dur<strong>in</strong>g tests <strong>at</strong> Nesjavellir us<strong>in</strong>g the b<strong>in</strong>ocular microscope, FTIR, XRD, SEM,<br />

ICP <strong>and</strong> UV <strong>in</strong>dic<strong>at</strong>e th<strong>at</strong> scales formed <strong>at</strong> the wellheads of <strong>wells</strong> NJ-14 <strong>and</strong> NJ-22 consisted ma<strong>in</strong>ly<br />

of sulphides <strong>at</strong> well NJ-14 <strong>and</strong> mixed sulphides <strong>and</strong> oxides <strong>at</strong> well NJ-22. In separ<strong>at</strong>ed w<strong>at</strong>er after the<br />

he<strong>at</strong> exchangers, entry to retention tank <strong>and</strong> <strong>at</strong> <strong>in</strong>jection well the scales consisted ma<strong>in</strong>ly of amorphous<br />

silica with some <strong>in</strong>dic<strong>at</strong>ion of clays. Crystall<strong>in</strong>e phases were not prom<strong>in</strong>ent <strong>in</strong> the scales but traces of<br />

chalcopyrite were identified <strong>in</strong> scales formed <strong>at</strong> the wellhead of well NJ-14 <strong>and</strong> <strong>at</strong> the entry to the<br />

retention tank. Traces of clays formed <strong>in</strong> scales <strong>at</strong> the wellhead of well NJ-22. The highest amount of<br />

scale deposited <strong>at</strong> the entry to the retention tank, with a deposition r<strong>at</strong>e of ~0.261mm/yr. At the<br />

<strong>in</strong>jection well the r<strong>at</strong>e was lower ~0.0168 mm/yr.<br />

Olkaria well OW-34 has an enthalpy close to th<strong>at</strong> of dry steam of 2672 kJ/kg <strong>and</strong> anomalous<br />

chemistry. Chloride concentr<strong>at</strong>ion <strong>in</strong> the separ<strong>at</strong>ed w<strong>at</strong>er is ~ 4000ppm <strong>at</strong> <strong>at</strong>mospheric pressure. The<br />

high solute content <strong>in</strong> well OW-34 fluids is <strong>in</strong>fluenced by evapor<strong>at</strong>ive effects due to the high discharge<br />

enthalpy. Scales formed <strong>in</strong> the wellhead equipment <strong>and</strong> studied by the same method above <strong>in</strong>dic<strong>at</strong>ed<br />

they were prom<strong>in</strong>ently amorphous silica scales. Crystall<strong>in</strong>e phases were absent from the scales.<br />

v


TABLE OF CONTENTS<br />

Page<br />

1. INTRODUCTION ................................................................................................................... 1<br />

1.1 Corrosion <strong>in</strong> geothermal environments.......................................................................... 1<br />

1.2 Scale form<strong>at</strong>ion.............................................................................................................. 2<br />

1.2.1 Silica................................................................................................................ 2<br />

1.2.2 Calcite.............................................................................................................. 4<br />

1.2.3 Other scales ..................................................................................................... 4<br />

1.2.4 Objectives of study .......................................................................................... 5<br />

2. GEOLOGICAL FEATURES OF THE STUDY AREA.......................................................... 6<br />

2.1 The Gre<strong>at</strong>er Olkaria geothermal system ........................................................................ 6<br />

2.2 The Reykjanes <strong>and</strong> Svartsengi geothermal fields .......................................................... 7<br />

2.3 Nesjavellir geothermal field........................................................................................... 9<br />

3. SAMPLING AND ANALYSIS............................................................................................. 11<br />

3.1 Sample collection......................................................................................................... 11<br />

3.2 Analysis of w<strong>at</strong>er <strong>and</strong> steam samples .......................................................................... 12<br />

4. FLUID COMPOSITIONS ..................................................................................................... 13<br />

5. CALCULATION OF AQUIFER FLUID COMPOSITION.................................................. 15<br />

5.1 Discharge enthalpy of <strong>wells</strong>......................................................................................... 15<br />

5.2 Calcul<strong>at</strong>ion of gas concentr<strong>at</strong>ions <strong>in</strong> steam <strong>at</strong> <strong>at</strong>mospheric pressure ........................... 17<br />

5.3 Calcul<strong>at</strong>ion of aquifer w<strong>at</strong>er compositions <strong>and</strong> speci<strong>at</strong>ion distribution....................... 18<br />

6. POTENTIAL CORROSION BY CO 2 AND HCl .................................................................. 20<br />

6.1 Carbon dioxide............................................................................................................. 20<br />

6.2 Hydrogen chloride ....................................................................................................... 22<br />

7. SCALING IN WELLS AND SURFACE INSTALLATIONS .............................................. 28<br />

7.1 Theoretical aspects of calcite scale form<strong>at</strong>ion ............................................................. 28<br />

7.2 Scal<strong>in</strong>g tests <strong>at</strong> Nesjavellir........................................................................................... 30<br />

7.2.1 Test coupons.................................................................................................. 31<br />

7.2.2 Test procedures <strong>and</strong> selection of test sites for the study................................ 32<br />

7.3 Analysis of scales......................................................................................................... 33<br />

7.3.1 B<strong>in</strong>ocular microscope descriptions................................................................ 34<br />

7.3.2 Fourier transform <strong>in</strong>frared measurement....................................................... 35<br />

7.3.3 X-ray diffraction measurements .................................................................... 35<br />

7.3.4 Chemical analysis by Scann<strong>in</strong>g Electron Microscopy –<br />

Electron Dispersive Spectroscopy (SEM-EDS) ......................................... 37<br />

7.3.5 Chemical analysis of scales by the Inductively Coupled Plasma –<br />

Atomic Emission Spectra (ICP-AES)......................................................... 38<br />

7.3.6 Analysis of scales <strong>in</strong> the UV spectroscopy.................................................... 38<br />

7.3.7 Quantity of scales .......................................................................................... 38<br />

8. EVALUATION OF SCALES DEPOSITED AT OLKARIA WELL OW-34, KENYA....... 41<br />

8.1 Output characteristics of well OW-34 ......................................................................... 41<br />

8.2 W<strong>at</strong>er composition of well OW-34.............................................................................. 42<br />

8.3 Chloride concentr<strong>at</strong>ion as a function of vapour pressure<br />

<strong>at</strong> selected discharge enthalpies ................................................................................ 42<br />

8.4 Scales deposited <strong>at</strong> well OW-34 .................................................................................. 43<br />

8.5 Analysis of scales from well OW-34........................................................................... 44<br />

vi


Page<br />

9. CONCLUSIONS ................................................................................................................... 47<br />

REFERENCES ................................................................................................................... 49<br />

APPENDIX A: Tables with analyses, calcul<strong>at</strong>ion etc..................................................................... 57<br />

APPENDIX B: Methods for prepar<strong>in</strong>g coupons <strong>and</strong> study<strong>in</strong>g scales ............................................. 65<br />

APPENDIX C: Analyses of scales <strong>and</strong> scales spectra .................................................................... 66<br />

LIST OF FIGURES<br />

1. Kenya Rift system <strong>and</strong> the major geothermal prospect <strong>and</strong> Olkaria geothermal field............. 6<br />

2. Loc<strong>at</strong>ion of the geothermal fields <strong>in</strong> the Gre<strong>at</strong>er Olkaria Geothermal Area............................ 7<br />

3. Simplified geological map with high-temper<strong>at</strong>ure geothermal fields <strong>in</strong> Icel<strong>and</strong> ..................... 8<br />

4. Loc<strong>at</strong>ion of <strong>wells</strong> <strong>in</strong> Reykjanes geothermal field..................................................................... 8<br />

5. Well loc<strong>at</strong>ions <strong>in</strong> the Svartsengi geothermal field ................................................................... 9<br />

6. Resistivity map del<strong>in</strong>e<strong>at</strong><strong>in</strong>g the l<strong>at</strong>eral extent of the Hengill geothermal area......................... 9<br />

7. Loc<strong>at</strong>ion of <strong>wells</strong> <strong>in</strong> the Nesjavellir geothermal field ............................................................ 10<br />

8. Steam collection us<strong>in</strong>g a Webre separ<strong>at</strong>or <strong>and</strong> w<strong>at</strong>er sample collection from a weirbox ...... 11<br />

9. Steam collection from a steam separ<strong>at</strong>or <strong>and</strong> w<strong>at</strong>er sample collection from a weirbox ........ 11<br />

10. Cl-SO 4 -HCO 3 ternary plot for fluids from the Olkaria, Reykjanes <strong>and</strong> Svartsengi fields ..... 13<br />

11. Rel<strong>at</strong>ionship between tqtz vs. tNaK equilibrium temper<strong>at</strong>ures.............................................. 16<br />

12. Difference between tNa/K <strong>and</strong> tqtz geothermometer temper<strong>at</strong>ures vs. enthalpy................... 16<br />

13. Aquifer temper<strong>at</strong>ures vs. CO 2 partial pressures <strong>in</strong> the aquifer fluids..................................... 20<br />

14. Aquifer pH vs CO 2 partial pressures <strong>in</strong> the aquifer for selected <strong>wells</strong> <strong>in</strong> the study areas ...... 21<br />

15. CO 2 <strong>in</strong> the separ<strong>at</strong>ed w<strong>at</strong>er of selected <strong>wells</strong> with s<strong>in</strong>gle-step adiab<strong>at</strong>ic steam loss .............. 22<br />

16. CO 2 <strong>in</strong> the separ<strong>at</strong>ed w<strong>at</strong>er of selected <strong>wells</strong> with s<strong>in</strong>gle-step adiab<strong>at</strong>ic steam loss .............. 22<br />

17. Condens<strong>at</strong>e pH <strong>at</strong> separ<strong>at</strong>ion temper<strong>at</strong>ures of selected <strong>wells</strong> <strong>in</strong> the study area ..................... 22<br />

18. Aquifer w<strong>at</strong>er HCl concentr<strong>at</strong>ions vs. aquifer w<strong>at</strong>er chloride concentr<strong>at</strong>ions <strong>in</strong> <strong>wells</strong>.......... 24<br />

19. Aquifer w<strong>at</strong>er HCl concentr<strong>at</strong>ions vs. aquifer w<strong>at</strong>er pH of selected <strong>wells</strong> <strong>in</strong> the study area . 24<br />

20. Aquifer w<strong>at</strong>er HCl concentr<strong>at</strong>ions vs. aquifer temper<strong>at</strong>ure of selected <strong>wells</strong> ........................ 25<br />

21. HCl <strong>in</strong> vapour formed by s<strong>in</strong>gle-step adiab<strong>at</strong>ic boil<strong>in</strong>g of selected <strong>wells</strong> <strong>in</strong> the study areas. 25<br />

22. HCl <strong>in</strong> vapour with changes <strong>in</strong> pH upon s<strong>in</strong>gle-step adiab<strong>at</strong>ic boil<strong>in</strong>g of selected <strong>wells</strong> ...... 26<br />

23. Aquifer pH vs calcite s<strong>at</strong>ur<strong>at</strong>ion for Olkaria, Reykjanes, Svartsengi <strong>and</strong> Nesjavellir ........... 28<br />

24. Changes <strong>in</strong> calcite produced by s<strong>in</strong>gle-step adiab<strong>at</strong>ic steam loss for selected well fluid....... 29<br />

25. Calcul<strong>at</strong>ed aquifer w<strong>at</strong>er pH for selected <strong>wells</strong> <strong>and</strong> changes <strong>in</strong> pH<br />

dur<strong>in</strong>g s<strong>in</strong>gle-step adiab<strong>at</strong>ic steam loss........................................................................ 30<br />

26. Simplified process diagram of the Nesjavellir co-gener<strong>at</strong>ion power plant. ........................... 31<br />

27. Prepared test coupons with impr<strong>in</strong>ted identific<strong>at</strong>ion number codes ...................................... 31<br />

28. Retractable coupon holders ................................................................................................... 32<br />

29. Coupons <strong>at</strong> the well head of well NJ-14 ................................................................................ 33<br />

30. Coupons <strong>at</strong> entry to the retention tank ................................................................................... 33<br />

31. Coupons <strong>at</strong> the re-<strong>in</strong>jection well ............................................................................................ 33<br />

32. Test coupons after 13 weeks test period ................................................................................ 34<br />

33. Deposition of scales on test coupons <strong>at</strong> different loc<strong>at</strong>ions ................................................... 34<br />

34. IR spectra of scales deposited on coupons <strong>at</strong> various loc<strong>at</strong>ions............................................. 36<br />

35. XRD spectra of scales formed <strong>at</strong> wellheads of Nesjavellir <strong>wells</strong> .......................................... 37<br />

36. Scann<strong>in</strong>g Electron Micrograph show<strong>in</strong>g crystals of sulphides from scale on test coupons... 37<br />

37. Weight ga<strong>in</strong> of scale <strong>at</strong> various test sites for 13 weeks test <strong>and</strong> 29 weeks test ...................... 39<br />

38. Scale thickness <strong>at</strong> the various test sites for 13 weeks test <strong>and</strong> 29 weeks test......................... 40<br />

vii


39. Loc<strong>at</strong>ion of <strong>wells</strong> <strong>in</strong> Olkaria East production field ................................................................ 41<br />

40. Modelled chloride concentr<strong>at</strong>ions <strong>at</strong> selected enthalpies with vary<strong>in</strong>g vapour pressure........ 42<br />

41. Layout of wellhead for well OW-34 show<strong>in</strong>g where scale samples were collected.............. 43<br />

42. Scale deposited on two-phase l<strong>in</strong>e of well OW-34 (scale # 2)............................................... 44<br />

43. Scale sample from <strong>in</strong>side the separ<strong>at</strong>or of well OW-34 (scale # 3) ....................................... 44<br />

44. Scale formed <strong>at</strong> the Tee connection of well OW-34 master valve (scale # 1) ....................... 44<br />

45. Scale deposit on the waste w<strong>at</strong>erl<strong>in</strong>e of well OW-34 (scale # 4)........................................... 44<br />

46. Deposit of scale formed where well OW-34 master valve was leak<strong>in</strong>g (scale #5) ............... 44<br />

47. Infrared spectra of scale samples #1 – 5, collected from well OW-34 .................................. 45<br />

48. XRD analysis of scale samples #1 – 5 from Olkaria well OW-34......................................... 46<br />

Page<br />

viii


1. INTRODUCTION<br />

For many countries geothermal energy is an important resource. Utilis<strong>at</strong>ion, both direct <strong>and</strong> for power<br />

gener<strong>at</strong>ion, is <strong>in</strong>creas<strong>in</strong>g faster than th<strong>at</strong> of any other energy resource. Worldwide <strong>in</strong>stalled capacity of<br />

geothermal power plants has <strong>in</strong>creased by ~ 10 % or more per year over the last two decades (Bert<strong>in</strong>i,<br />

2005). The technology needed to harness geothermal energy has advanced much over the last 20-30<br />

years <strong>and</strong> steps have been taken to reduce the environmental impact of geothermal energy utiliz<strong>at</strong>ion,<br />

particularly by <strong>in</strong>jection of spent fluid <strong>in</strong>to <strong>wells</strong> <strong>and</strong> directional drill<strong>in</strong>g. The ma<strong>in</strong> oper<strong>at</strong>ional<br />

problems encountered when utilis<strong>in</strong>g high-temper<strong>at</strong>ure geothermal reservoirs for power gener<strong>at</strong>ion<br />

<strong>in</strong>volve the form<strong>at</strong>ion of various types of scales <strong>in</strong> production <strong>wells</strong>, surface equipment <strong>and</strong> <strong>in</strong>jection<br />

<strong>wells</strong>. Corrosion is sometimes also a problem, both for high <strong>and</strong> low-temper<strong>at</strong>ure fluid utilis<strong>at</strong>ion.<br />

The most common scales formed are amorphous silica <strong>and</strong> calcite. However, many other types of<br />

scales have been encountered <strong>in</strong>clud<strong>in</strong>g metal-sulphides, silic<strong>at</strong>es of iron <strong>and</strong> alum<strong>in</strong>ium <strong>and</strong><br />

anhydrite. In geothermal fluids various <strong>species</strong> can be <strong>corrosive</strong> <strong>and</strong> these <strong>in</strong>clude chlorides, carbon<br />

dioxide, ammonia, hydrogen ion, dissolved oxygen, bisulph<strong>at</strong>e, which dissoci<strong>at</strong>es <strong>in</strong>to sulph<strong>at</strong>e <strong>and</strong> H +<br />

upon cool<strong>in</strong>g. Chloride ion breaks passive films th<strong>at</strong> are protective on metal surfaces <strong>and</strong> can<br />

concentr<strong>at</strong>e <strong>in</strong> crevices <strong>and</strong> cause pitt<strong>in</strong>g corrosion. Hydrogen chloride <strong>in</strong> steam can produce acid<br />

condens<strong>at</strong>e <strong>and</strong> lead to severe corrosion. Dissolved carbon dioxide gas <strong>in</strong> geothermal w<strong>at</strong>er causes<br />

corrosion of low carbon steels, which is generally localized.<br />

In this study special <strong>at</strong>tention is given to assess<strong>in</strong>g the conditions for the form<strong>at</strong>ion of amorphous silica<br />

<strong>and</strong> calcite scales, <strong>and</strong> the concentr<strong>at</strong>ions of the <strong>corrosive</strong> <strong>species</strong> CO 2 <strong>and</strong> HCl <strong>in</strong> geothermal w<strong>at</strong>er<br />

<strong>and</strong> steam. Special <strong>at</strong>tention is given to <strong>scal<strong>in</strong>g</strong> <strong>in</strong> <strong>wells</strong> <strong>and</strong> wellhead equipment th<strong>at</strong> are <strong>in</strong> contact<br />

with slightly wet steam. The study is based on d<strong>at</strong>a from Olkaria, Kenya <strong>and</strong> Reykjanes, Svartsengi<br />

<strong>and</strong> Nesjavellir, Icel<strong>and</strong>. Further <strong>scal<strong>in</strong>g</strong> tests were carried out <strong>at</strong> Nesjavellir, Icel<strong>and</strong>, both <strong>at</strong><br />

wellheads <strong>and</strong> downstream, where the separ<strong>at</strong>ed w<strong>at</strong>er was overs<strong>at</strong>ur<strong>at</strong>ed with respect to amorphous<br />

silica.<br />

1.1 Corrosion <strong>in</strong> geothermal environments<br />

Corrosive <strong>at</strong>tack <strong>in</strong> high-temper<strong>at</strong>ure geothermal <strong>in</strong>stall<strong>at</strong>ions is found ma<strong>in</strong>ly <strong>in</strong> well cas<strong>in</strong>gs,<br />

condens<strong>at</strong>e <strong>in</strong>jection pipel<strong>in</strong>es made of carbon steel, wellhead equipment <strong>and</strong> turb<strong>in</strong>e blades. In<br />

gener<strong>at</strong>ion of electricity by direct contact condens<strong>in</strong>g turb<strong>in</strong>es where a cool<strong>in</strong>g w<strong>at</strong>er circuit is utilized,<br />

low pH (4-5) of the condens<strong>at</strong>e is caused by the dissolution of CO 2 <strong>and</strong> H 2 S gases present <strong>in</strong> the steam.<br />

In condens<strong>at</strong>e <strong>in</strong>jection pipel<strong>in</strong>es made of carbon steel, Villa et al. (2001) <strong>and</strong> Villa <strong>and</strong> Salonga<br />

(2000) report rapid deterior<strong>at</strong>ion due to low pH of condens<strong>at</strong>es. Oxygen <strong>in</strong>gress exacerb<strong>at</strong>es the<br />

problem. When conductive he<strong>at</strong> losses occur along steam pipel<strong>in</strong>es, steam may condense <strong>and</strong> through<br />

dissolution of CO 2 <strong>and</strong> H 2 S, lower the pH (Tha<strong>in</strong> et al., 1981; Henley et al., 1984). In Olkaria,<br />

Svartsengi <strong>and</strong> Nesjavellir direct contact condens<strong>in</strong>g turb<strong>in</strong>es are utilized <strong>and</strong> low pH condens<strong>at</strong>es<br />

which are <strong>corrosive</strong> develop. Corrosion rel<strong>at</strong>ed to the low pH condens<strong>at</strong>es on disposal is not reported.<br />

In superhe<strong>at</strong>ed steam where HCl is present Allegr<strong>in</strong>i <strong>and</strong> Benvenuti (1970), Meeker <strong>and</strong> Haizlip<br />

(1990) <strong>and</strong> Truesdell (1991) describe severe corrosion <strong>in</strong> well cas<strong>in</strong>gs, steam g<strong>at</strong>her<strong>in</strong>g systems <strong>and</strong><br />

turb<strong>in</strong>e blades, ma<strong>in</strong>ly caused by H + <strong>and</strong> Cl - . Thόrhallsson (2005) reported corrosion <strong>in</strong> steam<br />

pipel<strong>in</strong>es due to HCl transported <strong>in</strong> the steam <strong>in</strong> a dry steam well <strong>at</strong> Svartsengi. In Svartsengi,<br />

Thórólfsson (2005) has reported various corrosion rel<strong>at</strong>ed problems observed dur<strong>in</strong>g ma<strong>in</strong>tenance of<br />

the plant.<br />

Corrosion of cas<strong>in</strong>g <strong>in</strong> high-temper<strong>at</strong>ure geothermal systems can also be rel<strong>at</strong>ed to low pH associ<strong>at</strong>ed<br />

with acid-sulph<strong>at</strong>e w<strong>at</strong>ers. In <strong>and</strong>esitic geothermal systems like those found <strong>in</strong> the Philipp<strong>in</strong>es, e.g. the<br />

Tiwi <strong>and</strong> Bacman fields, Sugiaman et al. (2004) <strong>and</strong> Rosell <strong>and</strong> Ramos (1998) report cas<strong>in</strong>g corrosion<br />

observed due to penetr<strong>at</strong>ion by low pH acid sulph<strong>at</strong>e w<strong>at</strong>er. Similar cas<strong>in</strong>g corrosion was reported <strong>in</strong><br />

Cerro Prieto, Mexico by Dom<strong>in</strong>quiz (1980) <strong>and</strong> Miravalles, Costa Rica by Moya et al. (2005). In<br />

1


other cases, cas<strong>in</strong>g corrosion has been caused by CO 2 rich w<strong>at</strong>ers <strong>in</strong> geothermal fields. These w<strong>at</strong>ers<br />

form when ascend<strong>in</strong>g CO 2 rich steam dissolves <strong>in</strong> near surface shallow w<strong>at</strong>ers. In the Broadl<strong>and</strong>s-<br />

Ohaaki geothermal field, New Zeal<strong>and</strong>, Hedenquist <strong>and</strong> Stewart (1985) reported severe external well<br />

cas<strong>in</strong>g corrosion caused by CO 2 rich steam-he<strong>at</strong>ed w<strong>at</strong>er. Zarouk (2004) reviewed cas<strong>in</strong>g corrosion<br />

occurrences <strong>in</strong> New Zeal<strong>and</strong> geothermal fields. In all cases, these are rel<strong>at</strong>ed to CO 2 rich dilute<br />

geothermal w<strong>at</strong>er. In Olkaria, Omenda (1998) <strong>and</strong> Kar<strong>in</strong>githi (2002) report CO 2 rich fluids but the<br />

extent to which they are <strong>corrosive</strong> is not known.<br />

Modes of corrosion <strong>at</strong>tack <strong>in</strong> geothermal <strong>in</strong>stall<strong>at</strong>ions have been disscussed by Conover et al. (1979),<br />

Boulton <strong>and</strong> White (1983) <strong>and</strong> Corsi (1986). These are uniform (general) corrosion, pitt<strong>in</strong>g corrosion,<br />

crevice corrosion, stress corrosion crack<strong>in</strong>g (SCC), sulphide stress crack<strong>in</strong>g (SSC), <strong>in</strong>tergranular<br />

corrosion, galvanic coupl<strong>in</strong>g, corrosion f<strong>at</strong>igue, microbiological by <strong>in</strong>duced corrosion, erosion<br />

corrosion <strong>and</strong> cavit<strong>at</strong>ion.<br />

1.2 Scale form<strong>at</strong>ion<br />

The ma<strong>in</strong> drawbacks <strong>in</strong> the utiliz<strong>at</strong>ion of geothermal resources arise from the precipit<strong>at</strong>ion of solid<br />

scales from the geothermal fluid. In many cases the scales cause restriction <strong>in</strong> flow, e.g. <strong>in</strong> the<br />

boreholes, two phase pipel<strong>in</strong>es, the separ<strong>at</strong>ors <strong>and</strong> waste w<strong>at</strong>er l<strong>in</strong>es <strong>and</strong> steam pipel<strong>in</strong>es. Their<br />

form<strong>at</strong>ion often impedes the clos<strong>in</strong>g <strong>and</strong> open<strong>in</strong>g of valves lead<strong>in</strong>g to leaks. Deposition on turb<strong>in</strong>e<br />

blades is common which results <strong>in</strong> the turb<strong>in</strong>e chest pressures <strong>in</strong>creas<strong>in</strong>g. Three ma<strong>in</strong> areas of scale<br />

deposition can be dist<strong>in</strong>guished (Corsi, 1986). These are: deposition from a s<strong>in</strong>gle phase fluid<br />

(<strong>in</strong>jection pipel<strong>in</strong>es), deposition from flash<strong>in</strong>g fluid (<strong>wells</strong>, separ<strong>at</strong>ors, two phase-pipel<strong>in</strong>es) <strong>and</strong><br />

deposition by steam carryover (separ<strong>at</strong>ors, steam l<strong>in</strong>es <strong>and</strong> turb<strong>in</strong>es).<br />

A gre<strong>at</strong> deal of work has been carried out on the n<strong>at</strong>ure of scales formed from geothermal fluids<br />

(Thόrhallsson et al., 1975; Arnόrsson, 1981; Gallup, 1989; Gallup, 1998; Simmons <strong>and</strong> Christenson<br />

1993; Simmons <strong>and</strong> Christenson, 1994). Amorphous silica <strong>and</strong> calcium carbon<strong>at</strong>e scales are the most<br />

extensively studied but metal sulphides <strong>and</strong> silic<strong>at</strong>es to a lesser extent, although they are presently<br />

receiv<strong>in</strong>g more <strong>at</strong>tention (Simmons <strong>and</strong> Christenson 1993; Simmons <strong>and</strong> Christenson, 1994;<br />

Ármannsson, 1989; Mecerdo et al., 1989; Benoit, 1989; Durak et al., 1993; Hardardόttir et al., 2001;<br />

Weissberg et al., 1979; D’Amore et al., 1998; Karebalas et al., 1989; Gallup, 1993; 1998).<br />

1.2.1 Silica<br />

Amorphous silica deposition is probably the most commonly encountered <strong>and</strong> troublesome scale<br />

formed from high-temper<strong>at</strong>ure geothermal w<strong>at</strong>er. Such scale has been studied by many workers<br />

(Weres <strong>and</strong> Tsao, 1981; Hurtado et al., 1989; Thórhallsson et al., 1975; Arnόrsson, 1981; Gallup,<br />

1989; Gallup, 1998; Mahon, 1966; Henley, 1983; Garcia et al., 1996, Yanagase et al., 1970; Itoi et al.,<br />

1989; K<strong>at</strong>o et al., 2003; Corsi, 1986). A lot of effort has been devoted to the study of silica scale<br />

form<strong>at</strong>ion. In the utiliz<strong>at</strong>ion of high-temper<strong>at</strong>ure geothermal resources the efficient extraction of<br />

energy is limited by the silica scale th<strong>at</strong> may form as a consequence of cool<strong>in</strong>g.<br />

It has been established th<strong>at</strong> aqueous silica concentr<strong>at</strong>ions <strong>in</strong> high-temper<strong>at</strong>ure geothermal fluids are<br />

controlled by close approach to equilibrium with quartz (e.g. Fournier <strong>and</strong> Rowe, 1966; Mahon, 1966;<br />

Fournier, 1973; Fournier <strong>and</strong> Rowe, 1977; Fournier <strong>and</strong> Potter, 1982, Gίslason et al., 1997;<br />

Gunnarsson <strong>and</strong> Arnόrsson, 2000). The quartz solubility constant has been the subject of thorough<br />

experimental studies (Fournier, 1983; Fournier, 1985; Fournier <strong>and</strong> Potter, 1982; Fournier <strong>and</strong> Rowe,<br />

1977). Quartz solubility <strong>in</strong>creases with <strong>in</strong>creas<strong>in</strong>g temper<strong>at</strong>ure. Often quartz is not present as a primary<br />

m<strong>in</strong>eral <strong>in</strong> geothermal systems but forms by precipit<strong>at</strong>ion from the w<strong>at</strong>er. Silica scales are only known<br />

to form if the extent of boil<strong>in</strong>g <strong>and</strong> cool<strong>in</strong>g of the aquifer w<strong>at</strong>er is sufficient to s<strong>at</strong>ur<strong>at</strong>e it with<br />

amorphous silica, the reason be<strong>in</strong>g the fast r<strong>at</strong>e of deposition for this phase but slow r<strong>at</strong>e for quartz,<br />

particularly below 150°C. In contrast to calcite scale form<strong>at</strong>ion discussed below, amorphous silica<br />

2


deposition does not occur <strong>at</strong> depth <strong>in</strong> production <strong>wells</strong> but characteristically <strong>in</strong> wellheads, surface<br />

pip<strong>in</strong>gs <strong>and</strong> <strong>in</strong>jection <strong>wells</strong>.<br />

The control of silica concentr<strong>at</strong>ions <strong>in</strong> high-temper<strong>at</strong>ure geothermal w<strong>at</strong>ers by quartz solubility implies<br />

th<strong>at</strong> aqueous silica concentr<strong>at</strong>ions <strong>in</strong> produc<strong>in</strong>g aquifers <strong>in</strong>crease with <strong>in</strong>creas<strong>in</strong>g temper<strong>at</strong>ure of the<br />

w<strong>at</strong>er. As a consequence, the temper<strong>at</strong>ure <strong>at</strong> which amorphous silica s<strong>at</strong>ur<strong>at</strong>ion is <strong>at</strong>ta<strong>in</strong>ed for<br />

particular well w<strong>at</strong>er depends on the temper<strong>at</strong>ure of the source aquifer. Thus amorphous silica scale<br />

form<strong>at</strong>ion is not a problem unless the reservoir temper<strong>at</strong>ure exceeds 250˚C.<br />

The factors th<strong>at</strong> affect the r<strong>at</strong>e of amorphous silica precipit<strong>at</strong>ion <strong>and</strong> colloidal form<strong>at</strong>ion<br />

polymeris<strong>at</strong>ion) <strong>in</strong>clude the degree of supers<strong>at</strong>ur<strong>at</strong>ion, pH, temper<strong>at</strong>ure <strong>and</strong> sal<strong>in</strong>ity. Aer<strong>at</strong>ion may also<br />

contribute. Reactions between silica molecules <strong>in</strong> amorphous silica overs<strong>at</strong>ur<strong>at</strong>ed solutions may react<br />

between themselves to form colloidal silica or deposit from solution to form amorphous silica. The<br />

k<strong>in</strong>etics of amorphous silica precipit<strong>at</strong>ion <strong>and</strong> silica polymeris<strong>at</strong>ion have been studied by several<br />

workers (Rothbaum et al., 1979; Rimstidt <strong>and</strong> Barnes, 1980; Weres <strong>and</strong> Tsao, 1981; Gunnarsson <strong>and</strong><br />

Arnόrsson, 2005).<br />

The solubility of pure amorphous silica has been the subject of many studies (Fournier <strong>and</strong> Marshall,<br />

1983; Rimstidt <strong>and</strong> Barnes, 1980; Gunnarsson <strong>and</strong> Arnόrsson, 2000; Marshall <strong>and</strong> Chen, 1982; Weres<br />

<strong>and</strong> Tsao, 1981; Rothbaum et al., 1979). [Amorphous silica solubility is dependent on ions th<strong>at</strong> affect<br />

its surface charge]. Marshall <strong>and</strong> Warakomski (1980) <strong>and</strong> Chen <strong>and</strong> Marshall (1982) have studied the<br />

effects of dissolved salts of vary<strong>in</strong>g concentr<strong>at</strong>ions on the solubility of amorphous silica. Generally,<br />

they found th<strong>at</strong> the effect of the c<strong>at</strong>ions of the salts had a decreas<strong>in</strong>g effect on amorphous silica<br />

solubility <strong>in</strong> the order Mg 2+ > Ca 2+ > Sr 2+ > Li + > Na + > K + . Yokoyama et al. (1989) showed<br />

specifically th<strong>at</strong> alum<strong>in</strong>ium ion could have a strong <strong>in</strong>fluence on silica polymeris<strong>at</strong>ion r<strong>at</strong>es. These<br />

effects are likely to be caused by complex form<strong>at</strong>ion between silica <strong>and</strong> c<strong>at</strong>ions <strong>in</strong> the salts but the<br />

salts will also affect the value of the activity coefficients taken by aqueous silica <strong>species</strong>. The<br />

presence of c<strong>at</strong>ions <strong>in</strong> solution may also affect the composition of <strong>and</strong> the precipit<strong>at</strong>ed amorphous<br />

silica <strong>and</strong> therefore its solubility. Thus alum<strong>in</strong>ium <strong>and</strong> iron silic<strong>at</strong>es deposition has been described <strong>in</strong><br />

other sal<strong>in</strong>e geothermal systems such as Milos, Nissyros, Asal., Reykjanes, Salton sea, e.g. Karabelas<br />

et al. (1989), Virkir-Ork<strong>in</strong>t (1990), Hardardόttir et al. (2001, 2004, 2005), <strong>and</strong> Gallup (1989, 1993,<br />

1998).<br />

Several methods have been adapted to reduce or elim<strong>in</strong><strong>at</strong>e deposition of amorphous silica <strong>in</strong><br />

geothermal <strong>in</strong>stall<strong>at</strong>ions (Yanagase et al., 1970; Weres <strong>and</strong> Tsao, 1981; Kiyota et al., 2000; Arnórsson,<br />

2000; Gunnarsson <strong>and</strong> Arnórsson, 2005). A method commonly adapted to reduce amorphous silica<br />

<strong>scal<strong>in</strong>g</strong> <strong>in</strong> production <strong>wells</strong> <strong>and</strong> wellhead equipment is to ma<strong>in</strong>ta<strong>in</strong> steam separ<strong>at</strong>ion pressures (<strong>and</strong><br />

temper<strong>at</strong>ures), above amorphous silica s<strong>at</strong>ur<strong>at</strong>ion. Many other methods have been practiced <strong>in</strong>clud<strong>in</strong>g<br />

removal of silica from solution by its precipit<strong>at</strong>ion, silica polymeris<strong>at</strong>ion <strong>and</strong> by rais<strong>in</strong>g the pH of the<br />

separ<strong>at</strong>ed w<strong>at</strong>er even <strong>at</strong> elev<strong>at</strong>ed temper<strong>at</strong>ure sufficiently to cause some of the silica to ionize.<br />

Acidific<strong>at</strong>ion has also been applied. It reduces deposition r<strong>at</strong>es. Polymeric silica has less tendency to<br />

precipit<strong>at</strong>e out of solution than monomeric silica. The rel<strong>at</strong>ive r<strong>at</strong>es of the two reactions, amorphous<br />

silica deposition <strong>and</strong> silica polymeris<strong>at</strong>ion, <strong>and</strong> the r<strong>at</strong>e <strong>at</strong> which polymeric silica settles from solution,<br />

determ<strong>in</strong>e how successful polymeris<strong>at</strong>ion tre<strong>at</strong>ment is <strong>in</strong> reduc<strong>in</strong>g amorphous silica deposition from<br />

spent geothermal w<strong>at</strong>ers.<br />

Deposition of silica scales has been observed <strong>in</strong> Svartsengi, Reykjanes, Olkaria <strong>and</strong> Nesjavellir. In all<br />

the cases it is reported <strong>in</strong> wellhead equipment, separ<strong>at</strong>ed w<strong>at</strong>er <strong>and</strong> <strong>in</strong> the plant. In Svartsengi,<br />

Thórólfsson (2005) reported ma<strong>in</strong>tenance problems associ<strong>at</strong>ed with silica scale form<strong>at</strong>ion <strong>in</strong> he<strong>at</strong><br />

exchangers, br<strong>in</strong>e pipes <strong>and</strong> on 1 st stage turb<strong>in</strong>e nozzles. In Reykjanes amorphous silica is deposited<br />

from separ<strong>at</strong>ed w<strong>at</strong>er <strong>at</strong> lower temepr<strong>at</strong>ures <strong>and</strong> exists as a mixed scale (Hardardόttir et al., 2001,<br />

2004, 2005). In Olkaria, Opondo <strong>and</strong> Ofwona (2003) reported <strong>in</strong>tense deposition of silica <strong>in</strong> the<br />

wellhead equipment of one well. At Nesjavellir studies on scale form<strong>at</strong>ion by Haukson (1996),<br />

Gíslason <strong>and</strong> Gunnlaugsson (1994-1995) <strong>and</strong> Kjartansson (1996) <strong>in</strong>dic<strong>at</strong>ed problems <strong>in</strong> pilot he<strong>at</strong><br />

exchangers. Little <strong>in</strong>dic<strong>at</strong>ion of silica polymeriz<strong>at</strong>ion or <strong>scal<strong>in</strong>g</strong> was observed on fluidized he<strong>at</strong><br />

3


exchangers <strong>in</strong> pilot plant. Silica polymeriz<strong>at</strong>ion results of studies by (Hauksson, 1996) <strong>at</strong> different<br />

temper<strong>at</strong>ures <strong>and</strong> <strong>in</strong> different fluid mixtures with condensed steam <strong>in</strong> pilot plant he<strong>at</strong> exchangers<br />

<strong>in</strong>dic<strong>at</strong>ed th<strong>at</strong>, when the residence time of the fluid <strong>in</strong> the he<strong>at</strong> exchangers was short, polymeris<strong>at</strong>ion<br />

took place to a small extent. Silica polymeriz<strong>at</strong>ion proceeded more slowly <strong>at</strong> low temper<strong>at</strong>ures than<br />

high temper<strong>at</strong>ures <strong>and</strong> amorphous silica s<strong>at</strong>ur<strong>at</strong>ion was reached <strong>in</strong> br<strong>in</strong>e <strong>at</strong> Nesjavellir <strong>at</strong> about 180˚ C.<br />

Silica polymeriz<strong>at</strong>ion tests on a mixture of condens<strong>at</strong>e <strong>and</strong> separ<strong>at</strong>ed w<strong>at</strong>er showed th<strong>at</strong> the mixture<br />

rema<strong>in</strong>ed unders<strong>at</strong>ur<strong>at</strong>ed. Separ<strong>at</strong>ed w<strong>at</strong>ers cooled from ~188˚C to 83˚C (Gunnarson <strong>and</strong> Arnόrsson,<br />

2005), showed th<strong>at</strong> amorphous silica polymeriz<strong>at</strong>ion by age<strong>in</strong>g the separ<strong>at</strong>ed w<strong>at</strong>er, decreased the<br />

potential for amorphous silica deposition.<br />

1.2.2 Calcite<br />

Troublesome calcium carbon<strong>at</strong>e scale form<strong>at</strong>ion is known to occur <strong>in</strong> many geothermal fields (e.g.<br />

Simmons <strong>and</strong> Christenson, 1993; Simmons <strong>and</strong> Christenson, 1994; Ármannsson,1989; Mecerdo et al.,<br />

1989, Benoit, 1989; Durak et al., 1993; Solis et al., 2000). The scale is often calcite but aragonite has<br />

also been reported.<br />

Accord<strong>in</strong>g to Arnόrsson (1978), (1989), Ármannsson (1989), Benoit (1989), Simmons <strong>and</strong><br />

Christensen (1994) <strong>and</strong> Todaka et al. (1995) it is expected th<strong>at</strong> scale form<strong>at</strong>ion of this k<strong>in</strong>d is most<br />

<strong>in</strong>tense <strong>at</strong> the depth level of first boil<strong>in</strong>g. Such deposition may significantly decrease the output of<br />

production of <strong>wells</strong> or even clog them. In other rare occurrences calcite deposition has been observed<br />

<strong>in</strong> two-phase l<strong>in</strong>es where fluids from two different <strong>wells</strong> mix (Solis et al., 2000). Calcite deposition<br />

could also occur due to he<strong>at</strong><strong>in</strong>g of the re-<strong>in</strong>jected fluid.<br />

W<strong>at</strong>ers <strong>in</strong> the aquifer of high-temper<strong>at</strong>ure geothermal systems are close to be<strong>in</strong>g calcite s<strong>at</strong>ur<strong>at</strong>ed (e.g.<br />

Arnόrsson, 1989; Kar<strong>in</strong>githi et al., 2006) but equilibrium between calcite <strong>and</strong> solution is rapidly<br />

<strong>at</strong>ta<strong>in</strong>ed (Busenberg <strong>and</strong> Plummer, 1986; Zhang <strong>and</strong> Dawe, 1998), certa<strong>in</strong>ly <strong>at</strong> the temper<strong>at</strong>ures of<br />

high-temper<strong>at</strong>ure geothermal systems. Upon extensive boil<strong>in</strong>g of the aquifer w<strong>at</strong>er <strong>and</strong> subsequent<br />

degass<strong>in</strong>g with respect to CO 2 , calcite s<strong>at</strong>ur<strong>at</strong>ed w<strong>at</strong>ers will become overs<strong>at</strong>ur<strong>at</strong>ed. Calcite solubility<br />

<strong>in</strong>creases with decreas<strong>in</strong>g temper<strong>at</strong>ure counteract<strong>in</strong>g the effect of degass<strong>in</strong>g dur<strong>in</strong>g adiab<strong>at</strong>ic boil<strong>in</strong>g.<br />

Deposition of calcite has been observed <strong>in</strong> production <strong>wells</strong> <strong>at</strong> Svartsengi but not <strong>at</strong> Reykjanes Olkaria<br />

<strong>and</strong> Nesjavellir. In Svartsengi the calcite <strong>scal<strong>in</strong>g</strong> (Björnsson <strong>and</strong> Ste<strong>in</strong>grίmsson, 1999) was severe<br />

dur<strong>in</strong>g the early years of production. Calcite deposition <strong>in</strong> Svartsengi followed drawdown <strong>in</strong> reservoir<br />

pressures. In zones where the reservoir pressures decreased, boil<strong>in</strong>g <strong>and</strong> hence deposition took place <strong>at</strong><br />

subsequently gre<strong>at</strong>er depths <strong>in</strong> production <strong>wells</strong>. It was solved by regular mechanical clean<strong>in</strong>g of the<br />

<strong>wells</strong> <strong>and</strong> drill<strong>in</strong>g of wider diameter <strong>wells</strong> th<strong>at</strong> also gave higher yield than earlier <strong>wells</strong>. The <strong>scal<strong>in</strong>g</strong><br />

problem vanished when reservoir pressure draw down was sufficient to <strong>in</strong>duce extensive boil<strong>in</strong>g <strong>in</strong><br />

produc<strong>in</strong>g aquifers. Worldwide, calcite <strong>scal<strong>in</strong>g</strong> problems have been succesfully solved either by<br />

mechanical clean<strong>in</strong>g or by the use of <strong>in</strong>hibitors (Pieri et al., 1989; Parlaktuna <strong>and</strong> Ok<strong>and</strong>an, 1989;<br />

C<strong>and</strong>aleria et al., 2000; Siega et al., 2005).<br />

1.2.3 Other scales<br />

Scales of sulphide m<strong>in</strong>erals mostly pyrite, occur widely <strong>and</strong> are the rule r<strong>at</strong>her than the exception <strong>in</strong><br />

high-temper<strong>at</strong>ure geothermal <strong>in</strong>stall<strong>at</strong>ions. However, the quantity of the precipit<strong>at</strong>e is generally limited<br />

due to low aqueous concentr<strong>at</strong>ions of the metals form<strong>in</strong>g the sulphide phases. In br<strong>in</strong>es of hightemper<strong>at</strong>ure<br />

geothermal fluids, such as <strong>in</strong> Reykjanes <strong>and</strong> Svartsengi, Icel<strong>and</strong>, Milos <strong>and</strong> Nissyros<br />

Greece, Asal Djibouti, <strong>and</strong> Salton Sea California, the concentr<strong>at</strong>ions of metals form<strong>in</strong>g sulphide are<br />

high lead<strong>in</strong>g to extensive sulphide m<strong>in</strong>eral deposition. By contrast, they are low <strong>in</strong> dilute fluids, e.g. <strong>at</strong><br />

Broadl<strong>and</strong>s, New Zeal<strong>and</strong> (Weissberg et al., 1979). The metals are often transported as metal<br />

complexes. The st<strong>at</strong>e of pyrite s<strong>at</strong>ur<strong>at</strong>ion is largely affected by degass<strong>in</strong>g of the boil<strong>in</strong>g w<strong>at</strong>er, the pH<br />

change associ<strong>at</strong>ed with boil<strong>in</strong>g <strong>and</strong> the change of pyrite solubility with temper<strong>at</strong>ure. Increase <strong>in</strong> pH<br />

due to boil<strong>in</strong>g results <strong>in</strong> a decrease <strong>in</strong> the solubility of pyrite.<br />

4


The r<strong>at</strong>e of sulphide precipit<strong>at</strong>ion is fast <strong>and</strong> is not a limit<strong>in</strong>g factor for the r<strong>at</strong>e of scale form<strong>at</strong>ion.<br />

Scales of metal sulphides are mechanically resistant. They are known to protect cas<strong>in</strong>g m<strong>at</strong>erials <strong>and</strong><br />

pip<strong>in</strong>gs from corrosion by various components present <strong>in</strong> geothermal w<strong>at</strong>er <strong>and</strong> steam such as CO 2 .<br />

Extensive sulphide scales, associ<strong>at</strong>ed with sal<strong>in</strong>e fluids have been reported by Hardardόttir et al.<br />

(2001) <strong>at</strong> Reykjanes, Icel<strong>and</strong>, <strong>at</strong> Assal Djibouti by D’Amore et al. (1998), <strong>at</strong> Milos Greece by<br />

Karebalas et al. (1989), <strong>at</strong> Salton Sea California by Gallup et al (1990). At Reykjanes, Asal <strong>and</strong> Milos<br />

the sulphide scales were ma<strong>in</strong>ly composed of sulphides of lead, z<strong>in</strong>c, copper <strong>and</strong> iron. Amorphous<br />

phases ma<strong>in</strong>ly of silica <strong>and</strong> some oxides of iron were also formed ma<strong>in</strong>ly downstream of flash valves.<br />

Poorly crystall<strong>in</strong>e or amorphous alum<strong>in</strong>ium <strong>and</strong> iron silic<strong>at</strong>e scales have also been identified <strong>in</strong><br />

geothermal <strong>in</strong>stall<strong>at</strong>ions <strong>at</strong> Salton Sea (Gallup, 1993; 1998) as mixtures with metal sulphide scales. A<br />

mixture of alum<strong>in</strong>ium-magnesium silic<strong>at</strong>es <strong>in</strong> the scales <strong>at</strong> Reykjanes are reported by Hardardόttir et<br />

al. (2001) although the major scale is sulphide.<br />

Form<strong>at</strong>ion of sulphide m<strong>in</strong>erals from geothermal fluids is known to <strong>in</strong>crease deposition of silica,<br />

probably because they act as nuclei for the growth of silica m<strong>in</strong>erals. Thus deposition of silica from<br />

sal<strong>in</strong>e fluids can be a major problem. It has been arrested s<strong>at</strong>isfactorily by acidific<strong>at</strong>ion. By decreas<strong>in</strong>g<br />

w<strong>at</strong>er pH, the silica precipit<strong>at</strong><strong>in</strong>g reaction is slowed down <strong>and</strong> the amount of sulphide m<strong>in</strong>erals<br />

precipit<strong>at</strong>ed reduced.<br />

Extensive deposition of sulphides has been observed <strong>at</strong> Reykjanes but not Olkaria, Svartsengi <strong>and</strong><br />

Nesjavellir. In Reykjanes, Hardardóttir et al. (2001, 2004, 2005) studied the form<strong>at</strong>ion of sulphide<br />

scales, mixed scales <strong>and</strong> amorphous silica scales from br<strong>in</strong>e surface pip<strong>in</strong>gs <strong>at</strong> different pressures.<br />

They concluded th<strong>at</strong> there was a rel<strong>at</strong>ionship between the types of scales formed <strong>and</strong> pressure after<br />

orifice pl<strong>at</strong>es <strong>and</strong> sequential deposition with decrease <strong>in</strong> temper<strong>at</strong>ures was observed. Sulphides<br />

deposited were rel<strong>at</strong>ively high <strong>at</strong> high temper<strong>at</strong>ures while amorphous silica <strong>and</strong> mixed scales deposited<br />

<strong>at</strong> lower temper<strong>at</strong>ures. The sulphide scales were enriched <strong>in</strong> heavy metal concentr<strong>at</strong>ions.<br />

1.2.4 Objectives of the study<br />

The study for the thesis focuses on the follow<strong>in</strong>g objectives:<br />

• Assess <strong>corrosive</strong> behaviour by calcul<strong>at</strong>ions of CO 2 <strong>and</strong> HCl concentr<strong>at</strong>ions <strong>in</strong> the fluids <strong>in</strong><br />

Olkaria, Reykjanes, Svartsengi <strong>and</strong> Nesjavellir.<br />

• Evalu<strong>at</strong>e potential calcite <strong>scal<strong>in</strong>g</strong> of pre-boiled geothermal w<strong>at</strong>ers with different sal<strong>in</strong>ities,<br />

CO 2 , temper<strong>at</strong>ure <strong>and</strong> pH.<br />

• Evalu<strong>at</strong>e scales deposits dur<strong>in</strong>g <strong>scal<strong>in</strong>g</strong> tests <strong>at</strong> Nesjavellir <strong>and</strong> scales from Olkaria well OW-<br />

34.<br />

5


2. GEOLOGICAL FEATURES OF THE STUDY AREAS<br />

2.1 The Gre<strong>at</strong>er Olkaria Geothermal System<br />

The Olkaria geothermal<br />

system is loc<strong>at</strong>ed south of<br />

Lake Naivasha on the floor of<br />

the southern segment of the<br />

Kenya rift which is part of the<br />

East African Rift Valley. The<br />

East African rift runs from<br />

the Afar triple junction <strong>at</strong> the<br />

Gulf of Eden <strong>in</strong> the north to<br />

Beira <strong>in</strong> Mozambique <strong>in</strong> the<br />

south. It is a segment of the<br />

eastern arm of the rift th<strong>at</strong><br />

extends from Lake Turkana<br />

<strong>in</strong> the north to Lake N<strong>at</strong>ron <strong>in</strong><br />

northern Tanzania to the<br />

south. The rift system th<strong>at</strong><br />

falls with<strong>in</strong> Kenya <strong>and</strong> the<br />

loc<strong>at</strong>ion of Olkaria is shown<br />

<strong>in</strong> Figure 1.<br />

The Olkaria geothermal<br />

system is about 120 km<br />

northwest of Nairobi, the<br />

Kenyan capital. Initial<br />

explor<strong>at</strong>ion work <strong>in</strong> Olkaria<br />

began <strong>in</strong> the 1950’s <strong>and</strong> the<br />

first explor<strong>at</strong>ion <strong>wells</strong> were<br />

drilled around 1956. They did<br />

not successfully discharge.<br />

FIGURE 1: A map of the Kenya Rift show<strong>in</strong>g the major<br />

geothermal prospects <strong>and</strong> the Olkaria geothermal field<br />

System<strong>at</strong>ic explor<strong>at</strong>ion was aga<strong>in</strong> began <strong>in</strong> 1970 under the <strong>in</strong>iti<strong>at</strong>ive of the United N<strong>at</strong>ions<br />

Development Programme (UNDP) <strong>and</strong> the Government of Kenya <strong>and</strong> drill<strong>in</strong>g recommenced <strong>in</strong> 1973<br />

after extensive surface work, by the drill<strong>in</strong>g of Olkaria well OW-01. The well proved to have low<br />

temper<strong>at</strong>ures. A second well, well OW-02 was drilled <strong>and</strong> this proved to be more successful. More<br />

drill<strong>in</strong>g was undertaken <strong>and</strong> <strong>in</strong> 1976 a prefeasibility study to utilize geothermal steam for electricity<br />

gener<strong>at</strong>ion was done by SWECO <strong>and</strong> VIRKIR consult<strong>in</strong>g companies. The first unit of 15 MWe was<br />

constructed <strong>in</strong> 1981, the second <strong>in</strong> 1982 <strong>and</strong> the third <strong>in</strong> 1985. After the <strong>in</strong>tial five years of steam<br />

production <strong>in</strong> Olkaria, steam decl<strong>in</strong>e was experienced <strong>in</strong> the steamfield. Make up <strong>wells</strong> were drilled<br />

based on reservoir simul<strong>at</strong>ion studies by (Bodvarsson <strong>and</strong> Preuss, 1987) to <strong>in</strong>crease steam production.<br />

The resource is hosted with<strong>in</strong> the Olkaria volcanic complex which consists of a series of lava domes<br />

<strong>and</strong> ashes, the youngest of which has been d<strong>at</strong>ed <strong>at</strong> ~ 200 years (Clarke et al., 1990). This complex is<br />

estim<strong>at</strong>ed to be 50-80 km 2 . Maximum temper<strong>at</strong>ures <strong>in</strong> deep <strong>wells</strong> <strong>at</strong> Olkaria range between ~ 200°C<br />

<strong>and</strong> ~340°C. The area has been divided <strong>in</strong>to seven sectors for purposes of development (Figure 2).<br />

The sectors are named Olkaria East, Olkaria North East, Olkaria North West, Olkaria South West,<br />

Olkaria South East, Olkaria Central <strong>and</strong> Olkaria Domes. Four power plants are currently <strong>in</strong> oper<strong>at</strong>ion<br />

<strong>in</strong> the Gre<strong>at</strong>er Olkaria Geothermal Area with a total gener<strong>at</strong><strong>in</strong>g capacity of ~ 129 MWe. Two plants<br />

are oper<strong>at</strong>ed by KenGen, i.e. the Olkaria I <strong>and</strong> Olkaria II plants th<strong>at</strong> gener<strong>at</strong>e ~ 115 MWe. The<br />

Olkaria I plant has a capacity of 45 MWe <strong>and</strong> receives its steam supply from the Olkaria East<br />

Production Field. The Olkaria II plant, which is about 3 years old, receives steam from the Olkaria<br />

North East Field. Two <strong>in</strong>dependent power producers gener<strong>at</strong>e about 14 megaw<strong>at</strong>ts of electricity from<br />

6


the Western Sectors. The<br />

Olkaria III plant, oper<strong>at</strong>ed by<br />

Orpower 4 Inc., a subsidiary<br />

of Orm<strong>at</strong> Intern<strong>at</strong>ional<br />

gener<strong>at</strong>es 12 MWe <strong>and</strong> ~ 2<br />

MWe are gener<strong>at</strong>ed by a<br />

flower farm, Oserian<br />

Development Company from<br />

<strong>wells</strong> leased from KenGen.<br />

These two plants are organic<br />

Rank<strong>in</strong>e Orm<strong>at</strong> cycle plants.<br />

Plans are underway to exp<strong>and</strong><br />

the capacity of Olkaria II<br />

plant <strong>in</strong> the Olkaria North<br />

East Field from 70 MWe to<br />

105 MWe by the year 2007<br />

(Mwangi, 2005) <strong>and</strong> the<br />

Orpower 4 Inc. plant from 12<br />

Mwe to 48 Mwe by 2006<br />

(Reshef <strong>and</strong> Citr<strong>in</strong>, 2003).<br />

The geology around Olkaria<br />

has been studied by<br />

North<strong>in</strong>gs (m)<br />

9906000<br />

9905000<br />

9904000<br />

9903000<br />

9902000<br />

9901000<br />

9900000<br />

9899000<br />

Olkaria North West<br />

Olkaria West<br />

193000 194000 195000 196000 197000 198000 199000 200000 201000 202000<br />

East<strong>in</strong>gs (m)<br />

FIGURE 2: Loc<strong>at</strong>ion of the geothermal fields <strong>in</strong> the Gre<strong>at</strong>er<br />

Olkaria Geothermal Area<br />

numerous workers (Naylor, 1972; Brown, 1984, Odongo, 1986; Clarke et al., 1990) <strong>and</strong> is described<br />

as be<strong>in</strong>g characterized by numerous eruptive volcanic centres of Qu<strong>at</strong>ernary age. The geothermal field<br />

is loc<strong>at</strong>ed with<strong>in</strong> a remnant of a caldera complex <strong>in</strong>tersected by N-S rift<strong>in</strong>g faults. These faults are<br />

conduits for numerous eruptions th<strong>at</strong> have formed pumice <strong>and</strong> ryholite domes with<strong>in</strong> the Olkaria<br />

Volcanic complex. The area has a thick cover of pyroclastic ash which is thought to have been<br />

erupted from volcanic centres outside Olkaria namely Suswa <strong>and</strong> Longonot. The Olkaria Volcanic<br />

complex is considered to be bounded by arcu<strong>at</strong>e faults form<strong>in</strong>g a r<strong>in</strong>g or a caldera structure. With<strong>in</strong><br />

this structure a magm<strong>at</strong>ic he<strong>at</strong> source might be represented by <strong>in</strong>trusions <strong>at</strong> depth. Faults <strong>and</strong> fractures<br />

are prom<strong>in</strong>ent <strong>in</strong> the area with general N-S <strong>and</strong> E-W trends but there are also some <strong>in</strong>ferred faults<br />

strik<strong>in</strong>g NW-SE. Other structures <strong>in</strong> the Olkaria area <strong>in</strong>clude the Ol’Njorowa gorge th<strong>at</strong> trends NW-SE<br />

<strong>and</strong> may represent a fault, the Ololbutot fault th<strong>at</strong> trends N-S, the ENE-WSW trend<strong>in</strong>g Olkaria fault,<br />

the WNW-ESE trend<strong>in</strong>g Gorge Farm fault, <strong>and</strong> Olkaria fractures.<br />

The general subsurface str<strong>at</strong>igraphy <strong>at</strong> Olkaria has been described by Brown (1984), Odongo (1986)<br />

<strong>and</strong> Mungania (1992). The rocks <strong>at</strong> the surface are composed of comendites <strong>and</strong> pantellerites <strong>and</strong> these<br />

also occur <strong>in</strong> the upper parts of the subsurface. Omenda (1998) has described the lithostr<strong>at</strong>igraphy of<br />

the Olkaria geothermal area as it is revealed by d<strong>at</strong>a from the geothermal <strong>wells</strong>. These consist broadly<br />

of six ma<strong>in</strong> groups, namely proterozoic “basement” form<strong>at</strong>ions, pre-Mau volcanics, Mau tuffs, Pl<strong>at</strong>eau<br />

trachytes, Olkaria basalt <strong>and</strong> Upper Olkaria volcanics.<br />

Olkaria Central<br />

Field<br />

Olkaria North<br />

East<br />

Olkaria East<br />

Olkaria South<br />

East<br />

Olkaria Domes<br />

2.2 The Reykjanes <strong>and</strong> Svartsengi geothermal fields<br />

The Reykjanes Pen<strong>in</strong>sula is loc<strong>at</strong>ed <strong>in</strong> southwest Icel<strong>and</strong> <strong>and</strong> falls on the cont<strong>in</strong>uous earthquake<br />

epicentre l<strong>in</strong>e extend<strong>in</strong>g through the pen<strong>in</strong>sula <strong>and</strong> further <strong>in</strong>l<strong>and</strong>, reach<strong>in</strong>g several more hightemper<strong>at</strong>ure<br />

geothermal fields (Saemundsson <strong>and</strong> Fridleifsson, 1980). Figure 3 shows a simplified<br />

geological map with the loc<strong>at</strong>ion of the Reykjanes, Svartsengi <strong>and</strong> Nesjavellir fields <strong>and</strong> other hightemper<strong>at</strong>ure<br />

fields <strong>in</strong> Icel<strong>and</strong>.<br />

The Reykjanes geothermal field is one of the six geothermal fields on the Reykjanes Pen<strong>in</strong>sula which<br />

make up the western volcanic zone. Initial development of the geothermal resources <strong>at</strong> Reykjanes<br />

d<strong>at</strong>es back to around 1956, when the first explor<strong>at</strong>ory well was drilled <strong>in</strong> the area. To evalu<strong>at</strong>e the<br />

7


geothermal reservoir for production<br />

of w<strong>at</strong>er <strong>and</strong> steam, extensive field<br />

<strong>in</strong>vestig<strong>at</strong>ions were carried out <strong>in</strong><br />

the period between 1968 <strong>and</strong> 1970.<br />

This effort revealed a hightemper<strong>at</strong>ure<br />

geothermal resource.<br />

The reservoir temper<strong>at</strong>ures are<br />

between 250˚ <strong>and</strong> 320°C. The<br />

str<strong>at</strong>igraphic succession of the<br />

Reykjanes geothermal field,<br />

revealed by drill<strong>in</strong>g, consists of four<br />

ma<strong>in</strong> units, namely an upper str<strong>at</strong>a<br />

(< 120 m) characterised by pillow<br />

basalt <strong>and</strong> on top by subaerial basalt<br />

flows of postglacial age. A more<br />

dom<strong>in</strong>ant sedimentary tuff<br />

form<strong>at</strong>ion above 1000 m <strong>and</strong> more<br />

crystallized basalt form<strong>at</strong>ions <strong>at</strong><br />

gre<strong>at</strong>er depths have been identified<br />

(Tómasson, 1971). Thick<br />

hyaloclastite tuff form<strong>at</strong>ions have<br />

also been identified <strong>at</strong> depth.<br />

FIGURE 3: A simplified geological map with the<br />

loc<strong>at</strong>ions of high-temper<strong>at</strong>ure geothermal fields <strong>in</strong> Icel<strong>and</strong><br />

The <strong>wells</strong> drilled produced high<br />

pressure br<strong>in</strong>e <strong>and</strong> steam. The<br />

development of the Reykjanes<br />

geothermal area was based on an<br />

<strong>in</strong>terest <strong>in</strong> produc<strong>in</strong>g common salt<br />

from br<strong>in</strong>e. A salt production plant<br />

was set up <strong>in</strong> the early 1970’s with<br />

a 0.5 MWe power plant. More<br />

recent surface resistivity studies<br />

(Karlsdόttir, 1997) del<strong>in</strong>e<strong>at</strong>e an area<br />

with an extent of ~ 10 km 2 for the<br />

Reykjanes geothermal system,<br />

whereas surface manifest<strong>at</strong>ions only<br />

cover about 1 km 2 . Acceler<strong>at</strong>ed<br />

drill<strong>in</strong>g was undertaken <strong>in</strong><br />

Reykjanes dur<strong>in</strong>g the period 2002 to<br />

2005 <strong>and</strong> a total of 24 <strong>wells</strong> have<br />

been drilled for electricity<br />

production. A 100 MWe power<br />

plant was commissioned <strong>at</strong><br />

Reykjanes <strong>in</strong> May 2006. The<br />

loc<strong>at</strong>ions of <strong>wells</strong> drilled <strong>in</strong>to the<br />

Reykjanes geothermal field are shown <strong>in</strong> Figure 4.<br />

FIGURE 4: Loc<strong>at</strong>ion of <strong>wells</strong> <strong>in</strong> the<br />

Reykjanes geothermal field<br />

The Svartsengi geothermal field (Figure 5) is loc<strong>at</strong>ed about 15 km to the east of the Reykjanes<br />

geothermal field. Str<strong>at</strong>igraphically it consists of basaltic form<strong>at</strong>ions down to ~300 m depth, followed<br />

by about 300 m thick hyaloclastite series, <strong>and</strong> this is the cap rock of the reservoir. Underne<strong>at</strong>h the<br />

hyaloclastites there are flood basalts. At 1000-1300 m depth <strong>in</strong>trusions become dom<strong>in</strong>ant (Franzson,<br />

1983; 1995). A fissure swarm crosses the reservoir <strong>in</strong> the eastern part of the well field. Surface<br />

manifest<strong>at</strong>ions are limited <strong>and</strong> mostly conf<strong>in</strong>ed to fumaroles <strong>in</strong> a post-glacial lava field. Discharges to<br />

the surface are <strong>in</strong> the form of steam<strong>in</strong>g fumaroles. Reservoir temper<strong>at</strong>ures are uniform between 235<br />

<strong>and</strong> 240°C (Björnsson, 1999). The field supports a geothermal comb<strong>in</strong>ed he<strong>at</strong> <strong>and</strong> power plant with ~<br />

8


46.4 MWe <strong>and</strong> 125 MWt. A<br />

shallow steam zone has evolved<br />

with time <strong>at</strong> Svartsengi <strong>and</strong> this<br />

zone contributes substantially to the<br />

power production. The Svartsengi<br />

geothermal field has an areal extent<br />

of ~ 1 km 2 . Well loc<strong>at</strong>ions <strong>in</strong> the<br />

Svartsengi geothermal field are<br />

shown <strong>in</strong> Figure 5.<br />

2.3 Nesjavellir geothermal field<br />

FIGURE 5: Well loc<strong>at</strong>ions <strong>in</strong> the Svartsengi<br />

geothermal field<br />

The Nesjavellir geothermal field is<br />

loc<strong>at</strong>ed <strong>in</strong> the Hengill hightemper<strong>at</strong>ure<br />

geothermal area which<br />

is situ<strong>at</strong>ed with<strong>in</strong> the active volcanic<br />

zone <strong>in</strong> southwest Icel<strong>and</strong>. This belt<br />

is characterised by several NE-SW<br />

trend<strong>in</strong>g fissure swarms exhibit<strong>in</strong>g<br />

normal faults <strong>and</strong> open fissures.<br />

The Hengill volcano is <strong>in</strong>tersected by one<br />

of these fissure swarms. It is about 50 km<br />

long <strong>and</strong> has a structure of nested grabens.<br />

Faults are very abundant with<strong>in</strong> the fissure<br />

swarm. Several eruptive fissures transect<br />

the centre of Hengill <strong>and</strong> extend to the<br />

northeast by Nesjavellir. Geothermal<br />

surface manifest<strong>at</strong>ions cover an area of<br />

about 40 km 2 (Figure 6).<br />

FIGURE 6: Resistivity map del<strong>in</strong>e<strong>at</strong><strong>in</strong>g the l<strong>at</strong>eral<br />

extent of the Hengill geothermal area<br />

These <strong>in</strong>clude fumaroles, mud pools,<br />

steam<strong>in</strong>g ground <strong>and</strong> acid surface<br />

alter<strong>at</strong>ion as well as hot spr<strong>in</strong>gs. From the<br />

Hengill there is a l<strong>in</strong>eament of surface<br />

manifest<strong>at</strong>ions extend<strong>in</strong>g towards the SE<br />

<strong>in</strong>to the Hveragerdi centre form<strong>in</strong>g a<br />

cont<strong>in</strong>u<strong>at</strong>ion of the transcurrent faults<br />

dissect<strong>in</strong>g the ma<strong>in</strong> fissure swarm.<br />

Surface surveys for geothermal<br />

explor<strong>at</strong>ion <strong>in</strong> the Hengill area started <strong>in</strong><br />

the 1940´s. Drill<strong>in</strong>g started <strong>in</strong> the l<strong>at</strong>e<br />

1950’s <strong>and</strong> early 1960’s. In 1990 the<br />

geothermal resource <strong>at</strong> Nesjavellir was<br />

harnessed for district he<strong>at</strong><strong>in</strong>g <strong>in</strong><br />

Reykjavík. This <strong>in</strong>volved he<strong>at</strong><strong>in</strong>g w<strong>at</strong>er<br />

us<strong>in</strong>g he<strong>at</strong> exchangers. The geothermal w<strong>at</strong>er could not be used directly due it its chemical content. At<br />

the time it was decided to harness the geothermal resource <strong>at</strong> Nesjavellir, 14 production <strong>wells</strong> had<br />

been drilled <strong>and</strong> all but one were successful (Gunnarsson et al., 1992). Wells drilled <strong>at</strong> Nesjavellir<br />

range <strong>in</strong> depth from 1,000 to 2,200 meters <strong>and</strong> the highest temper<strong>at</strong>ures recorded are > 380 ˚ C<br />

(Gunnarsson et al., 1992).<br />

The str<strong>at</strong>igraphy <strong>at</strong> Nesjavellir as revealed by drill<strong>in</strong>g, consists ma<strong>in</strong>ly of volcanic rocks. These are<br />

divided <strong>in</strong>to extrusive <strong>and</strong> <strong>in</strong>trusive rock form<strong>at</strong>ions. The extrusive rocks consist ma<strong>in</strong>ly of<br />

9


hyaloclastites <strong>and</strong> basalt lavas. Nouralie (2000) described the str<strong>at</strong>igraphy as consist<strong>in</strong>g ma<strong>in</strong>ly of<br />

hyaloclastites <strong>in</strong> the shallower parts of the system, < 730 m. In the deeper parts, > 730 m, basalt lavas<br />

are predom<strong>in</strong>ant. The hyaloclastites are ma<strong>in</strong>ly volcanics which are divided <strong>in</strong>to four groups; Tuffs,<br />

Breccia lavas, Basaltic breccias <strong>and</strong> Pillow lavas. The <strong>in</strong>trusives are predom<strong>in</strong>antly basalts <strong>and</strong> are<br />

found <strong>in</strong> the deeper parts of the system.<br />

The thermal plant was <strong>in</strong>itially commissioned to gener<strong>at</strong>e about 100 MWt of he<strong>at</strong>, but has s<strong>in</strong>ce been<br />

progressively exp<strong>and</strong>ed <strong>in</strong> t<strong>and</strong>em with better utiliz<strong>at</strong>ion of the resource. In 1991 the capacity of the<br />

thermal plant was exp<strong>and</strong>ed to 150 MWt <strong>and</strong> <strong>in</strong> 1998 a further 250 MWt <strong>and</strong> 60 MWe were added.<br />

This started the Nesjavellir co-gener<strong>at</strong>ion plant which has two ma<strong>in</strong> functions; to produce electricity<br />

from geothermal steam <strong>and</strong> to he<strong>at</strong> cold ground w<strong>at</strong>er for district he<strong>at</strong><strong>in</strong>g. Currently, the <strong>in</strong>stalled<br />

capacity for electricity gener<strong>at</strong>ion is 120 MWe from four steam cycle turb<strong>in</strong>es of 30 MWe each <strong>and</strong><br />

290 MWt. The Nesjavellir geothermal field with well loc<strong>at</strong>ions is shown <strong>in</strong> Figure 7.<br />

FIGURE 7: Well loc<strong>at</strong>ions <strong>in</strong> the Nesjavellir<br />

geothermal field<br />

10


3. SAMPLING AND ANALYSIS<br />

3.1 Sample collection<br />

At Reykjanes, Svartsengi <strong>and</strong> Nesjavellir,<strong>and</strong> other Icel<strong>and</strong>ic fields both steam <strong>and</strong> w<strong>at</strong>er are collected<br />

<strong>at</strong> the same pressure us<strong>in</strong>g a Webre separ<strong>at</strong>or.<br />

At Olkaria various<br />

methods have been<br />

applied to collect<br />

samples of w<strong>at</strong>er <strong>and</strong><br />

steam from the wetsteam<br />

well discharges.<br />

Some of these methods<br />

are described by Ellis<br />

<strong>and</strong> Mahon (1977) <strong>and</strong><br />

Arnόrsson et al.<br />

(2000). One of the<br />

methods <strong>in</strong>volves the<br />

use of a Webre<br />

separ<strong>at</strong>or, which is<br />

connected to a twophase<br />

pipel<strong>in</strong>e th<strong>at</strong><br />

conveys the total<br />

discharge to an<br />

<strong>at</strong>mospheric silencer<br />

(Figure 8).<br />

By this method<br />

sampl<strong>in</strong>g <strong>in</strong>volves the<br />

collection of steam samples<br />

under pressure from the<br />

Webre separ<strong>at</strong>or <strong>and</strong> w<strong>at</strong>er<br />

from the weirbox. Steam<br />

samples collected <strong>in</strong> this<br />

way are mostly from the<br />

<strong>wells</strong> th<strong>at</strong> are be<strong>in</strong>g<br />

discharge tested or<br />

explor<strong>at</strong>ion <strong>wells</strong> <strong>and</strong> a<br />

number of production <strong>wells</strong><br />

<strong>in</strong> the Olkaria East<br />

production field th<strong>at</strong> share a<br />

common separ<strong>at</strong>or st<strong>at</strong>ion.<br />

In the Olkaria North East<br />

Field which produces steam<br />

for the Olkaria II power<br />

plant sampl<strong>in</strong>g of steam <strong>and</strong><br />

w<strong>at</strong>er will be carried out by<br />

FIGURE 8: Steam is collected from a Webre separ<strong>at</strong>or on a two-phase<br />

pipel<strong>in</strong>e upstream from the <strong>at</strong>mospheric silencer <strong>and</strong> w<strong>at</strong>er from the<br />

weirbox, a part of the steam (X w-a ) discharged from the <strong>at</strong>mospheric<br />

silencer is not sampled, i.e. the steam which forms by depressuris<strong>at</strong>ion<br />

boil<strong>in</strong>g from the pressure <strong>in</strong> Webre separ<strong>at</strong>or to <strong>at</strong>mosphere<br />

FIGURE 9: Steam is collected from the steam separ<strong>at</strong>or <strong>and</strong> w<strong>at</strong>er<br />

from the weirbox, the steam (X s-a ) discharged from the <strong>at</strong>mospheric<br />

silencer is not sampled. This steam forms by depressuris<strong>at</strong>ion<br />

boil<strong>in</strong>g from pressure <strong>in</strong> the steam separ<strong>at</strong>or<br />

to <strong>at</strong>mospheric pressure<br />

the use of a Webre separ<strong>at</strong>or. For production <strong>wells</strong> <strong>in</strong> the Olkaria East Production Field, steam<br />

samples were collected from the steam l<strong>in</strong>e downstream of the wellhead separ<strong>at</strong>or us<strong>in</strong>g a sta<strong>in</strong>less<br />

steel tub<strong>in</strong>g (Figure 9).<br />

W<strong>at</strong>er samples were collected from the weirbox. A fraction of the discharge is not sampled when the<br />

w<strong>at</strong>er <strong>and</strong> steam samples are collected <strong>at</strong> different pressures as expla<strong>in</strong>ed <strong>in</strong> Figs. 8 <strong>and</strong> 9. As<br />

expla<strong>in</strong>ed <strong>in</strong> section 5.2 below, it is assumed when calcul<strong>at</strong><strong>in</strong>g aquifer w<strong>at</strong>er composition th<strong>at</strong> the<br />

11


secondary steam not sampled is free of gas. When collect<strong>in</strong>g w<strong>at</strong>er <strong>and</strong> steam samples from wet-steam<br />

well discharges us<strong>in</strong>g a Webre separ<strong>at</strong>or good phase separ<strong>at</strong>ion is essential. Pipes from <strong>wells</strong> with low<br />

discharge enthalpy (less than 900 kJ/ kg) may experience slug flow <strong>and</strong> separ<strong>at</strong>ion can be a problem.<br />

When the steam fraction is high, i.e. the discharge enthalpy approaches th<strong>at</strong> of dry steam (above 2500<br />

kJ/kg), the w<strong>at</strong>er flow r<strong>at</strong>e <strong>in</strong>to the Webre separ<strong>at</strong>or may not be sufficient for collect<strong>in</strong>g a steam free<br />

w<strong>at</strong>er sample <strong>and</strong> when this is the case, the only altern<strong>at</strong>ive may be the collection of a w<strong>at</strong>er sample <strong>at</strong><br />

<strong>at</strong>mospheric pressure (from the weirbox) or from a wellhead steam separ<strong>at</strong>or.<br />

The sampl<strong>in</strong>g methods <strong>in</strong> case 3 were applied <strong>in</strong> Olkaria s<strong>in</strong>ce the <strong>in</strong>ception of the Olkaria East<br />

Production Field, but may change with total re-<strong>in</strong>jection of separ<strong>at</strong>ed w<strong>at</strong>er be<strong>in</strong>g a requirement <strong>in</strong><br />

current power development schemes. This will require <strong>in</strong> the future th<strong>at</strong> both w<strong>at</strong>er <strong>and</strong> steam are<br />

collected <strong>at</strong> the same pressure.<br />

Steam samples were collected <strong>in</strong>to two gas-sampl<strong>in</strong>g flasks, which had been evacu<strong>at</strong>ed <strong>in</strong> the<br />

labor<strong>at</strong>ory after <strong>in</strong>troduc<strong>in</strong>g 10 ml of freshly prepared 50 % w/w KOH <strong>in</strong> the case of Olkaria <strong>and</strong> the<br />

others 50 ml of 4M NaOH solution. The gas bulbs were weighed before <strong>and</strong> after sampl<strong>in</strong>g to record<br />

the amount of steam condens<strong>at</strong>e collected. W<strong>at</strong>er samples were filtered through 0.2 µm millipore<br />

membrane (cellulose acet<strong>at</strong>e) <strong>in</strong>to low density polyethylene bottles us<strong>in</strong>g a propylene filter holder. The<br />

entire filtr<strong>at</strong>ion appar<strong>at</strong>us was thoroughly r<strong>in</strong>sed with deionised w<strong>at</strong>er before collect<strong>in</strong>g a sample. A<br />

100 ml sample was acidified with 1 ml of suprapure concentr<strong>at</strong>ed HNO 3 for ICP-AES analysis for Si,<br />

B, Na, K, Ca, Mg, Al, Fe <strong>and</strong> S(SO 4 ). Another 100 ml sample was collected for SO 4 analysis to which<br />

1 ml of 1% z<strong>in</strong>c acet<strong>at</strong>e solution was added to remove H 2 S. A third 100 ml sample was collected <strong>and</strong><br />

for the determ<strong>in</strong><strong>at</strong>ion of Cl <strong>and</strong> F by ion chrom<strong>at</strong>ography only, 250 ml glass bottles with special caps<br />

th<strong>at</strong> prevent entrapment of air were used to collect w<strong>at</strong>er samples for the determ<strong>in</strong><strong>at</strong>ion of pH <strong>and</strong> total<br />

carbon<strong>at</strong>e carbon. These two w<strong>at</strong>er samples, which were not filtered, were cooled to < 40˚C by pass<strong>in</strong>g<br />

them through a sta<strong>in</strong>less steel cool<strong>in</strong>g coil to prevent degass<strong>in</strong>g of the sample th<strong>at</strong> would otherwise<br />

occur upon storage due to thermal contraction of the w<strong>at</strong>er prior to analysis.<br />

3.2 Analysis of w<strong>at</strong>er <strong>and</strong> steam samples<br />

Steam samples were analysed for CO 2 , H 2 S, H 2 , CH 4 , N 2 , <strong>and</strong> O 2 . The non-condensable gases (H 2 ,<br />

CH 4 , N 2 <strong>and</strong> O 2 ) were analysed by gas chrom<strong>at</strong>ography, while CO 2 <strong>and</strong> H 2 S were determ<strong>in</strong>ed by<br />

titr<strong>at</strong>ion of the NaOH-condens<strong>at</strong>e solution with 0.1 M HCl <strong>and</strong> 0.001M Hg(CH 3 COO) 2 st<strong>and</strong>ard<br />

solutions respectively (Arnόrsson et al., 2000). Both CO 2 <strong>and</strong> H 2 S disssolve quantit<strong>at</strong>ively <strong>in</strong> the<br />

alkal<strong>in</strong>e solutions. In this way, the non-condensable gases become concentr<strong>at</strong>ed <strong>in</strong> the gas phase<br />

mak<strong>in</strong>g analysis for them more precise.<br />

In w<strong>at</strong>er samples, H 2 S was analysed for <strong>in</strong> the same way as <strong>in</strong> steam samples <strong>and</strong> determ<strong>in</strong>ed on site to<br />

obta<strong>in</strong> its own concentr<strong>at</strong>ion <strong>and</strong> aga<strong>in</strong> <strong>at</strong> the time of the total carbon<strong>at</strong>e (TCC) titr<strong>at</strong>ion for the<br />

purpose of subtraction. Total carbon<strong>at</strong>e carbon (TCC) <strong>and</strong> pH were determ<strong>in</strong>ed <strong>in</strong> the labor<strong>at</strong>ory as<br />

soon as possible (1-2 hours) after sampl<strong>in</strong>g by titr<strong>at</strong>ion with 0.1 M HCl. Interference from other bases<br />

was corrected for by back titr<strong>at</strong>ion with 0.1M NaOH follow<strong>in</strong>g the bubbl<strong>in</strong>g of N 2 through the solution<br />

to remove CO 2 <strong>and</strong> H 2 S (Arnόrsson et al., 2000). By this method, the difference of the two titr<strong>at</strong>ions<br />

gives the sum of TCC <strong>and</strong> total sulphide. The value for TCC was obta<strong>in</strong>ed by difference from<br />

<strong>in</strong>dependent measurements of total sulphide. The major aqueous c<strong>at</strong>ions (Na, K, Ca, Mg, Al, Fe,) plus<br />

Si, SO 4 (as S) <strong>and</strong> B were analysed for on a Thermo Jarrel Ash ICP-AES. Ion chrom<strong>at</strong>ography was<br />

used to determ<strong>in</strong>e SO 4 , Cl, F.<br />

12


4. FLUID COMPOSITIONS<br />

The composition of fluid discharged from <strong>wells</strong> <strong>in</strong> the four areas is quite variable (Tables 1a <strong>and</strong> 1b <strong>in</strong><br />

Appendix A). These are taken from different sources, namely Olkaria (Kar<strong>in</strong>githi, 2002), Reykjanes<br />

<strong>and</strong> Svartsengi (<strong>Orkustofnun</strong> d<strong>at</strong>a base, Ármannsson, H., 2005, pers. comm.) <strong>and</strong> Nesjavellir (Giroud,<br />

N., 2006, pers. comm.). With<strong>in</strong> the Olkaria geothermal field the composition of discharged liquid<br />

w<strong>at</strong>er <strong>and</strong> steam is varied but less so <strong>at</strong> Nesjavellir. In Svartsengi <strong>and</strong> Reykjanes, fluid compositions<br />

are quite homogenous.<br />

The fluid composition from<br />

the Gre<strong>at</strong>er Olkaria<br />

Geothermal Area, Reykjanes,<br />

Svartsengi <strong>and</strong> Nesjavellir is<br />

plotted on a Cl-SO 4 -HCO 3<br />

ternary diagram (Figure 10).<br />

The discharged w<strong>at</strong>ers <strong>in</strong> the<br />

Olkaria West Field are<br />

predom<strong>in</strong>antly near neutral<br />

sodium-bicarbon<strong>at</strong>e w<strong>at</strong>ers,<br />

while those of from the<br />

Olkaria East <strong>and</strong> Olkaria<br />

North East fields are dilute,<br />

near neutral-pH chloride<br />

w<strong>at</strong>ers. The w<strong>at</strong>ers from<br />

Reykjanes <strong>and</strong> Svartsengi,<br />

plot <strong>at</strong> the chloride apex.<br />

W<strong>at</strong>ers from Nesjavellir are<br />

rel<strong>at</strong>ively enriched <strong>in</strong><br />

chloride, like the Olkaria East<br />

w<strong>at</strong>ers. W<strong>at</strong>ers discharged<br />

from <strong>wells</strong> <strong>in</strong> Olkaria Central<br />

<strong>and</strong> Olkaria Domes are<br />

ma<strong>in</strong>ly mixed sodium<br />

bicarbon<strong>at</strong>e - sodium chloride<br />

w<strong>at</strong>ers.<br />

W<strong>at</strong>ers discharged from the<br />

weirbox of <strong>wells</strong> <strong>at</strong> Olkaria<br />

have chloride concentr<strong>at</strong>ions<br />

rang<strong>in</strong>g from ~50 ppm to ~<br />

4000 ppm. The silica content<br />

varies between ~ 350 ppm<br />

<strong>and</strong> ~ 1000 ppm SiO 2 . The<br />

Olkaria East<br />

Olkaria North East<br />

Olkaria West<br />

Olkaria Central<br />

Olkaria Domes<br />

Svartsengi<br />

Reykjanes<br />

Nesjavellir<br />

75<br />

50<br />

100<br />

0<br />

SO4<br />

HCO3<br />

0 25 50 75 100<br />

FIGURE 10: Cl-SO 4 - HCO 3 ternary plot for fluids from<br />

different sectors of Olkaria, Reykjanes Svartsengi<br />

<strong>and</strong> Nesjavellir geothermal fields<br />

total carbon<strong>at</strong>e concentr<strong>at</strong>ion is highly variable rang<strong>in</strong>g from < 100 ppm to almost 2500 ppm as CO 2 .<br />

Gas content <strong>in</strong> steam, especially carbon dioxide (CO 2 ) <strong>and</strong> hydrogen sulphide (H 2 S) is generally low<br />

<strong>in</strong> the fluids of Olkaria except fluid discharged from Olkaria West which has a very high CO 2 gas<br />

content <strong>in</strong> steam ~ 10,000 mmoles/kg (Table 1a, Appendix A). Nitrogen content <strong>in</strong> steam is rel<strong>at</strong>ively<br />

high, but highest for well discharges <strong>in</strong> Olkaria Domes <strong>and</strong> Olkaria West which could suggest there is<br />

a high contribution of flow from the surface to the fluids.<br />

At Reykjanes the w<strong>at</strong>er <strong>in</strong> the reservoir is sea w<strong>at</strong>er (Björnsson et al., 1972). The composition of the<br />

parent sea w<strong>at</strong>er has been modified by reactions with the basaltic rock. Slight loss of sodium has<br />

occurred but slight enrichment <strong>in</strong> silica, potassium <strong>and</strong> calcium, <strong>and</strong> almost complete depletion <strong>in</strong><br />

sulph<strong>at</strong>e <strong>and</strong> magnesium (Bjarnason, 1984). The chloride content of the geothermal w<strong>at</strong>er is close to<br />

25<br />

0<br />

Cl<br />

100<br />

Cl<br />

SO4 HCO3<br />

75<br />

50<br />

25<br />

13


th<strong>at</strong> of sea w<strong>at</strong>er. Carbon dioxide is the most abundant gas, > 95 %, correspond<strong>in</strong>g to ~2000 ppm <strong>in</strong><br />

the reservoir fluid. Compared to Olkaria, H 2 S <strong>and</strong> H 2 concentr<strong>at</strong>ions are rel<strong>at</strong>ively low.<br />

The reservoir w<strong>at</strong>er <strong>in</strong> Svartsengi is two-thirds sea w<strong>at</strong>er <strong>and</strong> one-third meteoric w<strong>at</strong>er by orig<strong>in</strong> as<br />

<strong>in</strong>dic<strong>at</strong>ed by its Cl content. This parent w<strong>at</strong>er has also been modified by reactions with the basaltic<br />

rock <strong>in</strong> a fashion similar to the w<strong>at</strong>er <strong>at</strong> Reykjanes. As <strong>at</strong> Reykjanes, CO 2 gas makes up the major gas<br />

<strong>in</strong> the steam , ~ 95 vol.% . The concentr<strong>at</strong>ions of H 2 S <strong>and</strong> H 2 are low rel<strong>at</strong>ive to Olkaria.<br />

W<strong>at</strong>er discharged from <strong>wells</strong> <strong>at</strong> Nesjavellir, which is meteoric by orig<strong>in</strong> is very low <strong>in</strong> dissolved solids<br />

(Table 1 b <strong>in</strong> Appendix A). Silica is the most abundant dissolved solid. The chloride content is 100-<br />

200 ppm. The cause of the low Cl concentr<strong>at</strong>ions is the low Cl content of the basalts with which the<br />

w<strong>at</strong>er has <strong>in</strong>teracted. Carbon dioxide is the major gas component <strong>in</strong> steam. Hydrogen sulphide <strong>and</strong><br />

hydrogen concentr<strong>at</strong>ions are rel<strong>at</strong>ively elev<strong>at</strong>ed compared to well fluids <strong>at</strong> Olkaria, Reykjanes <strong>and</strong><br />

Svartsengi.<br />

14


5. CALCULATION OF AQUIFER FLUID COMPOSITIONS<br />

5.1 Discharge enthalpy of <strong>wells</strong><br />

Production <strong>wells</strong> <strong>at</strong> Olkaria <strong>and</strong> Nesjavellir typically have “excess” enthalpy (Table 1a <strong>and</strong> b of<br />

Appendix A), i.e. the enthalpy of the fluid discharges is higher than th<strong>at</strong> of steam s<strong>at</strong>ur<strong>at</strong>ed w<strong>at</strong>er <strong>at</strong> the<br />

respective aquifer temper<strong>at</strong>ure. At Svartsengi production <strong>wells</strong> have liquid enthalpy, i.e. their enthalpy<br />

equals th<strong>at</strong> of liquid w<strong>at</strong>er <strong>at</strong> the temper<strong>at</strong>ure of produc<strong>in</strong>g aquifers except for shallow <strong>wells</strong> which<br />

have been drilled <strong>in</strong>to the steam cap th<strong>at</strong> has formed on top of the liquid dom<strong>in</strong><strong>at</strong>ed reservoir as a<br />

consequence of reservoir pressure decl<strong>in</strong>e follow<strong>in</strong>g exploit<strong>at</strong>ion. At Reykjanes some <strong>wells</strong> have<br />

liquid enthalpy <strong>and</strong> some excess enthalpy. Excess enthalpy of <strong>wells</strong> poses problems <strong>in</strong> calcul<strong>at</strong><strong>in</strong>g<br />

component concentr<strong>at</strong>ions <strong>in</strong> the <strong>in</strong>itial aquifer fluid from analytical d<strong>at</strong>a on samples of liquid w<strong>at</strong>er<br />

<strong>and</strong> steam collected <strong>at</strong> the wellhead.<br />

Excess well discharge enthalpy <strong>in</strong> the Olkaria East Production Field may be produced by withdrawal<br />

of fluid from the steam zone <strong>and</strong> the underly<strong>in</strong>g liquid dom<strong>in</strong><strong>at</strong>ed reservoir. In general it may,<br />

however, be produced by processes occurr<strong>in</strong>g <strong>in</strong> the depressuriz<strong>at</strong>ion zone around discharg<strong>in</strong>g <strong>wells</strong><br />

where extensive boil<strong>in</strong>g occurs. These processes are: (1) he<strong>at</strong> transfer from the aquifer rock to the fluid<br />

th<strong>at</strong> migr<strong>at</strong>es through the depressuriz<strong>at</strong>ion zone <strong>and</strong> (2) separ<strong>at</strong>ion to the rel<strong>at</strong>ive permeabilities of the<br />

liquid w<strong>at</strong>er <strong>and</strong> steam phases <strong>and</strong> their different flow<strong>in</strong>g properties (e.g. Horne et al., 2000; Pruess,<br />

2002; Li <strong>and</strong> Horne, 2004). Transfer of he<strong>at</strong> from the aquifer rock to the fluid flow<strong>in</strong>g through the<br />

depressuriz<strong>at</strong>ion zone <strong>in</strong>to <strong>wells</strong> tends to occur because depressuriz<strong>at</strong>ion leads to cool<strong>in</strong>g of the fluid<br />

by boil<strong>in</strong>g <strong>and</strong> hence gener<strong>at</strong>es a positive temper<strong>at</strong>ure gradient between the aquifer rock <strong>and</strong> this fluid.<br />

Production of excess well discharge enthalpy by phase segreg<strong>at</strong>ion tends to occur because the liquid<br />

w<strong>at</strong>er is partially reta<strong>in</strong>ed <strong>in</strong> the aquifer as a result of capillary forces, while the steam flows <strong>in</strong>to <strong>wells</strong>.<br />

“Excess enthalpy” may be due to the presence of significant steam fraction <strong>in</strong> the <strong>in</strong>itial aquifer fluid.<br />

Specifically <strong>at</strong> Olkaria, the “excess enthalpy” could, <strong>at</strong> least be due to contribution from the shallow<br />

steam zone which overlies the liquid dom<strong>in</strong><strong>at</strong>ed zone. The discharge could also be from multiple<br />

feeds, shallow vapour-dom<strong>in</strong><strong>at</strong>ed <strong>and</strong> deep liquid-dom<strong>in</strong><strong>at</strong>ed feeds.<br />

If the excess discharge enthalpy is solely caused by conductive he<strong>at</strong> transfer from the aquifer to the<br />

fluid flow<strong>in</strong>g <strong>in</strong>to the well (conductive he<strong>at</strong> transfer model), the composition of the total well<br />

discharge will be the same as th<strong>at</strong> of the aquifer fluid. Conserv<strong>at</strong>ive components, such as Cl, which are<br />

concentr<strong>at</strong>ed <strong>in</strong> the liquid w<strong>at</strong>er phase, will <strong>in</strong>crease <strong>in</strong> the phase <strong>and</strong> approach <strong>in</strong>f<strong>in</strong>ity when the<br />

discharge enthalpy approaches th<strong>at</strong> of dry steam. On the other h<strong>and</strong>, if phase segreg<strong>at</strong>ion were the<br />

cause of the excess discharge enthalpy (phase segreg<strong>at</strong>ion model), Cl concentr<strong>at</strong>ions <strong>in</strong> the liquid<br />

w<strong>at</strong>er would be about constant but they would approach zero <strong>in</strong> the total discharge when the discharge<br />

enthalpy approached th<strong>at</strong> of dry steam.<br />

When excess well discharge enthalpy is produced by the conductive he<strong>at</strong> transfer model, total well<br />

discharge compositions can be used to calcul<strong>at</strong>e quartz <strong>and</strong> Na/K geothermometer temper<strong>at</strong>ures. This<br />

is, however, not valid if the cause of the excess enthalpy is phase segreg<strong>at</strong>ion. Total discharge<br />

composition will yield low quartz equilibrium temper<strong>at</strong>ures, <strong>and</strong> the lower the higher the discharge<br />

enthalpy. The Na/K geothermometer, which is based on an elemental r<strong>at</strong>io, is <strong>in</strong>dependent of which<br />

model is responsible for the excess enthalpy.<br />

Calcul<strong>at</strong>ed temper<strong>at</strong>ures of tqtz <strong>and</strong> tNaK from the equ<strong>at</strong>ions given by Arnórsson (2000 a), for some<br />

of the selected <strong>wells</strong> <strong>at</strong> Olkaria, Reykjanes, Svartsengi <strong>and</strong> Nesjavellir are presented <strong>in</strong> Table 3 of<br />

Appendix A. At Olkaria, quartz equilibrium <strong>and</strong> Na/K geothermometer temper<strong>at</strong>ures compare well<br />

when us<strong>in</strong>g the segreg<strong>at</strong>ion model to calcul<strong>at</strong>e the aquifer w<strong>at</strong>er compositions (Kar<strong>in</strong>githi et al., 2006).<br />

This also applies to Nesjavellir (Figure 11).<br />

For the present study, therefore, the phase segreg<strong>at</strong>ion model <strong>and</strong> the average of the quartz <strong>and</strong> the Na-<br />

K geothermometer results were used to represent aquifer temper<strong>at</strong>ure of <strong>wells</strong> <strong>at</strong> Olkaria <strong>and</strong><br />

Nesjavellir. At Reykjanes, Na/K temper<strong>at</strong>ures are somewh<strong>at</strong> lower than those of quartz. The cause is<br />

15


considered to be limited supply of K to the<br />

w<strong>at</strong>er. The geothermal seaw<strong>at</strong>er has about<br />

four times the K concentr<strong>at</strong>ion of seaw<strong>at</strong>er<br />

<strong>and</strong> the basaltic rock with which the<br />

geothermal seaw<strong>at</strong>er has reacted is very<br />

low <strong>in</strong> K. At Reykjanes, measured<br />

downhole temper<strong>at</strong>ures were selected<br />

tak<strong>in</strong>g total well discharge compositions to<br />

represent the aquifer w<strong>at</strong>er compositions.<br />

The enthalpy of the <strong>wells</strong> represents pure<br />

liquid <strong>and</strong> it is assumed they follow the<br />

boil<strong>in</strong>g po<strong>in</strong>t with depth curve. In the<br />

sub-boil<strong>in</strong>g reservoir <strong>at</strong> Svartsengi,<br />

measured temper<strong>at</strong>ures downhole were<br />

selected. They compare well with both<br />

quartz equilibrium <strong>and</strong> Na/K<br />

geothermometer results.<br />

tqtz - t NaK (°C)<br />

120<br />

80<br />

40<br />

0<br />

-40<br />

FIGURE 11: Rel<strong>at</strong>ionship between<br />

tqtz vs. tNaK equilibrium<br />

Enthalpy vs tqtz-tNaK difference<br />

OW-20<br />

OW-19<br />

OW-23<br />

OW-25<br />

OW-714<br />

1600 1800 2000 2200 2400 2600 2800<br />

Enthalpy kJ/Kg<br />

FIGURE 12: Difference between tNa/K <strong>and</strong> tqtz vs.<br />

various enthalpies for selected number of <strong>wells</strong><br />

from Olkaria East <strong>and</strong> Olkaria North East<br />

A number of selected <strong>wells</strong> <strong>in</strong> Olkaria,<br />

Reykjanes <strong>and</strong> Nesjavellir <strong>in</strong>dic<strong>at</strong>e tqtz<br />

temper<strong>at</strong>ures th<strong>at</strong> are higher than tNaK. In<br />

Reykjanes as expla<strong>in</strong>ed above, the<br />

difference could be due to limited supply<br />

of potassium <strong>in</strong> the w<strong>at</strong>er. In the case of a<br />

number of selected <strong>wells</strong> <strong>in</strong> Olkaria, <strong>and</strong><br />

Nesjavellir, this could be caused by the<br />

model selected to calcul<strong>at</strong>e the aquifer<br />

w<strong>at</strong>er composition which could be wrong.<br />

The orig<strong>in</strong> of the fluid composition could<br />

be due to conductive he<strong>at</strong> transfer<br />

from the aquifer rock to the fluid<br />

flow<strong>in</strong>g <strong>in</strong>to <strong>wells</strong> which<br />

contributes to the discharge<br />

enthalpy. Aquifer w<strong>at</strong>er<br />

composition may not be the source<br />

of the error. Other errors may arise<br />

from the selection of discharge<br />

enthalpy which is affected by<br />

measurements of w<strong>at</strong>er flow.<br />

Wells <strong>in</strong> the Olkaria Domes sector<br />

have enthalpies close to those of<br />

liquid enthalpy <strong>and</strong> tqtz is higher<br />

than tNaK. A similar observ<strong>at</strong>ion<br />

is made for <strong>wells</strong> <strong>in</strong> the Olkaria<br />

West sector (Table 3, Appendix A).<br />

This difference may not be<br />

expla<strong>in</strong>ed by the selected discharge<br />

enthalpy. A different temper<strong>at</strong>ure<br />

model may be applicable for<br />

temper<strong>at</strong>ure selection.<br />

Figure 12 shows enthalpy vs<br />

temper<strong>at</strong>ure difference between tqtz<br />

<strong>and</strong> tNaK for a number of selected<br />

<strong>wells</strong> <strong>in</strong> Olkaria. As enthalpy<br />

16


<strong>in</strong>creases the difference <strong>in</strong> tNaK – tqtz <strong>in</strong>creases because the enthalpy affects the value of calcul<strong>at</strong>ed<br />

SiO 2 concentr<strong>at</strong>ion <strong>in</strong> the liquid w<strong>at</strong>er phase.<br />

The temper<strong>at</strong>ure difference between tNaK <strong>and</strong> tqtz <strong>in</strong> <strong>wells</strong> OW 709 <strong>and</strong> OW-202 is high <strong>and</strong> these<br />

st<strong>and</strong> out (Table 3 Appendix A). The high tNaK <strong>and</strong> tqtz differences for the fluids of <strong>wells</strong> OW-709<br />

<strong>and</strong> OW-202 cannot be expla<strong>in</strong>ed by enthalpy effects, but possibly by dilution of geothermal w<strong>at</strong>er.<br />

Such dilution would not affect Na/K temper<strong>at</strong>ures but yield low quartz equilibrium temper<strong>at</strong>ures<br />

rel<strong>at</strong>ive to the temper<strong>at</strong>ure of the undiluted w<strong>at</strong>er. The high pH of the aquifer fluids of these two <strong>wells</strong><br />

could affect the tqtz due to enhanced dissoci<strong>at</strong>ion of the unionised silica, but this does not seem to be<br />

the case.<br />

Another well with a high temper<strong>at</strong>ure difference between tNaK <strong>and</strong> tqtz is well OW-34. The well is<br />

much higher <strong>in</strong> m<strong>in</strong>eral content <strong>and</strong> its enthalpy is high ~2672 kJ/Kg. High enthalpy affects silica<br />

concentr<strong>at</strong>ions. This could probably contribute to the large differences <strong>in</strong> tNaK <strong>and</strong> tqtz temper<strong>at</strong>ures.<br />

5.2 Calcul<strong>at</strong>ion of gas concentr<strong>at</strong>ions <strong>in</strong> steam <strong>at</strong> <strong>at</strong>mospheric pressure<br />

The WATCH chemical speci<strong>at</strong>ion program (Arnόrsson et al., 1982), version 2.1A (Bjarnason, 1994),<br />

was used to calcul<strong>at</strong>e aquifer w<strong>at</strong>er composition <strong>and</strong> aqueous <strong>species</strong> distribution from d<strong>at</strong>a on liquid<br />

w<strong>at</strong>er <strong>and</strong> steam sample composition <strong>at</strong> wellhead conditions. This program assumes th<strong>at</strong> both types of<br />

samples are collected <strong>at</strong> the same pressure. As expla<strong>in</strong>ed <strong>in</strong> section 3, the Olkaria well samples were<br />

collected differently <strong>and</strong> therefore gas concentr<strong>at</strong>ion <strong>in</strong> steam <strong>at</strong> <strong>at</strong>mospheric pressure was calcul<strong>at</strong>ed<br />

assum<strong>in</strong>g th<strong>at</strong> the secondary steam not sampled is free of gas. Two cases need to be condsidered<br />

(Arnόrsson <strong>and</strong> Stefansson, 2005). One is represented by steam samples collected from the wellhead<br />

steam separ<strong>at</strong>or <strong>and</strong> the other when there was no wellhead separ<strong>at</strong>or <strong>and</strong> the steam samples were<br />

collected with the aid of a Webre separ<strong>at</strong>or, which is connected to the two-phase pipel<strong>in</strong>e discharg<strong>in</strong>g<br />

<strong>in</strong>to the <strong>at</strong>mospheric silencer.<br />

Case 1: Steam samples collected from the wellhead steam separ<strong>at</strong>or separ<strong>at</strong><strong>in</strong>g the total discharge.<br />

The total steam fraction discharged from the well <strong>at</strong> <strong>at</strong>mospheric pressure accord<strong>in</strong>g to this case is X al ,<br />

rel<strong>at</strong>ive to the total well discharge is given by:<br />

X<br />

al<br />

s<br />

s−a<br />

= X + X<br />

5.2.1<br />

Here, X s , represents the steam fraction <strong>in</strong> the wellhead separ<strong>at</strong>or. The fraction of steam which forms<br />

by depressuris<strong>at</strong>ion boil<strong>in</strong>g of the separ<strong>at</strong>ed w<strong>at</strong>er flow<strong>in</strong>g from the wellhead steam separ<strong>at</strong>or to the<br />

<strong>at</strong>mospheric silencer, X s-a , rel<strong>at</strong>ive to the total discharge is given by:<br />

l,<br />

s<br />

s−a<br />

h − h<br />

s<br />

X = ( )(1 − X )<br />

5.2.2<br />

a<br />

L<br />

h l, s is the enthalpy of liquid w<strong>at</strong>er <strong>at</strong> the vapour pressure <strong>in</strong> the wellhead separ<strong>at</strong>or, h l, a <strong>and</strong> L a denote<br />

the enthalpy of steam s<strong>at</strong>ur<strong>at</strong>ed w<strong>at</strong>er <strong>and</strong> its l<strong>at</strong>ent he<strong>at</strong> of vaporis<strong>at</strong>ion <strong>at</strong> <strong>at</strong>mospheric pressure. X s is<br />

the steam fraction <strong>in</strong> the wellhead separ<strong>at</strong>or. Hence, (1- X s ) is the w<strong>at</strong>er fraction.<br />

The gas composition of the total steam discharged (m t g) is given by:<br />

l,<br />

a<br />

s<br />

t X s<br />

m g = m<br />

al<br />

g<br />

5.2.3<br />

X<br />

where m s g represents the concentr<strong>at</strong>ion of gas <strong>in</strong> the steam collected from the wellhead separ<strong>at</strong>or. For<br />

steam samples taken from most of the <strong>wells</strong> <strong>in</strong> the Olkaria East Production Field, this approach has to<br />

17


e applied because the steam samples were collected <strong>at</strong> wellhead separ<strong>at</strong>or pressures <strong>and</strong> the w<strong>at</strong>er <strong>at</strong><br />

the weir box.<br />

Case 2: Webre separ<strong>at</strong>or on a two-phase pipel<strong>in</strong>e discharg<strong>in</strong>g <strong>in</strong>to an <strong>at</strong>mospheric silencer.<br />

The total steam fraction rel<strong>at</strong>ive to the total discharge is given by the follow<strong>in</strong>g equ<strong>at</strong>ion:<br />

X<br />

a2<br />

= X<br />

w<br />

+ X<br />

w−a<br />

5.2.4<br />

Here, X a2 represents the total steam fraction of the well discharge <strong>at</strong> <strong>at</strong>mospheric pressure, X w is the<br />

steam fraction <strong>in</strong> the Webre separ<strong>at</strong>or <strong>and</strong> X w-a represents the steam fraction th<strong>at</strong> forms by<br />

depressuris<strong>at</strong>ion boil<strong>in</strong>g from vapour pressure P w to <strong>at</strong>mospheric pressure.<br />

A portion of the steam is not sampled when us<strong>in</strong>g the Webre separ<strong>at</strong>or <strong>and</strong> this fraction is given by<br />

X<br />

w−a<br />

t<br />

h<br />

=<br />

− h<br />

L<br />

a<br />

l,<br />

a<br />

t<br />

h<br />

−<br />

− h<br />

L<br />

w<br />

1, w<br />

=<br />

a w<br />

X − X<br />

5.2.5<br />

<strong>and</strong> L w represent the enthalpies of the steam s<strong>at</strong>ur<strong>at</strong>ed w<strong>at</strong>er <strong>at</strong> the vapour pressure <strong>in</strong> the Webre<br />

separ<strong>at</strong>or <strong>and</strong> its l<strong>at</strong>ent he<strong>at</strong> of vaporiz<strong>at</strong>ion, respectively.<br />

h l, w<br />

For correction of gas composition of steam sampled by use of a Webre separ<strong>at</strong>or <strong>and</strong> depressuris<strong>at</strong>ion<br />

boil<strong>in</strong>g from vapour pressure P w to <strong>at</strong>mospheric pressure, the follow<strong>in</strong>g equ<strong>at</strong>ion was used:<br />

X<br />

m *<br />

X<br />

w<br />

t<br />

w<br />

g = m<br />

al<br />

g<br />

5.2.6<br />

where m w g represents the concentr<strong>at</strong>ions of gas <strong>in</strong> a steam sample collected from the Webre separ<strong>at</strong>or.<br />

This correction is applicable to steam samples collected from explor<strong>at</strong>ion <strong>wells</strong>, <strong>and</strong> for steam samples<br />

collected before 2001 from <strong>wells</strong> <strong>in</strong> the Olkaria North East Field, Olkaria Domes <strong>and</strong> Olkaria West<br />

Fields. The composition of Olkaria well fluids is shown <strong>in</strong> Table1a of Appendix A <strong>and</strong> calcul<strong>at</strong>ed gas<br />

concentr<strong>at</strong>ions <strong>in</strong> steam are shown <strong>in</strong> Table 2a for production <strong>wells</strong> <strong>in</strong> Olkaria East <strong>and</strong> Table 2b of<br />

Appendix A for explor<strong>at</strong>ion <strong>wells</strong> <strong>in</strong> Olkaria North East, Olkaria West <strong>and</strong> Olkaria Domes.<br />

5.3 Calcul<strong>at</strong>ion of aquifer w<strong>at</strong>er compositions <strong>and</strong> speci<strong>at</strong>ion distribution<br />

Component concentr<strong>at</strong>ions <strong>and</strong> aqueous <strong>species</strong> distribution <strong>in</strong> the w<strong>at</strong>er was calcul<strong>at</strong>ed with the aid of<br />

the WATCH chemical speci<strong>at</strong>ion program (Arnόrsson et al., 1982; Bjarnason, 1994), version 2.1A, on<br />

the assumption th<strong>at</strong> excess discharge enthalpy was due to phase segreg<strong>at</strong>ion only <strong>and</strong> th<strong>at</strong> no<br />

equilibrium steam is present <strong>in</strong> the aquifer. It was further assumed th<strong>at</strong> any phase segreg<strong>at</strong>ion th<strong>at</strong> has<br />

taken place occurs between 180°C <strong>and</strong> the <strong>in</strong>itial aquifer temper<strong>at</strong>ure. For <strong>wells</strong> <strong>in</strong> the Olkaria East<br />

sector which have a steam separ<strong>at</strong>or <strong>at</strong> the wellhead the calcul<strong>at</strong>ion <strong>in</strong>volves three steps: Firstly the<br />

composition <strong>and</strong> speci<strong>at</strong>ion, <strong>in</strong>clud<strong>in</strong>g the pH, of the w<strong>at</strong>er <strong>in</strong> the wellhead separ<strong>at</strong>or was calcul<strong>at</strong>ed<br />

from the analytical d<strong>at</strong>a on the w<strong>at</strong>er samples from the weirbox on the assumption th<strong>at</strong> the secondary<br />

steam discharged from the <strong>at</strong>mospheric silencer was free of gas. Secondly, w<strong>at</strong>er composition <strong>and</strong> pH<br />

so obta<strong>in</strong>ed were used, together with steam analysis d<strong>at</strong>a <strong>and</strong> measured discharge enthalpy, to<br />

calcul<strong>at</strong>e liquid w<strong>at</strong>er <strong>and</strong> steam composition <strong>at</strong> 180°C (10 bars abs. vapour pressure). Thirdly, the<br />

calcul<strong>at</strong>ed liquid w<strong>at</strong>er <strong>and</strong> steam composition <strong>at</strong> 180°C was used to calcul<strong>at</strong>e the composition <strong>and</strong><br />

speci<strong>at</strong>ion distribution <strong>in</strong> the aquifer w<strong>at</strong>er tak<strong>in</strong>g the fluid enthalpy to be th<strong>at</strong> of steam s<strong>at</strong>ur<strong>at</strong>ed w<strong>at</strong>er<br />

<strong>at</strong> the aquifer temper<strong>at</strong>ure, but this temper<strong>at</strong>ure was taken to be the average of the tNa/K <strong>and</strong> tqtz<br />

geothermometer temper<strong>at</strong>ures, the l<strong>at</strong>ter be<strong>in</strong>g consistent with the phase segreg<strong>at</strong>ion model.<br />

18


The procedure for calcul<strong>at</strong><strong>in</strong>g aquifer w<strong>at</strong>er compositions for <strong>wells</strong> <strong>in</strong> other sectors than Olkaria East<br />

is somewh<strong>at</strong> different because the two phases of the discharges travel together to the <strong>at</strong>mospheric<br />

silencer. Firstly, the steam composition <strong>at</strong> <strong>at</strong>mospheric pressure was calcul<strong>at</strong>ed from the analytical<br />

d<strong>at</strong>a <strong>in</strong> Table 1a of Appendix A tak<strong>in</strong>g the steam fraction, which forms by depressuris<strong>at</strong>ion boil<strong>in</strong>g<br />

between the gas sampl<strong>in</strong>g pressure <strong>and</strong> <strong>at</strong>mospheric pressure. Steam <strong>and</strong> w<strong>at</strong>er composition was<br />

calcul<strong>at</strong>ed <strong>at</strong> 180°C us<strong>in</strong>g the discharge enthalpy values, the w<strong>at</strong>er composition <strong>in</strong> Table 1a of<br />

Appendix A <strong>and</strong> calcul<strong>at</strong>ed gas concentr<strong>at</strong>ions <strong>in</strong> the steam phase <strong>at</strong> <strong>at</strong>mospheric pressure. The third<br />

step is the same as th<strong>at</strong> for Olkaria East <strong>wells</strong>.<br />

The selection of the <strong>in</strong>termedi<strong>at</strong>e step <strong>at</strong> 180˚C is based on the follow<strong>in</strong>g consider<strong>at</strong>ions: the enthalpy<br />

of s<strong>at</strong>ur<strong>at</strong>ed steam reaches maximum <strong>at</strong> around 235°C <strong>and</strong> <strong>in</strong> the range 180-270°C (10-55 bars-abs.<br />

vapour pressure) it has a value close to this maximum but <strong>at</strong> lower <strong>and</strong> higher temper<strong>at</strong>ures it drops<br />

significantly. As a consequence of this, the steam to w<strong>at</strong>er r<strong>at</strong>io (enthalpy) of a fluid has little effect<br />

upon depressuris<strong>at</strong>ion of the liquid w<strong>at</strong>er <strong>in</strong> the <strong>in</strong>terval 10-55 bars-abs. Below 10 bars abs. steam<br />

form<strong>at</strong>ion by depressuris<strong>at</strong>ion boil<strong>in</strong>g is enhanced by decreas<strong>in</strong>g steam enthalpy. The opposite is the<br />

case above 55 bars-abs. Most of the Olkaria <strong>wells</strong> have temper<strong>at</strong>ures less than 270°C. The calcul<strong>at</strong>ion<br />

procedure just described to retrieve the component concentr<strong>at</strong>ions <strong>in</strong> the <strong>in</strong>itial aquifer w<strong>at</strong>er closely<br />

m<strong>at</strong>ches the phase segreg<strong>at</strong>ion model.<br />

19


6. POTENTIAL CORROSION BY CO 2 AND HCl<br />

6.1 Carbon dioxide<br />

The pH of geothermal w<strong>at</strong>er is<br />

largely controlled by silic<strong>at</strong>e<br />

hydrolysis equilibria. In some cases<br />

high concentr<strong>at</strong>ions of dissolved<br />

carbon dioxide (CO 2 ) <strong>in</strong> geothermal<br />

fluids could have an <strong>in</strong>fluence on<br />

the pH. Carbon<strong>at</strong>e carbon occurs<br />

mostly as dissolved CO 2 <strong>and</strong><br />

bicarbon<strong>at</strong>e. The partial pressures of<br />

CO 2 <strong>in</strong> the deep fluid of the study<br />

areas have been evalu<strong>at</strong>ed with the<br />

assistance of the WATCH computer<br />

code (Arnόrsson et al., 1982;<br />

Bjarnason, 1994) version 2.1A. At<br />

Olkaria CO 2 partial pressures are<br />

quite variable be<strong>in</strong>g very high <strong>in</strong> the<br />

Olkaria West sector compared to the<br />

other sectors of Olkaria or 10-100<br />

bar (Table 4 of Appendix A). In<br />

Olkaria North East they are 1-3 bar,<br />

0.5 -5 bar <strong>in</strong> Olkaria East, <strong>and</strong> 2-4<br />

bar <strong>in</strong> Olkaria Domes. In the<br />

reservoirs <strong>at</strong> Reykjanes <strong>and</strong><br />

Svartsengi they are 0.5-0.9 bar <strong>and</strong><br />

0.6-1.7 bar respectively. At<br />

Nesjavellir the CO 2 partial pressures<br />

are even lower 0.07-0.09 bar for the<br />

<strong>wells</strong> selected (Figure 13).<br />

The carbon dioxide (CO 2 )<br />

concentr<strong>at</strong>ions <strong>in</strong> high-temper<strong>at</strong>ure<br />

Log PCO2<br />

100<br />

10<br />

1<br />

0.1<br />

0.01<br />

Olkaria East<br />

Olkaria West<br />

Olkaria North East<br />

Olkaria Domes<br />

Svartsengi<br />

Reykjanes<br />

Nesjavellir<br />

180 200 220 240 260 280 300<br />

Temper<strong>at</strong>ure °C<br />

FIGURE 13: Aquifer temper<strong>at</strong>ure vs CO 2<br />

partial pressures <strong>in</strong> the aquifer fluids<br />

geothermal aquifer w<strong>at</strong>ers are highly variable. Essentially two factors control the aquifer w<strong>at</strong>er CO 2<br />

concentr<strong>at</strong>ions, (1) the r<strong>at</strong>e of supply of CO 2 to the w<strong>at</strong>er from magm<strong>at</strong>ic he<strong>at</strong> sources <strong>and</strong> (2)<br />

equilibr<strong>at</strong>ion with specific m<strong>in</strong>eral buffers. In the study areas these buffers <strong>in</strong>clude epidote + prehnite<br />

+ calcite + quartz <strong>and</strong> epidote + grossular + calcite + quartz (Kar<strong>in</strong>githi et al., 2006; Fridriksson et al.,<br />

2006). In Olkaria West, the CO 2 <strong>in</strong> the reservoir w<strong>at</strong>er is considered to be controlled by the r<strong>at</strong>e of<br />

supply of CO 2 from the magm<strong>at</strong>ic he<strong>at</strong> source. Another possibility is th<strong>at</strong> Olkaria West is on the<br />

periphery of the Olkaria geothermal system <strong>and</strong> the fluid is peripheral, i.e. it is <strong>in</strong> outflow from the<br />

system <strong>and</strong> has developed an excess CO 2 concentr<strong>at</strong>ion. In other parts of Olkaria <strong>and</strong> <strong>in</strong> the other<br />

study areas, CO 2 aquifer w<strong>at</strong>er concentr<strong>at</strong>ions are on the other h<strong>and</strong> controlled by close approach to<br />

equilibrium with one of the m<strong>in</strong>eral buffers mentioned above.<br />

Shallow groundw<strong>at</strong>ers, rich <strong>in</strong> CO 2 , may form when CO 2 -rich steam ris<strong>in</strong>g from the deeper reservoir<br />

condenses <strong>in</strong>to such shallow w<strong>at</strong>er. W<strong>at</strong>ers of this orig<strong>in</strong> exist <strong>in</strong> Olkaria West, as evidenced by the<br />

discharge of well OW-304D. The pH of such w<strong>at</strong>ers could be lowered by the high CO 2 concentr<strong>at</strong>ions<br />

(Figure 14).<br />

W<strong>at</strong>ers of this type have also been reported from Broadl<strong>and</strong>s <strong>in</strong> NewZeal<strong>and</strong> (Hedenquist <strong>and</strong> Stewart,<br />

1985). Shallow CO 2 -rich groundw<strong>at</strong>ers may cause corrosion on the outside of cas<strong>in</strong>gs, <strong>at</strong> least if<br />

cement<strong>in</strong>g of the cas<strong>in</strong>g is <strong>in</strong> adequ<strong>at</strong>e or if the w<strong>at</strong>er can dissolve the cement.<br />

20


Concentr<strong>at</strong>ions of CO 2 <strong>at</strong> equilibrium between w<strong>at</strong>er <strong>and</strong> steam can be calcul<strong>at</strong>ed us<strong>in</strong>g<br />

thermodynamic d<strong>at</strong>a on the equilibrium partial pressures of dissolved CO 2 <strong>and</strong> a given temper<strong>at</strong>ure,<br />

us<strong>in</strong>g Henry’s law constant. The expression used is:<br />

mCO 2 = kh*Pi,<br />

where mCO 2 = concentr<strong>at</strong>ion of CO 2 <strong>in</strong> moles/kg,<br />

Kh = Henry’s Law coefficient,<br />

P i= Partial pressure of CO 2 <strong>at</strong> equilibrium <strong>in</strong> bars.<br />

Arnόrsson et al (1996) describe the temper<strong>at</strong>ure dependence of Henry’s Law coefficient given by the<br />

function:<br />

CO 2 ,g = CO 2 ,aq = -59.612 + 3448.59/T - 0.68640×10 -6 T 2 + 18.847×log T<br />

where T<br />

= Temper<strong>at</strong>ure <strong>in</strong> Kelv<strong>in</strong>.<br />

Upon extensive boil<strong>in</strong>g of<br />

geothermal w<strong>at</strong>er <strong>in</strong> produc<strong>in</strong>g<br />

aquifers <strong>and</strong> <strong>wells</strong>, the CO 2 <strong>in</strong>itially<br />

dissolved <strong>in</strong> the aquifer w<strong>at</strong>er is<br />

largely transferred to the steam<br />

which forms. Figures 15 <strong>and</strong> 16<br />

show how CO 2 concentr<strong>at</strong>ions <strong>in</strong><br />

the boil<strong>in</strong>g w<strong>at</strong>er <strong>and</strong> the steam<br />

change dur<strong>in</strong>g one step adiab<strong>at</strong>ic<br />

boil<strong>in</strong>g of w<strong>at</strong>er from selected <strong>wells</strong><br />

<strong>in</strong> the study areas.<br />

The separ<strong>at</strong>ed w<strong>at</strong>er <strong>at</strong> the surface<br />

conta<strong>in</strong>s 0.5-5 ppm dissolved CO 2<br />

<strong>and</strong> the separ<strong>at</strong>ed steam 0.2-24<br />

ppm. These are theoretically<br />

calcul<strong>at</strong>ed us<strong>in</strong>g Henry’s law<br />

constants for CO 2 <strong>at</strong> equilibrium.<br />

One might expect th<strong>at</strong> the separ<strong>at</strong>ed<br />

w<strong>at</strong>er would cause corrosion of<br />

mild steel due to its rel<strong>at</strong>ively high<br />

CO 2 content. Such corrosion is,<br />

however, generally not observed <strong>in</strong><br />

geothermal <strong>in</strong>stall<strong>at</strong>ions. The reason<br />

is considered to be the form<strong>at</strong>ion of<br />

protective sulphides, carbon<strong>at</strong>es <strong>and</strong><br />

silic<strong>at</strong>e co<strong>at</strong><strong>in</strong>g (Jones, 1996).<br />

Log PCO2 bar a<br />

100<br />

10<br />

1<br />

0.1<br />

0.01<br />

Olkaria East<br />

Olkaria West<br />

Olkaria North East<br />

Olkaria Domes<br />

Reykjanes<br />

Svartsengi<br />

Nesjavellir<br />

5 6 7 8<br />

pH<br />

FIGURE 14: Aquifer pH vs CO 2 partial pressures<br />

<strong>in</strong> the aquifer for selected <strong>wells</strong> <strong>in</strong> the study areas<br />

Upon condens<strong>at</strong>ion of separ<strong>at</strong>ed steam, CO 2 rich condens<strong>at</strong>e with a rel<strong>at</strong>ively low pH will form<br />

(Figure 17). The pH of condens<strong>at</strong>e formed from the selected <strong>wells</strong> due to CO 2 <strong>in</strong> the Olkaria West<br />

sector is lower than th<strong>at</strong> formed from the rest of the selected <strong>wells</strong> <strong>in</strong> the study areas. A complic<strong>at</strong>ion<br />

th<strong>at</strong> could arise is the <strong>in</strong>fluence of H 2 S. The problem with CO 2 corrosion is always l<strong>in</strong>ked to pH <strong>and</strong><br />

the only problem to worry about is corrosion by steam condens<strong>at</strong>e. Instability of sulphide m<strong>in</strong>erals<br />

render<strong>in</strong>g them less protective will contribute.<br />

21


100000<br />

10000<br />

OW-901 Olkaria Domes<br />

OW-301 Olkaria West<br />

OW-306 Olkaria West<br />

OW-30 Olkaria East<br />

OW-34 Olkaria East<br />

OW-20 Olkaria East<br />

OW-714 Olkaria N.East<br />

OW-709 Olkaria N.East<br />

SV-05 Svartsengi<br />

SV-11 Svartsengi<br />

RN-10 Reykjanes<br />

RN-11 Reykjanes<br />

NJ-14 Nesjavellir<br />

NJ-22 Nesjavellir<br />

1000000<br />

OW-901 Olkaria Domes<br />

OW-301 Olkaria West<br />

OW-306 Olkaria West<br />

OW-30 Olkaria East<br />

OW-34 Olkaria East<br />

OW-20 Olkaria East<br />

OW-714 Olkaria N.East<br />

OW-709 Olkaria N.East<br />

SV-05 Svartsengi<br />

SV-11 Svartsengi<br />

RN-10 Reykjanes<br />

NJ-14 Nesjavellir<br />

NJ-22 Nesjavellir<br />

RN-10 Reykjanes<br />

log CO2 concentr<strong>at</strong>ions <strong>in</strong> w<strong>at</strong>er (ppm)<br />

1000<br />

100<br />

10<br />

log CO2 <strong>in</strong> steam (ppm)<br />

100000<br />

10000<br />

1000<br />

1<br />

100<br />

320 280 240 200 160 120 80<br />

Temper<strong>at</strong>ure °C<br />

FIGURE 15: CO 2 concentr<strong>at</strong>ions <strong>in</strong> separ<strong>at</strong>ed<br />

w<strong>at</strong>er of selected <strong>wells</strong> with several steps of<br />

s<strong>in</strong>gle-step adiab<strong>at</strong>ic steam loss<br />

320 280 240 200 160 120 80<br />

Temper<strong>at</strong>ure °C<br />

FIGURE 16: CO 2 concentr<strong>at</strong>ions <strong>in</strong> separ<strong>at</strong>ed<br />

steam of selected <strong>wells</strong> with several steps of<br />

s<strong>in</strong>gle-step adiab<strong>at</strong>ic steam loss<br />

6.2 Hydrogen chloride<br />

Hydrogen chloride (HCl) is a<br />

component of volcanic gases <strong>and</strong> is<br />

present <strong>in</strong> steam of vapour<br />

dom<strong>in</strong><strong>at</strong>ed geothermal systems<br />

loc<strong>at</strong>ed <strong>in</strong> different geologic sett<strong>in</strong>gs<br />

(Giggenbach, 1975; Truesdell et al.,<br />

1989). The acidity of Cl-SO 4<br />

spr<strong>in</strong>gs <strong>in</strong> some geothermal fields<br />

has been <strong>at</strong>tributed to the presence<br />

of dissolved magm<strong>at</strong>ic HCl<br />

(Giggenbach, 1975; Ellis <strong>and</strong><br />

Mahon, 1977). Haizlip <strong>and</strong><br />

Truesdell (1988) report Cl<br />

concentr<strong>at</strong>ions of 10-120 ppm <strong>in</strong><br />

superhe<strong>at</strong>ed steam <strong>in</strong> the vapourdom<strong>in</strong><strong>at</strong>ed<br />

field <strong>at</strong> the Geysers <strong>in</strong><br />

California. In Larderello, Italy,<br />

most <strong>wells</strong> produced steam with < 5<br />

ppm Cl <strong>in</strong> the early 1960´s but l<strong>at</strong>er<br />

levels rose to 10-80 ppm (D´Amore<br />

et al., 1977). At T<strong>at</strong>un, Taiwan, a<br />

dry steam well discharge conta<strong>in</strong>ed<br />

Condens<strong>at</strong>e pH<br />

5.6<br />

5.4<br />

5.2<br />

5<br />

4.8<br />

4.6<br />

4.4<br />

OW-901<br />

OW-306<br />

OW-709 OW-30I<br />

OW-20<br />

120 160 200 240 280<br />

Temper<strong>at</strong>ure °C<br />

FIGURE 17: Condens<strong>at</strong>e pH <strong>at</strong> separ<strong>at</strong>ion temper<strong>at</strong>ures<br />

for selected <strong>wells</strong> <strong>in</strong> the study areas<br />

~3500 ppm Cl (Ellis <strong>and</strong> Mahon, 1977). In Krafla, Icel<strong>and</strong> (Truesdell et al., 1989, Truesdell, 1991)<br />

<strong>in</strong>trusion of magm<strong>at</strong>ic gases <strong>in</strong>to the geothermal system dur<strong>in</strong>g the Krafla fires caused high<br />

concentr<strong>at</strong>ions of HCl <strong>in</strong> Krafla well KG-12. The high HCl concentr<strong>at</strong>ions <strong>in</strong> the superhe<strong>at</strong>ed steam<br />

caused corrosion <strong>in</strong> this well.<br />

OW-34<br />

OW-301<br />

SV-05<br />

OW-714<br />

SV-11<br />

NJ-14<br />

NJ-22<br />

RN-11 RN-10<br />

Ollkaria East<br />

Olkaria North East<br />

Olkaria West<br />

Reykjanes<br />

Svartsengi<br />

Nesjavellir<br />

Svartsengi<br />

22


High concentr<strong>at</strong>ions of HCl can be gener<strong>at</strong>ed from boil<strong>in</strong>g moder<strong>at</strong>e-to-high sal<strong>in</strong>ity br<strong>in</strong>es with near<br />

neutral pH values (5-7) <strong>and</strong> with temper<strong>at</strong>ures gre<strong>at</strong>er than about 300˚ C. D’Amore et al., (1990)<br />

have demonstr<strong>at</strong>ed a close correl<strong>at</strong>ion of high temper<strong>at</strong>ure areas of Larderello <strong>and</strong> The Geysers<br />

reservoirs with HCl <strong>in</strong> steam. Extreme boil<strong>in</strong>g <strong>and</strong> dry<strong>in</strong>g of a reservoir orig<strong>in</strong>ally conta<strong>in</strong><strong>in</strong>g a more<br />

or less concentr<strong>at</strong>ed br<strong>in</strong>e is not limited to vapour–dom<strong>in</strong><strong>at</strong>ed systems, but can occur <strong>in</strong> liquid<br />

dom<strong>in</strong><strong>at</strong>ed reservoirs as well. Boil<strong>in</strong>g <strong>in</strong> high temper<strong>at</strong>ure geothermal reservoirs such as Reykjanes<br />

<strong>and</strong> Svartsengi Icel<strong>and</strong>; Cerro Prieto, Mexico; Salton Sea California, could produce vapour conta<strong>in</strong><strong>in</strong>g<br />

HCl.<br />

Serious corrosion has been l<strong>in</strong>ked with HCl <strong>in</strong> geothermal steam. Corrosion occurs when the steam<br />

condens<strong>at</strong>es <strong>and</strong> the HCl dissolves <strong>in</strong> the condens<strong>at</strong>e to form a strong acid, hydrochloric acid<br />

(Allegr<strong>in</strong>i <strong>and</strong> Benvenuti, 1970). Hydrogen chloride is highly soluble <strong>in</strong> liquid w<strong>at</strong>er. For this reason<br />

HCl may be effectively removed from steam by pass<strong>in</strong>g it through liquid w<strong>at</strong>er <strong>and</strong> by m<strong>in</strong>imis<strong>in</strong>g<br />

steam condens<strong>at</strong>ion along steam l<strong>in</strong>es by us<strong>in</strong>g better <strong>in</strong>sul<strong>at</strong>ion. This is how HCl corrosion <strong>in</strong> well<br />

KG-12 <strong>in</strong> Krafla, Icel<strong>and</strong>, was stopped (Thórhallsson et al., 1979). Injection <strong>at</strong> Larderello is known to<br />

have decreased the HCl concentr<strong>at</strong>ion <strong>in</strong> the steam, presumably by its dissolution <strong>in</strong> the <strong>in</strong>jected w<strong>at</strong>er.<br />

Two of the areas <strong>in</strong>cluded <strong>in</strong> this study (Reykjanes <strong>and</strong> Svartsengi) have quite high Cl concentr<strong>at</strong>ions,<br />

or about 20,000 <strong>and</strong> 13,000 ppm <strong>in</strong> the reservoirs respectively. At Olkaria <strong>and</strong> Nesjavellir Cl<br />

concentr<strong>at</strong>ions are much lower. At Reykjanes, Nesjavellir <strong>and</strong> Olkaria, aquifer w<strong>at</strong>er temper<strong>at</strong>ures <strong>in</strong><br />

some <strong>wells</strong> exceed 300°C but <strong>in</strong> Svartsengi they are very constant, around 240°C. Experience has<br />

shown th<strong>at</strong> corrosion is not significant <strong>at</strong> Olkaria, limited <strong>at</strong> Svartsengi but r<strong>at</strong>her severe <strong>at</strong> Reykjanes.<br />

This experience stimul<strong>at</strong>ed a study of HCl concentr<strong>at</strong>ions <strong>in</strong> liquid w<strong>at</strong>er <strong>and</strong> steam as a function of<br />

the Cl content of the <strong>in</strong>itial aquifer w<strong>at</strong>er <strong>and</strong> the pH <strong>and</strong> temper<strong>at</strong>ure of variably boiled w<strong>at</strong>er <strong>and</strong><br />

associ<strong>at</strong>ed steam.<br />

Analysis of Cl <strong>in</strong> steam is not considered to give reliable results for HCl concentr<strong>at</strong>ions. Chloride<br />

analysed <strong>in</strong> condensed steam would be total chloride consist<strong>in</strong>g of chlorides formed from alkali <strong>and</strong><br />

alkali earth metals. By carry<strong>in</strong>g out calcul<strong>at</strong>ions of HCl concentr<strong>at</strong>ions this, gives a better estim<strong>at</strong>e of<br />

chloride concentr<strong>at</strong>ions derived from HCl on condens<strong>at</strong>ion. In most cases the Cl concentr<strong>at</strong>ions th<strong>at</strong><br />

would be derived from HCl would not be detectable <strong>and</strong> only a very <strong>in</strong>significant amount of carryover<br />

of liquid w<strong>at</strong>er would dom<strong>in</strong><strong>at</strong>e the Cl <strong>in</strong> steam samples. For example <strong>at</strong> Reykjanes, 0.0005%<br />

carryover of the br<strong>in</strong>e would yield 0.1 ppm Cl <strong>in</strong> the steam. For this reason, it is considered more<br />

accur<strong>at</strong>e to calcul<strong>at</strong>e HCl <strong>in</strong> steam from experimental d<strong>at</strong>a on the dissoci<strong>at</strong>ion of HCl <strong>and</strong> the<br />

distribution coefficient for HCl between liquid w<strong>at</strong>er <strong>and</strong> vapour. The fraction of calcul<strong>at</strong>ed HCl<br />

concentr<strong>at</strong>ions are small, but when the chloride is entirely from HCl <strong>and</strong> <strong>in</strong> dry steam, even <strong>at</strong> such<br />

small concentr<strong>at</strong>ions this become <strong>corrosive</strong>. The chloride from the HCl becomes concentr<strong>at</strong>ed <strong>in</strong> dead<br />

legs <strong>and</strong> stagnant areas, which develop low pH <strong>and</strong> hence become <strong>corrosive</strong>.<br />

The WATCH chemical speci<strong>at</strong>ion program (Arnórsson et al., 1982), version 2.1A (Bjarnason, 1994)<br />

was used to calcul<strong>at</strong>e <strong>in</strong>itial aquifer w<strong>at</strong>er composition <strong>and</strong> the speci<strong>at</strong>ion distribution <strong>in</strong> this w<strong>at</strong>er.<br />

From the calcul<strong>at</strong>ed activities of the H + <strong>and</strong> Cl - , the concentr<strong>at</strong>ion of the HCl aq <strong>species</strong> <strong>in</strong> the w<strong>at</strong>er was<br />

calcul<strong>at</strong>ed us<strong>in</strong>g d<strong>at</strong>a on the associ<strong>at</strong>ion constant for HCl aq from Ruaya <strong>and</strong> Seward,(1987) assum<strong>in</strong>g<br />

the the activity coefficient for this <strong>species</strong> was unity. The concentr<strong>at</strong>ion of HCl <strong>in</strong> steam (HCl v ) was<br />

subsequently obta<strong>in</strong>ed from the experimental d<strong>at</strong>a of Simonson <strong>and</strong> Palmer (1993) for the distribution<br />

coefficient for HCl (D HCl ) between liquid w<strong>at</strong>er <strong>and</strong> steam.<br />

Accord<strong>in</strong>g to Ruaya <strong>and</strong> Seward, (1987) the temper<strong>at</strong>ure dependence of the associ<strong>at</strong>ion constant for<br />

HCl aq is given by:<br />

-logK HCl = - 2136.8898 - 1.022034×T + 45045•10 -4 ×T 2 +50396.40/T +901.770×logT<br />

where T = Temper<strong>at</strong>ure, <strong>in</strong> Kelv<strong>in</strong><br />

The distribution coefficient for HCl between vapour <strong>and</strong> liquid w<strong>at</strong>er (D HCl ,) is def<strong>in</strong>ed as:<br />

23


D =<br />

HCl<br />

[ mHCl ]<br />

[ mHCl ]<br />

Temper<strong>at</strong>ure dependence is given by (Simonson <strong>and</strong> Palmer, 1993):<br />

log D HCl = -13.4944 – 934.466/T – 11.0029×logρ + 5.4847×logT<br />

where T = The temper<strong>at</strong>ure <strong>in</strong> Kelv<strong>in</strong>, as before; <strong>and</strong><br />

ρ = The density of solvent (g/cm 3 ).<br />

l<br />

v<br />

LogHCl aqueous (ppm)<br />

logHCl aqueous (ppm)<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

0.0001<br />

1E-005<br />

10 100 1000 10000 100000<br />

Chloride (ppm)<br />

FIGURE 18: Aquifer w<strong>at</strong>er HCl concentr<strong>at</strong>ions vs.<br />

aquifer w<strong>at</strong>er chloride concentr<strong>at</strong>ions of<br />

selected <strong>wells</strong> <strong>in</strong> the study areas<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

0.0001<br />

1E-005<br />

Olkaria East<br />

Olkaria West<br />

Olkaria North East<br />

Olkaria Domes<br />

Reykjanes<br />

Svartsengi<br />

Nesjavellir<br />

Olkaria East<br />

Olkaria West<br />

Olkaria North East<br />

Olkaria Domes<br />

Reykjanes<br />

Svartsengi<br />

Nesjavellir<br />

5 6 7 8<br />

pH<br />

FIGURE 19: Aquifer w<strong>at</strong>er HCl concentr<strong>at</strong>ions vs.<br />

aquifer w<strong>at</strong>er pH of selected <strong>wells</strong> <strong>in</strong> the study areas<br />

The density of the dilute w<strong>at</strong>ers from<br />

Olkaria <strong>and</strong> Nesjavellir was calcul<strong>at</strong>ed<br />

us<strong>in</strong>g thermodynamic properties of<br />

w<strong>at</strong>er <strong>and</strong> steam given by the computer<br />

code TAFLA (Bjarnason <strong>and</strong><br />

Björnsson, 1995). Densities for<br />

Reykjanes <strong>and</strong> Svartsengi br<strong>in</strong>es were<br />

calcul<strong>at</strong>ed us<strong>in</strong>g densities of s<strong>at</strong>ur<strong>at</strong>ed<br />

sodium chloride solutions provided by<br />

Potter <strong>and</strong> Brown (1977).<br />

The calcul<strong>at</strong>ed concentr<strong>at</strong>ions of HCl<br />

<strong>in</strong> the aquifer w<strong>at</strong>ers of the study areas<br />

are presented <strong>in</strong> Table 4 of Appendix A<br />

<strong>and</strong> depicted <strong>in</strong> Figures 18, 19, 20<br />

respectively as a function of aquifer<br />

w<strong>at</strong>er chloride concentr<strong>at</strong>ions, pH <strong>and</strong><br />

temper<strong>at</strong>ure.<br />

The concentr<strong>at</strong>ions of HCl aq <strong>in</strong>creases<br />

with <strong>in</strong>creas<strong>in</strong>g aquifer w<strong>at</strong>er Cl<br />

concentr<strong>at</strong>ions, decreas<strong>in</strong>g aquifer<br />

w<strong>at</strong>er pH <strong>and</strong> <strong>in</strong>creas<strong>in</strong>g aquifer<br />

temper<strong>at</strong>ure. The w<strong>at</strong>er <strong>in</strong> produc<strong>in</strong>g<br />

aquifers of the Olkaria <strong>wells</strong> conta<strong>in</strong><br />

HCl <strong>in</strong> the range between ~ 1×10 -5 ppm<br />

<strong>and</strong> ~ 5×10 -4 ppm. The aquifer w<strong>at</strong>er<br />

HCl concentr<strong>at</strong>ions <strong>in</strong> Reykjanes <strong>and</strong><br />

Svartsengi are much higher, rang<strong>in</strong>g<br />

between ~0.32 <strong>and</strong> ~ 0.81 ppm <strong>and</strong><br />

~3×10 -2 <strong>and</strong> ~8×10 -2 ppm, respectively.<br />

At Nesjavellir, the HCl <strong>in</strong> the aquifer<br />

w<strong>at</strong>ers is <strong>in</strong> the range ~ 3×10 -5 - 5×10 -5<br />

pm for the selected <strong>wells</strong>.<br />

There is a vari<strong>at</strong>ion <strong>in</strong> HCl<br />

concentr<strong>at</strong>ions <strong>in</strong> the Olkaria well<br />

fluids of about an order of magnitude<br />

with the exception of fluid from one<br />

well, well OW-34 which has a slightly<br />

higher HCl concentr<strong>at</strong>ion, than other<br />

Olkaria well fluids (Figure 18). At<br />

Olkaria, the vari<strong>at</strong>ions <strong>in</strong> the HCl<br />

concentr<strong>at</strong>ion can be <strong>at</strong>tributed to the<br />

24


vari<strong>at</strong>ion <strong>in</strong> chloride concentr<strong>at</strong>ion, pH<br />

<strong>and</strong> temper<strong>at</strong>ure. The chloride<br />

concentr<strong>at</strong>ion <strong>in</strong> the aquifer w<strong>at</strong>ers <strong>at</strong><br />

Olkaria varies between ~ 40 ppm <strong>and</strong> ~<br />

2000 ppm <strong>in</strong> the aquifer <strong>and</strong> the aquifer<br />

pH from ~ 6 to 8. Aquifer temper<strong>at</strong>ures<br />

vary between ~ 200° <strong>and</strong> 300°C. The<br />

wide range <strong>in</strong> the concentr<strong>at</strong>ions of<br />

chloride, pH <strong>and</strong> temper<strong>at</strong>ures <strong>at</strong><br />

Olkaria contribute to the wide range of<br />

HCl aq concentr<strong>at</strong>ions. At Nesjavellir,<br />

HCl <strong>in</strong> the aquifer fluids is very low due<br />

to the very low chloride <strong>in</strong> the aquifer<br />

w<strong>at</strong>er, ~ 150 ppm <strong>and</strong> a pH of the<br />

aquifer fluids of ~ 8. Aquifer<br />

temper<strong>at</strong>ures <strong>at</strong> Nesjavellir range<br />

between ~ 270° <strong>and</strong> 300°C for the <strong>wells</strong><br />

studied.<br />

LogHCl aqueous (ppm)<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

0.0001<br />

1E-005<br />

Olkaria East<br />

Olkaria West<br />

Olkaria North East<br />

Olkaria Domes<br />

Reykjanes<br />

Svartsengi<br />

Nesjavellir<br />

The high HCl concentr<strong>at</strong>ions <strong>in</strong> the<br />

aquifer w<strong>at</strong>er <strong>in</strong> Reykjanes <strong>and</strong><br />

Svartsengi are very high compared to<br />

those of Olkaria <strong>and</strong> Nesjavellir. The<br />

high HCl concentr<strong>at</strong>ion <strong>in</strong> the aquifer<br />

w<strong>at</strong>er <strong>at</strong> Reykjanes <strong>and</strong> Svartsengi is a result of<br />

high chloride concentr<strong>at</strong>ions <strong>and</strong> low pH <strong>in</strong> the<br />

aquifer w<strong>at</strong>ers of these two fields. The chloride<br />

concentr<strong>at</strong>ions <strong>in</strong> the w<strong>at</strong>ers of these two fields<br />

are ~ 20,000 ppm <strong>and</strong> ~ 13,000 respectively <strong>and</strong><br />

the pH of the aquifer w<strong>at</strong>er <strong>in</strong> the range of ~ 5.1<br />

to ~5.6. Temper<strong>at</strong>ures <strong>in</strong> Reykjanes range<br />

between 250° <strong>and</strong> 320°C. At Svartsengi the<br />

temper<strong>at</strong>ures are almost homogenous, be<strong>in</strong>g <strong>in</strong><br />

the narrow range of 235° <strong>and</strong> 240°C.<br />

180 200 220 240 260 280 300<br />

Temper<strong>at</strong>ures °C<br />

FIGURE 20: Aquifer w<strong>at</strong>er HCl concentr<strong>at</strong>ions vs.<br />

aquifer temper<strong>at</strong>ure (°C) of selected <strong>wells</strong><br />

<strong>in</strong> the study areas<br />

100<br />

10<br />

1<br />

0.1<br />

OW-901 Olkaria Domes<br />

OW-301 Olkaria West<br />

OW-306 Olkaria West<br />

OW-20 Olkaria East<br />

OW-30 Olkaria East<br />

OW-714 Olkaria North East<br />

OW-34 Olkaria East<br />

OW-709 Olkaria North East<br />

SV-05 Svartsengi<br />

SV-11 Svartsengi<br />

RN-10 Reykjanes<br />

RN-11 Reykjanes<br />

NJ-14 Nesjavellir<br />

NJ-22 Nesjavellir<br />

Upon boil<strong>in</strong>g the dissolved HCl is partly<br />

transferred to the steam th<strong>at</strong> forms. The quantity<br />

transferred is affected by several parameters.<br />

The most important ones <strong>in</strong>clude changes <strong>in</strong> pH,<br />

which occur dur<strong>in</strong>g boil<strong>in</strong>g, <strong>and</strong> the temper<strong>at</strong>ure<br />

of the fluid mixture. Figure 21 shows how HCl<br />

concentr<strong>at</strong>ions <strong>in</strong> steam decrease dur<strong>in</strong>g one step<br />

adiab<strong>at</strong>ic boil<strong>in</strong>g for all the <strong>wells</strong> considered <strong>in</strong><br />

the present study.<br />

LogHCl <strong>in</strong> vapour (ppm)<br />

0.01<br />

0.001<br />

0.0001<br />

1E-005<br />

1E-006<br />

1E-007<br />

1E-008<br />

1E-009<br />

Early steam is somewh<strong>at</strong> enriched <strong>in</strong> HCl<br />

rel<strong>at</strong>ive to the source aquifer w<strong>at</strong>er. Upon<br />

cont<strong>in</strong>ued boil<strong>in</strong>g the cause of the decrease is<br />

largely due to an <strong>in</strong>crease <strong>in</strong> pH upon boil<strong>in</strong>g<br />

<strong>and</strong> by changes <strong>in</strong> the value taken by the HCl<br />

distribution coefficient. Because it is<br />

80 120 160 200 240 280 320<br />

Temper<strong>at</strong>ure °C<br />

FIGURE 21: HCl <strong>in</strong> vapour formed by several<br />

steps of s<strong>in</strong>gle-step adiab<strong>at</strong>ic boil<strong>in</strong>g of<br />

selected <strong>wells</strong> <strong>in</strong> the study areas<br />

temper<strong>at</strong>ure dependent the distribution coefficient, is affected by the decrease <strong>in</strong> temper<strong>at</strong>ure when the<br />

fluids cool by adiab<strong>at</strong>ic steam loss. Changes <strong>in</strong> the Cl content of the w<strong>at</strong>er, which are caused by steam<br />

form<strong>at</strong>ion, have small effect. The HCl concentr<strong>at</strong>ions <strong>in</strong> steam are ~ 10 3 -10 5 times more for Reykjanes<br />

1E-010<br />

25


LogHCl <strong>in</strong> vapour (ppm)<br />

100<br />

10<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

0.0001<br />

1E-005<br />

1E-006<br />

1E-007<br />

1E-008<br />

1E-009<br />

1E-010<br />

OW-901 Olkaria Domes<br />

OW-301 Olkaria West<br />

OW-306 Olkaria West<br />

OW-20 Olkaria East<br />

OW-30 Olkaria East<br />

OW-714 Olkaria North East<br />

OW-34 Olkaria East<br />

OW-709 Olkaria North East<br />

SV-05 Svartsengi<br />

SV-11 Svartsengi<br />

RN-10 Reykjanes<br />

RN-11 Reykjanes<br />

NJ-14 Nesjavellir<br />

NJ-22 Nesjavellir<br />

5 6 7 8 9 10<br />

pH<br />

FIGURE 22: HCl <strong>in</strong> vapour with changes <strong>in</strong> pH<br />

upon several steps of s<strong>in</strong>gle-step adiab<strong>at</strong>ic<br />

boil<strong>in</strong>g of selected <strong>wells</strong> <strong>in</strong> the study areas.<br />

The boil<strong>in</strong>g is from the respective aquifer<br />

temper<strong>at</strong>ure (See Table 4 <strong>in</strong> Appendix A)<br />

well fluids than the well fluids <strong>in</strong> Olkaria <strong>and</strong><br />

Nesjavellir. At Svartsengi they are ~ 10 2 -10 4<br />

times higher than <strong>in</strong> the Olkaria <strong>and</strong> Nesjavellir<br />

w<strong>at</strong>ers.<br />

Changes <strong>in</strong> pH are affected by the concentr<strong>at</strong>ions<br />

of carbon dioxide <strong>in</strong> the <strong>in</strong>itial aquifer w<strong>at</strong>er <strong>and</strong><br />

<strong>in</strong> the Olkaria well w<strong>at</strong>ers, the CO 2<br />

concentr<strong>at</strong>ions are variable. The Olkaria well<br />

w<strong>at</strong>ers have a rel<strong>at</strong>ively high <strong>in</strong>itial pH <strong>in</strong> the<br />

aquifer except for <strong>wells</strong> th<strong>at</strong> are <strong>in</strong> the Olkaria<br />

West sector. Upon boil<strong>in</strong>g by steam loss with<br />

decrease <strong>in</strong> temper<strong>at</strong>ure, the <strong>in</strong>crease <strong>in</strong> pH is<br />

much gre<strong>at</strong>er for <strong>wells</strong> with a high <strong>in</strong>itial<br />

concentr<strong>at</strong>ion of CO 2 <strong>in</strong> the w<strong>at</strong>er <strong>in</strong> Olkaria.<br />

Figure 22 shows decrease <strong>in</strong> the HCl<br />

concentr<strong>at</strong>ions with <strong>in</strong>crease <strong>in</strong> pH upon<br />

adiab<strong>at</strong>ic boil<strong>in</strong>g.<br />

The large <strong>in</strong>crease <strong>in</strong> pH <strong>in</strong> the Olkaria well<br />

w<strong>at</strong>ers with decrease <strong>in</strong> temper<strong>at</strong>ure, contributes<br />

to the low concentr<strong>at</strong>ions of HCl <strong>in</strong> the steam<br />

when the w<strong>at</strong>er boils. The Reykjanes, Svartsengi<br />

<strong>and</strong> Nesjavellir aquifer w<strong>at</strong>ers vary less <strong>in</strong> CO 2<br />

gas concentr<strong>at</strong>ion than the w<strong>at</strong>ers of the Olkaria. The pH of aquifer w<strong>at</strong>er <strong>in</strong> Reykjanes <strong>and</strong> Svartsengi<br />

are similar while <strong>at</strong> Nesjavellir the aquifer pH is higher. The rel<strong>at</strong>ive <strong>in</strong>crease <strong>in</strong> pH with decrease <strong>in</strong><br />

temper<strong>at</strong>ure is gradual <strong>in</strong> Reykjanes, Svartsengi <strong>and</strong> Nesjavellir <strong>wells</strong> upon steam loss. The trends for<br />

decrease <strong>in</strong> HCl concentr<strong>at</strong>ions, when HCl partitions <strong>in</strong>to steam, are similar to those of Olkaria aquifer<br />

fluids. As the w<strong>at</strong>ers cool by steam loss, HCl tends to be reta<strong>in</strong>ed more <strong>in</strong> the liquid <strong>and</strong> less partitions<br />

the steam.<br />

The concentr<strong>at</strong>ions of HCl <strong>in</strong> steam collected <strong>at</strong> the wellheads of selected Olkaria, Reykjanes,<br />

Svartsengi <strong>and</strong> Nesjavellir <strong>wells</strong> are shown <strong>in</strong> Table 5 of Appendix A. HCl concentr<strong>at</strong>ions <strong>in</strong> Olkaria<br />

<strong>and</strong> Nesjavellir are very low 3×10 -8 - 3×10 -6 ppm <strong>and</strong> 5×10 -6 - 1×10 -5 ppm, respectively. At Svartsengi<br />

<strong>and</strong> Reykjanes these are 6×10 -4 -1.5×10 -3 ppm <strong>and</strong> 2×10 -1 -7×10 -1 ppm, respectively. The concentr<strong>at</strong>ions<br />

of HCl <strong>in</strong> the separ<strong>at</strong>ed steam conveyed to the power plant <strong>at</strong> Olkaria are very low, 10 -8 -10 -6 ppm. At<br />

Svartsengi they are about 5×10 -5 - 10 -4 ppm but as high as 0.1 ppm <strong>at</strong> Reykjanes. The high values <strong>at</strong><br />

Reykjanes are due to the high Cl content of the aquifer w<strong>at</strong>er <strong>and</strong>, <strong>in</strong> particular the high pressures <strong>in</strong><br />

the steam separ<strong>at</strong>ors. All these concentr<strong>at</strong>ions are considerable lower than measured Cl concentr<strong>at</strong>ions<br />

<strong>in</strong> the steam of many vapour-dom<strong>in</strong><strong>at</strong>ed geothermal systems e.g. <strong>in</strong> dry steam from well KG-12 <strong>at</strong><br />

Krafla, Icel<strong>and</strong> (Truesdell, 1991). Yet, corrosion <strong>at</strong> Reykjanes due to condens<strong>at</strong>ion of high pressure<br />

steam may be a problem. Condens<strong>at</strong>ion need not occur dur<strong>in</strong>g conductive he<strong>at</strong> loss. At temper<strong>at</strong>ures<br />

higher than th<strong>at</strong> correspond<strong>in</strong>g to maximum steam enthalpy, condens<strong>at</strong>ion will occur by pressure drop<br />

to the maximum enthalpy value. If the discharge is almost dry steam <strong>corrosive</strong> liquid w<strong>at</strong>er could be<br />

produced <strong>in</strong> this way. At Reykjanes corrosion <strong>in</strong> pipel<strong>in</strong>es due to production of HCl may not occur<br />

due to form<strong>at</strong>ion of stable sulphide scales <strong>and</strong> the HCl could be scrubbed. The quantity of this scale is<br />

limited except from sal<strong>in</strong>e w<strong>at</strong>ers. Stable sulphide scale form<strong>at</strong>ion <strong>at</strong> Reykjanes has been reported by<br />

Hardardóttir et al. (2001, 2004). In steam pipel<strong>in</strong>es made of carbon steel, th<strong>in</strong> co<strong>at</strong><strong>in</strong>gs of stable<br />

sulphide, carbon<strong>at</strong>es, silic<strong>at</strong>es or metastable sulphide phases are known to form a protective co<strong>at</strong><strong>in</strong>g<br />

th<strong>at</strong> tends to prevent corrosion of cas<strong>in</strong>g <strong>and</strong> other m<strong>at</strong>erial th<strong>at</strong> would otherwise be a problem due to<br />

CO 2 <strong>and</strong> HCl. Other scales th<strong>at</strong> form protective co<strong>at</strong><strong>in</strong>g are carbon<strong>at</strong>es. At sufficiently low pH <strong>in</strong><br />

condens<strong>at</strong>es conta<strong>in</strong><strong>in</strong>g HCl, phases of protective sulphides <strong>and</strong> carbon<strong>at</strong>es can become unstable <strong>and</strong><br />

dissolve <strong>and</strong> corrosion can be <strong>in</strong>duced.<br />

26


A 240°C a steam cap overlies the liquid-dom<strong>in</strong><strong>at</strong>ed reservoir <strong>in</strong> Olkaria East <strong>and</strong> a similar steam cap,<br />

also <strong>at</strong> ~240°C has formed <strong>in</strong> Svartsengi <strong>in</strong> response to pressure drawdown caused by the exploit<strong>at</strong>ion<br />

of the reservoir. The HCl concentr<strong>at</strong>ions <strong>in</strong> the steam caps of these two fields are expected to be some<br />

10 -3 <strong>and</strong> 10 -1 ppm Cl <strong>in</strong> Olkaria East <strong>and</strong> Svartsengi, respectively. If all the Cl is from HCl <strong>and</strong> tak<strong>in</strong>g<br />

the acid to be 100 % dissoci<strong>at</strong>ed, a concentr<strong>at</strong>ion of 0.1 ppm Cl yields a pH of 5.5. Chloride<br />

concentr<strong>at</strong>ions measured <strong>in</strong> the condens<strong>at</strong>e of one dry steam well <strong>at</strong> Svartsengi is about 0.6 ppm <strong>and</strong><br />

the condens<strong>at</strong>e pH of 4.3. At Svartsengi, the pipes convey<strong>in</strong>g steam from one of the <strong>wells</strong> th<strong>at</strong> tap dry<br />

steam from the steam cap had to be replaced due to corrosion (Thórhallsson, 2005, pers comm.). It<br />

seems unlikely th<strong>at</strong> HCl is the ma<strong>in</strong> cause of corrosion <strong>in</strong> view of the pH value produced by 0.1 ppm<br />

HCl <strong>in</strong> the steam. CO 2 is a more likely c<strong>and</strong>id<strong>at</strong>e. Where severe corrosion which has been <strong>at</strong>tributed<br />

to HCl has occurred, such as <strong>at</strong> Krafla, Icel<strong>and</strong> (Truesdell, 1991) the Geysers, USA (Trusedell <strong>and</strong><br />

Haizlip, 1990) <strong>and</strong> Larderello, Italy (Allegr<strong>in</strong>i et al., 1970) concentr<strong>at</strong>ions as high as 100 ppm <strong>in</strong> steam<br />

have been reported giv<strong>in</strong>g a pH of 2.5 <strong>in</strong> the steam condens<strong>at</strong>e. A possible way of scrubb<strong>in</strong>g out the<br />

HCl <strong>in</strong> the high pressure steam <strong>at</strong> Reykjanes <strong>and</strong> Svartsengi is to pass it through a basic solution such<br />

as a NaOH-solution.<br />

27


7. SCALING IN WELLS AND SURFACE INSTALLATIONS<br />

7.1 Theoretical aspects of calcite scale form<strong>at</strong>ion<br />

Calcite is abundant as a secondary<br />

m<strong>in</strong>eral <strong>in</strong> many hydrothermal systems.<br />

Many studies have <strong>in</strong>dic<strong>at</strong>ed th<strong>at</strong> >100˚<br />

C w<strong>at</strong>ers are close to be<strong>in</strong>g calcite<br />

s<strong>at</strong>ur<strong>at</strong>ed (e.g. Ellis <strong>and</strong> Mahon, 1977;<br />

Arnórsson, 1978). In some exploited<br />

fields, w<strong>at</strong>er <strong>in</strong> produc<strong>in</strong>g aquifers may<br />

be calcite unders<strong>at</strong>ur<strong>at</strong>ed. The<br />

calcul<strong>at</strong>ed st<strong>at</strong>e of calcite s<strong>at</strong>ur<strong>at</strong>ion <strong>in</strong><br />

the <strong>in</strong>itial aquifer w<strong>at</strong>er of <strong>wells</strong> <strong>at</strong><br />

Olkaria, Reykjanes, Svartsengi <strong>and</strong><br />

Nesjavellir is presented <strong>in</strong> Figure 23.<br />

Calcite S<strong>at</strong>ur<strong>at</strong>ion Index<br />

2<br />

1<br />

0<br />

Olkaria East<br />

Olkaria West<br />

Olkaria North East<br />

Olkaria Domes<br />

Reykjanes<br />

Svartsengi<br />

Nesjavellir<br />

The d<strong>at</strong>a show some sc<strong>at</strong>ter. This is<br />

more likely due to errors <strong>in</strong> calcul<strong>at</strong><strong>in</strong>g<br />

the calcite activity product r<strong>at</strong>her than a<br />

reflection of departure from<br />

equilibrium. In calcul<strong>at</strong><strong>in</strong>g the aquifer<br />

w<strong>at</strong>er composition with the aid of the<br />

WATCH speci<strong>at</strong>ion program<br />

(Arnórsson et al., 1982; Bjarnasson,<br />

1994) Version 2.1A, it was assumed<br />

th<strong>at</strong> excess well discharge enthalpy was<br />

caused by phase segreg<strong>at</strong>ion <strong>in</strong><br />

produc<strong>in</strong>g aquifers <strong>and</strong> th<strong>at</strong> no<br />

-1<br />

-2<br />

180 200 220 240 260 280 300<br />

Temper<strong>at</strong>ure °C<br />

FIGURE 23: Aquifer temper<strong>at</strong>ure vs calcite s<strong>at</strong>ur<strong>at</strong>ion<br />

for selected <strong>wells</strong> <strong>at</strong> Olkaria, Reykjanes, Svartsengi<br />

<strong>and</strong> Nesjavellir<br />

equilibrium steam was present. If such steam is present <strong>in</strong> the <strong>in</strong>itial aquifer fluid, the calcul<strong>at</strong>ed<br />

aquifer w<strong>at</strong>er pH is too low <strong>and</strong> the aquifer w<strong>at</strong>er CO 2 concentr<strong>at</strong>ion too high with the result th<strong>at</strong> too<br />

low values are obta<strong>in</strong>ed for the calcite s<strong>at</strong>ur<strong>at</strong>ion <strong>in</strong>dex (SI cal ), i.e. calcite unders<strong>at</strong>ur<strong>at</strong>ion, if the <strong>in</strong>itial<br />

aquifer w<strong>at</strong>er is truly just calcite s<strong>at</strong>ur<strong>at</strong>ed. Also, some calcium may have been removed from the<br />

aquifer w<strong>at</strong>er upon its boil<strong>in</strong>g as a consequence of calcite precipit<strong>at</strong>ion lead<strong>in</strong>g to a low calcium<br />

concentr<strong>at</strong>ion <strong>in</strong> the w<strong>at</strong>er samples collected <strong>at</strong> the wellhead rel<strong>at</strong>ive to the <strong>in</strong>itial aquifer w<strong>at</strong>er. This<br />

effect will also tend to give low values for SI cal . Removal of calcium from solution by calcite<br />

precipit<strong>at</strong>ion is expected to affect the calcul<strong>at</strong>ed SI cal of the dilute w<strong>at</strong>ers significantly <strong>at</strong> Olkaria <strong>and</strong><br />

Nesjavellir because of their low calcium content but not the calcium-rich sal<strong>in</strong>e w<strong>at</strong>ers <strong>at</strong> Reykjanes<br />

<strong>and</strong> Svartsengi. Other errors th<strong>at</strong> may contribute significantly to departure from calcul<strong>at</strong>ed calcite<br />

equilibrium <strong>in</strong>clude erroneous values obta<strong>in</strong>ed <strong>in</strong> the measurement of pH of w<strong>at</strong>er samples <strong>and</strong> by<br />

contam<strong>in</strong><strong>at</strong>ion of these samples by condensed steam. Such contam<strong>in</strong><strong>at</strong>ion is particularly prone to occur<br />

when sampl<strong>in</strong>g w<strong>at</strong>er from <strong>wells</strong> with high discharge enthalpy, such as well OW-34 <strong>at</strong> Olkaria.<br />

Figure 24 shows how the calcul<strong>at</strong>ed s<strong>at</strong>ur<strong>at</strong>ion <strong>in</strong>dex for calcite varies dur<strong>in</strong>g adiab<strong>at</strong>ic boil<strong>in</strong>g of<br />

aquifer w<strong>at</strong>er of selected <strong>wells</strong> from the study area. The shapes of the SI cal curves are more accur<strong>at</strong>ely<br />

def<strong>in</strong>ed than the absolute SI cal value <strong>at</strong> each temper<strong>at</strong>ure. The effect of depressuriz<strong>at</strong>ion boil<strong>in</strong>g upon<br />

the calcite s<strong>at</strong>ur<strong>at</strong>ion st<strong>at</strong>e is essentially twofold. Firstly, the w<strong>at</strong>er is degassed with respect to CO 2 ,<br />

which leads to an <strong>in</strong>crease <strong>in</strong> the pH of the boil<strong>in</strong>g w<strong>at</strong>er (Figure 25) which <strong>in</strong> turn br<strong>in</strong>gs about an<br />

<strong>in</strong>crease <strong>in</strong> the carbon<strong>at</strong>e ion concentr<strong>at</strong>ion <strong>and</strong> hence <strong>in</strong> the [Ca +2 ][CO 3 -2 ] solubility product.<br />

Secondly, depressuriz<strong>at</strong>ion boil<strong>in</strong>g causes cool<strong>in</strong>g of the w<strong>at</strong>er. The solubility constant for calcite<br />

<strong>in</strong>creases with decreas<strong>in</strong>g temper<strong>at</strong>ure. Degass<strong>in</strong>g by pressuriz<strong>at</strong>ion boil<strong>in</strong>g causes an <strong>in</strong>itially calcite<br />

s<strong>at</strong>ur<strong>at</strong>ed solution to become supers<strong>at</strong>ur<strong>at</strong>ed whereas the cool<strong>in</strong>g by this boil<strong>in</strong>g has the opposite<br />

effect.<br />

28


The solubility of CO 2 <strong>in</strong> w<strong>at</strong>er changes<br />

with temper<strong>at</strong>ure, be<strong>in</strong>g <strong>at</strong> m<strong>in</strong>imum<br />

around 200°C. Degass<strong>in</strong>g dur<strong>in</strong>g the<br />

early stages of boil<strong>in</strong>g is accord<strong>in</strong>gly<br />

most effective for aquifer w<strong>at</strong>ers with<br />

temper<strong>at</strong>ures around 200°C. For aquifer<br />

w<strong>at</strong>ers with temper<strong>at</strong>ures around 300˚C,<br />

or higher, early degass<strong>in</strong>g with respect<br />

to CO 2 is slow due to its rel<strong>at</strong>ively high<br />

solubility <strong>in</strong> w<strong>at</strong>er <strong>at</strong> these high<br />

temper<strong>at</strong>ures.<br />

2<br />

1<br />

OW-30 Olkaria East<br />

OW-34 Olkaria East<br />

OW-306 Olkaria West<br />

OW-301 Olkaria East<br />

OW-714 Olkaria North East<br />

OW-709 Olkaria North East<br />

OW-20 Olkaria East<br />

OW-901 Olkaria Domes<br />

OW-304D Olkaria West<br />

SV-05 Svartsengi<br />

SV-11 Svartsengi<br />

RN-10 Reykjanes<br />

RN-11 Reykjanes<br />

NJ-14 Nesjavellir<br />

NJ-22 Nesjavellir<br />

The shape of the curves <strong>in</strong> Figure 24<br />

can essentially be expla<strong>in</strong>ed by a<br />

comb<strong>in</strong><strong>at</strong>ion of three factors, (1) CO 2<br />

degass<strong>in</strong>g dur<strong>in</strong>g boil<strong>in</strong>g, (2) the<br />

solubility of CO 2 <strong>in</strong> w<strong>at</strong>er as a function<br />

of temper<strong>at</strong>ure <strong>and</strong> (3) the retrograde<br />

solubility of calcite with respect to<br />

temper<strong>at</strong>ure. The concentr<strong>at</strong>ion of CO 2<br />

<strong>in</strong> the <strong>in</strong>itial aquifer fluid also has an<br />

<strong>in</strong>fluence. Aquifer w<strong>at</strong>ers with<br />

temper<strong>at</strong>ures below about 280˚ C show<br />

an <strong>in</strong>crease <strong>in</strong> the value of SI cal dur<strong>in</strong>g<br />

the early stages of boil<strong>in</strong>g <strong>and</strong> gre<strong>at</strong>er<br />

the lower the aquifer temper<strong>at</strong>ure. Such<br />

an <strong>in</strong>crease is not observed for the<br />

~300˚ C aquifer w<strong>at</strong>ers <strong>at</strong> Nesjavellir.<br />

Maximum SI cal values are <strong>at</strong>ta<strong>in</strong>ed some<br />

20-40 °C below the <strong>in</strong>itial aquifer<br />

temper<strong>at</strong>ure. At maximum the w<strong>at</strong>ers<br />

have largely been degassed <strong>and</strong> <strong>at</strong><br />

temper<strong>at</strong>ures below the maximum, SI cal<br />

Calcite S<strong>at</strong>ur<strong>at</strong>ion Index<br />

0<br />

-1<br />

-2<br />

-3<br />

80 120 160 200 240 280 320<br />

Temper<strong>at</strong>ure °C<br />

FIGURE 24: Changes <strong>in</strong> calcite s<strong>at</strong>ur<strong>at</strong>ion produced<br />

by several steps of s<strong>in</strong>gle-step adiab<strong>at</strong>ic steam loss<br />

for selected well fluids <strong>at</strong> Olkaria, Reykjanes,<br />

Svartsengi <strong>and</strong> Nesjavellir<br />

values become successively lower due to <strong>in</strong>creas<strong>in</strong>g calcite solubility with decreas<strong>in</strong>g temper<strong>at</strong>ure. For<br />

the rel<strong>at</strong>ively hot aquifer w<strong>at</strong>ers <strong>at</strong> Nesjavellir, SI cal values decrease progressively with decreas<strong>in</strong>g<br />

temper<strong>at</strong>ure due to the comb<strong>in</strong>ed effects of <strong>in</strong>creas<strong>in</strong>g calcite solubility, limited CO 2 degass<strong>in</strong>g dur<strong>in</strong>g<br />

the early stages of boil<strong>in</strong>g due to the rel<strong>at</strong>ively high CO 2 solubility <strong>in</strong> w<strong>at</strong>er <strong>at</strong> the high temper<strong>at</strong>ures<br />

<strong>and</strong> rel<strong>at</strong>ively low CO 2 concentr<strong>at</strong>ions <strong>in</strong> the <strong>in</strong>itial aquifer w<strong>at</strong>ers. Cont<strong>in</strong>ued high SI cal values for<br />

<strong>wells</strong> OW-301 <strong>and</strong> OW-304 dur<strong>in</strong>g boil<strong>in</strong>g all the way down to <strong>at</strong>mospheric pressure is due to the<br />

high CO 2 content of the <strong>in</strong>itial aquifer fluid which requires extensive steam form<strong>at</strong>ion for extensive<br />

degass<strong>in</strong>g of the aquifer w<strong>at</strong>er.<br />

The results discussed above <strong>and</strong> presented <strong>in</strong> Figures 23 to 25 assume adiab<strong>at</strong>ic boil<strong>in</strong>g <strong>and</strong> the<br />

equilibrium distribution with respect to CO 2 is <strong>at</strong>ta<strong>in</strong>ed between the liquid w<strong>at</strong>er <strong>and</strong> steam phases.<br />

Such equilibrium may not be <strong>at</strong>ta<strong>in</strong>ed due to rapid steam form<strong>at</strong>ion <strong>and</strong> <strong>in</strong>sufficient time for the CO 2 to<br />

be transferred from the boil<strong>in</strong>g w<strong>at</strong>er to the form<strong>in</strong>g steam which is required for <strong>at</strong>ta<strong>in</strong>ment of CO 2<br />

distribution equilibrium between the fluid phases. Incomplete CO 2 transfer would change the shape of<br />

the curves <strong>in</strong> Figure 24 <strong>in</strong> such a way th<strong>at</strong> the maximum would be depressed <strong>and</strong> the overall change <strong>in</strong><br />

SI cal would decrease more gradually with decreas<strong>in</strong>g temper<strong>at</strong>ure.<br />

Calcite scale form<strong>at</strong>ion is not expected to be a problem <strong>at</strong> Nesjavellir <strong>and</strong> Olkaria East, Olkaria, the<br />

reason be<strong>in</strong>g the dilute n<strong>at</strong>ure of the w<strong>at</strong>ers <strong>and</strong> the high temper<strong>at</strong>ures <strong>at</strong> Nesjavellir. However, <strong>in</strong><br />

Olkaria West calcite scale form<strong>at</strong>ion <strong>in</strong> <strong>wells</strong> may be a problem, depend<strong>in</strong>g on the depth level of first<br />

boil<strong>in</strong>g. If it is with<strong>in</strong> the well it may be rel<strong>at</strong>ively severe but not so if extensive boil<strong>in</strong>g starts <strong>in</strong><br />

29


pH on adiab<strong>at</strong>ic steam loss<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

OW-901 Olkaria Domes<br />

OW-301 Olkaria West<br />

OW-306 Olkaria West<br />

OW-20 Olkaria East<br />

OW-30 Olkaria East<br />

OW-714 Olkaria North East<br />

OW-34 Olkaria East<br />

OW-709 Olkaria North East<br />

OW-304D Olkaria West<br />

SV-05 Svartsengi<br />

SV-11 Svartsengi<br />

RN-10 Reykjanes<br />

RN-11 Reykjanes<br />

NJ-14 Nesjavellir<br />

NJ-22 Nesjavellir<br />

80 120 160 200 240 280 320<br />

Temper<strong>at</strong>ure °C<br />

FIGURE 25: Calcul<strong>at</strong>ed aquifer w<strong>at</strong>er pH for selected<br />

Olkaria, Reykjanes, Svartsengi <strong>and</strong> Nesjavellir <strong>wells</strong><br />

<strong>and</strong> changes <strong>in</strong> pH dur<strong>in</strong>g several steps of<br />

s<strong>in</strong>gle-step adiab<strong>at</strong>ic steam loss<br />

produc<strong>in</strong>g aquifers because the pore<br />

spaces <strong>in</strong> the rock are expected to be<br />

able to cope much longer with calcite<br />

precipit<strong>at</strong>ion than the wellbore (see<br />

Arnórsson, 1978). The extent of CO 2<br />

degass<strong>in</strong>g is also important it is<br />

anticip<strong>at</strong>ed th<strong>at</strong> calcite <strong>scal<strong>in</strong>g</strong> will be<br />

less for good producers than for poor<br />

<strong>wells</strong>.<br />

At Svartsengi calcite <strong>scal<strong>in</strong>g</strong> was<br />

troublesome <strong>in</strong> shallow <strong>wells</strong> dur<strong>in</strong>g<br />

the early years of production when the<br />

first level of boil<strong>in</strong>g occurred with<strong>in</strong><br />

the produc<strong>in</strong>g <strong>wells</strong>. Pressure<br />

drawdown <strong>in</strong> the reservoir by<br />

exploit<strong>at</strong>ion caused extensive boil<strong>in</strong>g <strong>in</strong><br />

produc<strong>in</strong>g aquifers of these shallow<br />

<strong>wells</strong> with the result th<strong>at</strong> calcite scale<br />

form<strong>at</strong>ion was no longer observed. It is<br />

th<strong>at</strong> Calcite is still considered to be<br />

deposited but <strong>in</strong> the aquifer outside the<br />

<strong>wells</strong>. At Reykjanes calcite <strong>scal<strong>in</strong>g</strong> has<br />

not been observed as a problem. The<br />

cause is considered to be high reservoir<br />

temper<strong>at</strong>ures <strong>and</strong> high yield of <strong>wells</strong><br />

which tends to cause <strong>in</strong>complete CO 2<br />

degass<strong>in</strong>g dur<strong>in</strong>g boil<strong>in</strong>g.<br />

7.2 Scal<strong>in</strong>g tests <strong>at</strong> Nesjavellir<br />

It is common practice <strong>in</strong> the geothermal <strong>in</strong>dustry to carry out <strong>scal<strong>in</strong>g</strong> <strong>and</strong> corrosion tests to aid m<strong>at</strong>erial<br />

selection <strong>and</strong> quantify the r<strong>at</strong>e of scale deposition which is not possible theoretically. This <strong>in</strong>volves<br />

<strong>in</strong>sertion of pl<strong>at</strong>es <strong>in</strong>to the stream of the geothermal fluids <strong>and</strong> the study of their <strong>corrosive</strong> n<strong>at</strong>ure <strong>and</strong><br />

any deposits th<strong>at</strong> may form on the pl<strong>at</strong>es. The present <strong>scal<strong>in</strong>g</strong> study <strong>at</strong> Nesjavellir <strong>in</strong>volved the<br />

<strong>in</strong>sertion of sta<strong>in</strong>less steel coupons <strong>in</strong>to the two phase flow pipel<strong>in</strong>es <strong>at</strong> two wellheads <strong>and</strong> <strong>in</strong>to the<br />

stream of separ<strong>at</strong>ed w<strong>at</strong>er upstream <strong>and</strong> downstream of a retention tank. This w<strong>at</strong>er is significantly<br />

supers<strong>at</strong>ur<strong>at</strong>ed with respect to monomeric silica (i.e. it is present mostly as s<strong>in</strong>gle SiO 2 molecules).<br />

Monomeric silica grows on surfaces which act as active sites as mechanism of silica deposition.<br />

Downstream of the retention tank, the w<strong>at</strong>er is diposed of <strong>in</strong>to an <strong>in</strong>jection well. In the tank most of<br />

the silica <strong>in</strong> excess of amorphous silica solubility polymerizes. Polymeristion goes through a stage<br />

process i.e. monomer → dimers → trimers → tetramers → polymers → gel etc. Polymeris<strong>at</strong>ion<br />

cont<strong>in</strong>ues until silica s<strong>at</strong>ur<strong>at</strong>ion is reached. It is known th<strong>at</strong> (Yanagase et al., 1970; Rothbaum et al.,<br />

1979) fully polymerized silica precipit<strong>at</strong>es much more slowly from solution than monomeric silica, <strong>at</strong><br />

least from dilute w<strong>at</strong>er as such th<strong>at</strong> <strong>at</strong> Nesjavellir. The purpose of the retention tank is thus to reduce<br />

amorphous silica deposition <strong>in</strong> the <strong>in</strong>jection well <strong>and</strong> the receiv<strong>in</strong>g aquifers. The purpose of the <strong>scal<strong>in</strong>g</strong><br />

tests up <strong>and</strong> downstream from the retention tank was thus to observe the extent to which silica<br />

polymeris<strong>at</strong>ion reduced the r<strong>at</strong>e of amorphous silica precipit<strong>at</strong>ion. The purpose of the tests <strong>at</strong> the<br />

wellheads was pr<strong>in</strong>cipally to observe the r<strong>at</strong>e <strong>and</strong> n<strong>at</strong>ure of sulphide scale form<strong>at</strong>ion <strong>and</strong> to identify<br />

whether phases other than sulphides formed <strong>in</strong> significant amounts.<br />

A simplified process flow diagram for the Nesjavellir co-gener<strong>at</strong>ion power plant is shown <strong>in</strong> Figure<br />

26. The diagram shows the process flow from the geothermal <strong>wells</strong> be<strong>in</strong>g separ<strong>at</strong>ed <strong>in</strong>to steam <strong>and</strong><br />

w<strong>at</strong>er <strong>at</strong> ~ 14 bar absolute pressure <strong>in</strong> a central separ<strong>at</strong>ion st<strong>at</strong>ion. The steam is piped to power plant<br />

30


where it passes<br />

through mist<br />

elim<strong>in</strong><strong>at</strong>ors. The<br />

exhaust steam from the<br />

turb<strong>in</strong>es is used to<br />

prehe<strong>at</strong> fresh w<strong>at</strong>er<br />

while the w<strong>at</strong>er from<br />

the steam separ<strong>at</strong>ors<br />

he<strong>at</strong>s the prehe<strong>at</strong>ed<br />

w<strong>at</strong>er to the<br />

temper<strong>at</strong>ure required<br />

for the district he<strong>at</strong><strong>in</strong>g<br />

system.<br />

As the cold ground<br />

w<strong>at</strong>er is s<strong>at</strong>ur<strong>at</strong>ed with<br />

dissolved oxygen <strong>and</strong><br />

becomes <strong>corrosive</strong><br />

when he<strong>at</strong>ed, the<br />

he<strong>at</strong>ed w<strong>at</strong>er is deaer<strong>at</strong>ed<br />

before leav<strong>in</strong>g<br />

the plant. De-aer<strong>at</strong>ion<br />

is achieved by boil<strong>in</strong>g<br />

under vaccum <strong>and</strong> by<br />

<strong>in</strong>ject<strong>in</strong>g small<br />

amounts of geothermal steam, which conta<strong>in</strong>s H 2 S, as shown <strong>in</strong> Figure 26 <strong>and</strong> described <strong>in</strong> more detail<br />

by Gunnarsson et al., (1992).<br />

Dem<strong>and</strong> for space he<strong>at</strong><strong>in</strong>g varies over the year while gener<strong>at</strong>ion of electricity is run as a base load.<br />

The output of the <strong>wells</strong> is regul<strong>at</strong>ed accord<strong>in</strong>gly to the energy dem<strong>and</strong> <strong>and</strong> thus, the steam <strong>and</strong> the<br />

geothermal w<strong>at</strong>er are utilised <strong>in</strong> the most efficient way possible for co-gener<strong>at</strong>ion of electrical <strong>and</strong><br />

thermal power.<br />

7.2.1 Test coupons<br />

Scal<strong>in</strong>g tests were conducted on fifteen coupons of<br />

sta<strong>in</strong>less steel 304 (Figure 27). At the end of the test<br />

only n<strong>in</strong>e coupons were used <strong>in</strong> all, as six coupons<br />

were lost dur<strong>in</strong>g the test. The specimens were labelled<br />

by impr<strong>in</strong>t<strong>in</strong>g the design<strong>at</strong>ion codes <strong>in</strong>to the metal<br />

surface us<strong>in</strong>g hardened steel stencil stamps hit with a<br />

hammer. These codes were numbered <strong>in</strong> a sequence as<br />

shown <strong>in</strong> Figure 27.<br />

The arrangement consists of a nozzle th<strong>at</strong> is fitted with<br />

a fully open g<strong>at</strong>e or plug valve. The rod shaped<br />

specimen holder is conta<strong>in</strong>ed <strong>in</strong> a retraction chamber<br />

which is flanged to the valve, <strong>and</strong> is fitted additionally<br />

with a dra<strong>in</strong> valve. The other end of the retraction<br />

chamber conta<strong>in</strong>s a pack<strong>in</strong>g gl<strong>and</strong> through which the<br />

specimen holder passes. The test specimens are<br />

mounted on the rods <strong>in</strong> the extended position <strong>and</strong> are<br />

FIGURE 26: Simplified process diagram of<br />

the Nesjavellir co-gener<strong>at</strong>ion power plant<br />

FIGURE 27: Prepared test coupons with<br />

impr<strong>in</strong>ted identific<strong>at</strong>ion number codes<br />

then drawn <strong>in</strong>to the retraction chamber. The chamber is bolted to the g<strong>at</strong>e or plug valve, which is then<br />

opened up to allow the specimens to be moved <strong>in</strong>to the oper<strong>at</strong><strong>in</strong>g environment. The sequence is<br />

reversed to remove the specimens. The type of the retractable specimen holders used <strong>in</strong> this work is<br />

31


A<br />

B<br />

FIGURE 28: Retractable coupon holders, a) Used for high pressure po<strong>in</strong>ts e.g. <strong>at</strong> the wellheads;<br />

<strong>and</strong> b) For low pressure po<strong>in</strong>ts e.g. on the separ<strong>at</strong>ed w<strong>at</strong>er l<strong>in</strong>e <strong>at</strong> the re-<strong>in</strong>jection well<br />

shown <strong>in</strong> Figures 28 a <strong>and</strong> b. In Figure 28 a a test holder for high pressure applic<strong>at</strong>ions is shown <strong>and</strong><br />

this was used for test coupons <strong>at</strong> the wellheads. In Figure 28 b is shown coupon test holders for low<br />

pressure applic<strong>at</strong>ions as one th<strong>at</strong> was used on the waste w<strong>at</strong>er l<strong>in</strong>e <strong>at</strong> the re-<strong>in</strong>jection well. These have<br />

test coupons <strong>at</strong>tached to them.<br />

The coupons were cleaned, dried <strong>and</strong> their weights taken before they were <strong>in</strong>troduced <strong>in</strong>to the test<br />

environment. The coupons were mounted on retractable “slip <strong>in</strong>” specimen holders. These have the<br />

advantage of be<strong>in</strong>g <strong>in</strong>serted <strong>in</strong>to plant test environment without the need to shut down. The coupons<br />

were first abrased with a soft s<strong>and</strong> paper then cleaned <strong>in</strong> hot distilled w<strong>at</strong>er before be<strong>in</strong>g degreased <strong>in</strong><br />

isopropyl alcohol. The method for clean<strong>in</strong>g <strong>and</strong> prepar<strong>in</strong>g the coupons is detailed <strong>in</strong> Appendix B.<br />

7.2.2 Test procedures <strong>and</strong> selection of test sites for the study<br />

The retractable specimen holders with the cleaned dried <strong>and</strong> weighed sta<strong>in</strong>less coupons screwed onto<br />

them were <strong>in</strong>serted <strong>in</strong> different fluid environments. Dur<strong>in</strong>g the tests the pressure <strong>at</strong> the wellhead of<br />

one of the <strong>wells</strong> (NJ-14) was 25 bar <strong>and</strong> th<strong>at</strong> of the other (NJ-22) was 34 bar. The discharge enthalpies<br />

of NJ-14 <strong>and</strong> NJ-22 are 1400 kJ/kg <strong>and</strong> 1800 kJ/kg, respectively. Coupons were <strong>in</strong>serted <strong>at</strong> the<br />

wellheads of each of these two <strong>wells</strong>. A third site was chosen just downstream of the he<strong>at</strong> exchangers<br />

<strong>in</strong>side the plant which recieve separ<strong>at</strong>ed w<strong>at</strong>er <strong>at</strong> about 188°C. At this study po<strong>in</strong>t the separ<strong>at</strong>ed waste<br />

w<strong>at</strong>er extrud<strong>in</strong>g from the he<strong>at</strong> exchangers has cooled to 60-95°C depend<strong>in</strong>g on the dem<strong>and</strong> for hot<br />

w<strong>at</strong>er <strong>in</strong> Reykjavik. The fourth site was <strong>at</strong> the po<strong>in</strong>t of entry to the retention tank <strong>and</strong> the fifth where<br />

waste w<strong>at</strong>er flows <strong>in</strong>to the <strong>in</strong>jection well. The last two sites were chosen to <strong>in</strong>vestig<strong>at</strong>e the effect of<br />

silica polymeris<strong>at</strong>ion <strong>in</strong> the retention tank on the r<strong>at</strong>e of amorphous silica deposition. The different<br />

types of selected test sites are shown <strong>in</strong> Figures 29, 30 <strong>and</strong> 31 respectively.<br />

The test coupons were <strong>in</strong>troduced the test sites on 06 July 2005 <strong>at</strong> the retention tank <strong>and</strong> re-<strong>in</strong>jection<br />

well site <strong>and</strong> on 14 July 2005 <strong>at</strong> the wellheads of NJ-14 <strong>and</strong> NJ-22 <strong>and</strong> after the waste w<strong>at</strong>er leaves<br />

the he<strong>at</strong> exchangers. The coupons were <strong>in</strong>spected after ~ 13 weeks on 14 October 2005 to check on<br />

any signs of scale deposition. On this d<strong>at</strong>e one coupon was extracted from each test site <strong>and</strong> replaced<br />

with a new set of cleaned <strong>and</strong> weighed test coupons. These new test coupons, together with the ones<br />

th<strong>at</strong> had been left <strong>in</strong>tact 13 weeks were kept <strong>in</strong> place for an additional ~ 16 weeks to monitor the<br />

deposition r<strong>at</strong>es from fluids <strong>at</strong> all the sites. In all, the test thus lasted for ~ 29 weeks. The test<br />

specimens were removed from the test sites on 30th January 2006. Incidentally, when we went to take<br />

out the test coupons from all the sites on this d<strong>at</strong>e, it was realised th<strong>at</strong> the coupons <strong>in</strong> the sites <strong>at</strong> <strong>wells</strong><br />

NJ-14, NJ-22 <strong>and</strong> the site after the he<strong>at</strong> exchangers were miss<strong>in</strong>g from the holders. It was hard to<br />

establish wh<strong>at</strong> caused their removal but it could have been due to unexpla<strong>in</strong>ed changes <strong>in</strong> the flow<br />

p<strong>at</strong>terns of the well fluids <strong>and</strong> the separ<strong>at</strong>ed w<strong>at</strong>er downstream of the he<strong>at</strong> exchangers th<strong>at</strong> could have<br />

32


Coupon<br />

holder<br />

loosened the screws <strong>and</strong> nuts on the<br />

holders <strong>and</strong> blown the coupons <strong>in</strong>to the<br />

flow l<strong>in</strong>e. The loss of these coupons was<br />

r<strong>at</strong>her unexpected. On 30 January, 2006<br />

all the test coupons were removed from<br />

the test sites. At the test sites <strong>at</strong> the entry<br />

of the retention tank <strong>and</strong> the <strong>in</strong>jection<br />

well, coupons th<strong>at</strong> had been replaced <strong>and</strong><br />

those th<strong>at</strong> lasted for 29 weeks <strong>in</strong> the test<br />

environment were both recovered. The<br />

thickness of the scale deposited on the<br />

test coupons was measured with a<br />

micrometer screw gauge. After dry<strong>in</strong>g<br />

the test coupons, these were stored <strong>in</strong> a<br />

dessic<strong>at</strong>or to remove moisture <strong>and</strong> their<br />

weights determ<strong>in</strong>ed.<br />

7.3 Analysis of scales<br />

FIGURE 29: Coupons <strong>at</strong> the wellhead of well NJ-14<br />

Coupon<br />

holder<br />

FIGURE 30: Coupons <strong>at</strong> entry to the retention tank<br />

Scales th<strong>at</strong> formed on the coupons were<br />

studied by different analytical tools.<br />

They <strong>in</strong>cluded b<strong>in</strong>ocular microscope<br />

exam<strong>in</strong><strong>at</strong>ion, Fourier transform <strong>in</strong>frared<br />

spectroscopy, (FTIR) scann<strong>in</strong>g electron<br />

microscopy (SEM- EDS), X-Ray powder<br />

diffraction (XRD) <strong>and</strong> chemical analysis<br />

by <strong>in</strong>ductively coupled plasma emission<br />

spectroscopy (ICP-AES). UV spectrophotometry<br />

was used to determ<strong>in</strong>e silica<br />

<strong>in</strong> the scales. Brief descriptions of each<br />

technique are given <strong>in</strong> Appendix B.<br />

Coupon<br />

holder<br />

The n<strong>at</strong>ure of the scale form<strong>in</strong>g<br />

FIGURE 31: Coupons <strong>at</strong> the re-<strong>in</strong>jection well<br />

environment <strong>and</strong> type of scale formed is conveniently divided <strong>in</strong>to two groups: Scales form<strong>in</strong>g from<br />

two-phase fluid <strong>at</strong> wellheads <strong>and</strong> scales form<strong>in</strong>g from separ<strong>at</strong>ed w<strong>at</strong>er after the he<strong>at</strong> exchangers, <strong>at</strong> the<br />

entry to the retention tank <strong>and</strong> just upstream of the re-<strong>in</strong>jection well. Scales form<strong>in</strong>g from separ<strong>at</strong>ed<br />

w<strong>at</strong>er are dom<strong>in</strong>antly amorphous to X-rays <strong>and</strong> the most abundant phase is amorphous silica. The<br />

scales form<strong>in</strong>g <strong>at</strong> the wellhead are of different a n<strong>at</strong>ure, be<strong>in</strong>g mostly sulphides <strong>in</strong> the case of well NJ-<br />

14 but oxides of iron <strong>in</strong> well NJ-22.<br />

33


Peeled off part on coupon<br />

# 17 <strong>at</strong> retention tank<br />

Well<br />

NJ-14<br />

Retention<br />

tank<br />

After he<strong>at</strong><br />

exchangers<br />

Re-<strong>in</strong>jection<br />

well<br />

Well<br />

NJ-22<br />

FIGURE 32: Photograph of coupons after a 13 week test period<br />

A<br />

B<br />

Weight ga<strong>in</strong> after 29<br />

weeks. Coupon # 18<br />

Weight ga<strong>in</strong> after 29<br />

weeks. Coupon # 19<br />

FIGURE 33: Photos show<strong>in</strong>g deposition of scale on test coupons <strong>at</strong>, a) The retention tank;<br />

<strong>and</strong> b) The <strong>in</strong>jection well<br />

Of coupons removed from the retention tank <strong>and</strong> he<strong>at</strong> exchangers after 13 weeks, there was some scale<br />

on one coupon th<strong>at</strong> peeled off slightly while it was be<strong>in</strong>g removed so th<strong>at</strong> the measured weight ga<strong>in</strong> is<br />

low for this coupon. The coupons after 13 weeks <strong>in</strong> the test environment are shown <strong>in</strong> Figure 32. In<br />

Figures 33 there are shown photographs of test coupons <strong>at</strong> the entry to the retention tank <strong>and</strong> <strong>at</strong> the<br />

<strong>in</strong>jection well, respectively.<br />

7.3.1 B<strong>in</strong>ocular microscope descriptions<br />

Coupon # 16 (After he<strong>at</strong> exchangers): F<strong>in</strong>e gra<strong>in</strong>ed dark grayish deposits observed on the coupon. The<br />

deposit formed th<strong>in</strong> sheets th<strong>at</strong> <strong>in</strong>dic<strong>at</strong>ed signs of peel<strong>in</strong>g off. Dark grey deposits on the edges. There<br />

appeared to flow b<strong>and</strong><strong>in</strong>g on the edges.<br />

34


Coupon # 20 (Re-<strong>in</strong>jection well): A very dark grey deposit on the test pl<strong>at</strong>e. The deposit is very f<strong>in</strong>e<br />

gra<strong>in</strong>ed <strong>and</strong> does not show any flow b<strong>and</strong><strong>in</strong>g. It is adherent to the coupon pl<strong>at</strong>e. The coupon is fully<br />

covered with f<strong>in</strong>e white gra<strong>in</strong>ed deposit.<br />

Coupon # 10 (Well NJ-14): The coupon was completely covered with dark grey f<strong>in</strong>e <strong>and</strong> coarse<br />

deposits. The coarse deposits flake off slightly but the f<strong>in</strong>e deposit is very adherent to the coupon. The<br />

flakes are f<strong>in</strong>e gra<strong>in</strong>ed <strong>and</strong> dark grey <strong>in</strong> colour. Sulphide crystals are abundant.<br />

Coupon # 25 (Well NJ-22): Dark grey to black deposits formed on the pl<strong>at</strong>e. On some parts of the<br />

pl<strong>at</strong>e the deposits are r<strong>at</strong>her thick. The thickness was not uniform. Occasionally the deposit flakes off<br />

though <strong>in</strong> most <strong>in</strong>stances it is adherent onto the pl<strong>at</strong>e. Sulphide crystals not nearly as abundant as <strong>in</strong><br />

scale from NJ-14. Very f<strong>in</strong>e gra<strong>in</strong>ed.<br />

Coupon # 17 (At entry to re-<strong>in</strong>jection well): A very f<strong>in</strong>e th<strong>in</strong> sheet of deposit on the pl<strong>at</strong>e. The deposit<br />

was light grey <strong>in</strong> colour, had partly peeled off from the pl<strong>at</strong>e when the coupon holder was be<strong>in</strong>g<br />

removed from the <strong>in</strong>sertion po<strong>in</strong>t <strong>at</strong> the delay tank. No signs of flak<strong>in</strong>g. White to brown coloured<br />

crystals.<br />

Coupon # 18 (At entry to re-<strong>in</strong>jection well): Dark grey <strong>and</strong> white crystals were distributed on the pl<strong>at</strong>e:<br />

The white crystals have different shapes <strong>and</strong> sizes <strong>and</strong> are widespread on the coupon pl<strong>at</strong>e. Some<br />

crystals are glass like, some are white but not sh<strong>in</strong>y, occasional brown crystals probably silica or pyrite<br />

<strong>in</strong> the scale. Some reddish crystals were present <strong>in</strong> this coupon scale probably haem<strong>at</strong>ite. Some white<br />

crystals embedded <strong>in</strong> the background.<br />

Coupon # 5 (At entry to re-<strong>in</strong>jection well): The deposit was dark grey <strong>and</strong> non-uniform whitebrownish<br />

crystals were widely embedded <strong>in</strong> a f<strong>in</strong>er background. Some crystals look glass like.<br />

Coupon # 19 (At re-<strong>in</strong>jection well): A very th<strong>in</strong> layer of f<strong>in</strong>e dark grey to black evenly distributed<br />

deposit on the coupon.<br />

7.3.2 Fourier transform <strong>in</strong>frared measurement<br />

IR spectra of scales formed <strong>at</strong> the wellheads of <strong>wells</strong> NJ-14, well NJ-22, separ<strong>at</strong>ed w<strong>at</strong>er after the he<strong>at</strong><br />

exchangers, <strong>at</strong> entry to the retention tank <strong>and</strong> just upstream of the <strong>in</strong>jection well are shown <strong>in</strong> Figure<br />

34. The spectra of the samples from the wellheads show strong similarities. So do samples of scales<br />

formed from separ<strong>at</strong>ed w<strong>at</strong>er. There is, however, a considerable difference between the two groups of<br />

samples. The IR spectra largely reflect Si-O bond<strong>in</strong>g <strong>and</strong> do not provide <strong>in</strong>form<strong>at</strong>ion on the presence<br />

or absence of sulphide phases.<br />

Molecular w<strong>at</strong>er is present <strong>in</strong> all the scales as <strong>in</strong>dic<strong>at</strong>ed by vibr<strong>at</strong>ional b<strong>and</strong>s <strong>at</strong> 1630-1641 <strong>and</strong> 1410-<br />

1443 cm -1 . In the region 2923-2842 cm -1 the wavelength b<strong>and</strong> could be associ<strong>at</strong>ed with C-H groups<br />

<strong>and</strong> this could be due to oil or grease <strong>and</strong> <strong>in</strong>dic<strong>at</strong>e contam<strong>in</strong><strong>at</strong>ion. The b<strong>and</strong> <strong>in</strong> the region 3533-3541<br />

cm -1 is caused by OH-groups <strong>in</strong> the crystal l<strong>at</strong>tice of bonded H 2 O. Wavelength <strong>and</strong> <strong>in</strong> scale samples<br />

from separ<strong>at</strong>ed w<strong>at</strong>er <strong>at</strong> 1100 cm -1 with shoulders on both the low energy sides reflect a Si-O-Si<br />

structure characteristic of amorphous silica. In the scale samples from the wellheads, these b<strong>and</strong>s are<br />

shifted to about 1030 cm -1 due to the presence other silicon compounds, e.g. silic<strong>at</strong>es. They resemble<br />

those of the analcime-leucite group Na, K <strong>and</strong> Mg may have entered the structure. Medium strength<br />

peaks <strong>at</strong> 442-465 cm -1 are presented <strong>in</strong> all scale samples. They are caused by bend<strong>in</strong>g vibr<strong>at</strong>ions of an<br />

O-Si-O structure. In the scale samples from the wellheads, the wavelength b<strong>and</strong>s <strong>at</strong> 723-790 cm -1 are<br />

probably due to symmetrical stretch<strong>in</strong>g of tetrahedrally co-ord<strong>in</strong><strong>at</strong>ed Si <strong>and</strong> Al.<br />

7.3.3 X-ray diffraction measurements<br />

X-ray diffraction p<strong>at</strong>terns revealed by all the scale samples except from the re-<strong>in</strong>jection well are<br />

shown <strong>in</strong> Figure 35.<br />

35


3541<br />

1099<br />

792<br />

3533<br />

2924<br />

2925<br />

2825<br />

1641<br />

1443<br />

1443<br />

723<br />

723<br />

467<br />

1.6<br />

3429<br />

2924<br />

2854<br />

Well NJ-14 Coupon # 10<br />

1630<br />

1404<br />

1031<br />

0.55<br />

1099<br />

452<br />

0.5<br />

3542<br />

465<br />

0.45<br />

1.2<br />

Counts<br />

Counts<br />

0.4<br />

Coupon # 16 after he<strong>at</strong> exchangers<br />

2842<br />

1630<br />

793<br />

0.8<br />

3541<br />

2923<br />

2854<br />

1033<br />

442<br />

0.35<br />

1630<br />

1410<br />

0.3<br />

A<br />

Well NJ -22 Coupon # 25<br />

B<br />

0.4<br />

0.25<br />

4000 3000 2000 1000 0<br />

Wavelength cm -1<br />

4500 4000 3500 3000 2500 2000 1500 1000 500 0<br />

Wavelength cm -1<br />

1099<br />

3<br />

1<br />

1107<br />

2.5<br />

465<br />

3533<br />

0.8<br />

2<br />

Counts<br />

1.5<br />

1641<br />

792<br />

465<br />

Counts<br />

0.6<br />

Re-<strong>in</strong>jection well coupon # 20<br />

467<br />

2925<br />

2825<br />

2924<br />

2852<br />

1<br />

3541<br />

2924<br />

2852<br />

1641<br />

Retention Tank Coupon # 5<br />

0.4<br />

Re<strong>in</strong>jection well coupon # 19<br />

1641<br />

0.5<br />

Retention Tank Coupon # 17<br />

C<br />

Retention Tank Coupon # 18<br />

D<br />

0<br />

0.2<br />

4500 4000 3500 3000 2500 2000 1500 1000 500 0<br />

Wavelength cm -1<br />

4500 4000 3500 3000 2500 2000 1500 1000 500<br />

Wavelength cm -1<br />

FIGURE 34: IR spectra of scales deposited on coupons <strong>at</strong>, a) The wellheads of NJ-14 <strong>and</strong> NJ-22,<br />

b) After the he<strong>at</strong> exchangers, c) At the entry to the retention tank, d) At the re-<strong>in</strong>jection well<br />

No clear diffraction peaks could be observed <strong>in</strong> the scale of the coupons from the wellheads of NJ-14<br />

<strong>and</strong> NJ-22 except for a small peak <strong>at</strong> ~ 7 ˚ 2θ for the sample from NJ-22 which <strong>in</strong>dic<strong>at</strong>es some clay<br />

<strong>and</strong> a peak <strong>at</strong> ~ 29.5˚ 2θ <strong>in</strong> the sample from NJ-14 which could be due to chalcopyrite.<br />

The X-ray diffraction p<strong>at</strong>terns for the scales form<strong>in</strong>g from separ<strong>at</strong>ed w<strong>at</strong>er after the he<strong>at</strong> exchangers<br />

<strong>and</strong> before the retention tank are very similar. This is shown <strong>in</strong> Figure 33. The scale formed on the<br />

coupon <strong>at</strong> the <strong>in</strong>jection well was too small for X-Ray exam<strong>in</strong><strong>at</strong>ion. The most prom<strong>in</strong>ent fe<strong>at</strong>ure <strong>in</strong> the<br />

scales is a broad peak <strong>at</strong> ~ 23˚ 2θ which is characteristic of amorphous or opal<strong>in</strong>e silica. Small peaks<br />

<strong>at</strong> ~ 7 ˚ 2θ <strong>and</strong> ~ 12.5 ˚ 2θ were identified <strong>in</strong> two samples before the retention tank. These reflect the<br />

presence of clay m<strong>in</strong>erals. M<strong>in</strong>or peaks <strong>at</strong> ~ 29.5˚ 2θ, ~31.5˚ 2θ <strong>and</strong> ~ 45.5˚ 2θ were also observed.<br />

These reflect the presence of chalcopyrite, halite (NaCl) <strong>and</strong> sylvite (KCl). In these samples the<br />

presence of chalcopyrite considered could <strong>in</strong>dic<strong>at</strong>e some m<strong>in</strong>or crystall<strong>in</strong>e phases <strong>in</strong> the scale. Halite<br />

(NaCl) <strong>and</strong> sylvite (KCl) will have formed by evapor<strong>at</strong>ion of geothermal w<strong>at</strong>er on the coupons when<br />

dried <strong>and</strong> do not represent a part of the scale. They are easy to detect <strong>in</strong> the X-ray diffraction because<br />

of their cubic structure.<br />

36


1900<br />

1800<br />

C #10 Well NJ-14<br />

1700<br />

1600<br />

1500<br />

Chalcopyrite<br />

C #25 Well NJ-14<br />

1400<br />

1300<br />

Amorph<br />

1200<br />

Clay<br />

KCl<br />

NaCl<br />

1100<br />

NaCl<br />

Li<br />

n<br />

1000<br />

900<br />

800<br />

C #5 <strong>at</strong> retention tank<br />

(C<br />

700<br />

600<br />

C #16 after he<strong>at</strong> exchangers<br />

500<br />

400<br />

C #17 <strong>at</strong> retention tank<br />

300<br />

200<br />

C #18 <strong>at</strong> retention tank<br />

100<br />

0<br />

4 10 20 30 40 50 60<br />

2-Theta -<br />

39083/C #5 D5MEAS - Program:MIN-MAG.DQLD5MEAS - Program:MIN-MAG.DQL - File:<br />

00-005-0628 (*) - Halite, syn - NaCl - Y: 5.00 % - d x by: 1. - WL: 1.54056 - Cubic - a 5.64020 - b 5.6402<br />

39084/C #10 D5MEAS - Program:MIN-MAG.DQLD5MEAS - Program:MIN-MAG.DQL - File:<br />

00-041-1476 (*) - Sylvite, syn - KCl - Y: 5.00 % - d x by: 1. - WL: 1.54056 - Cubic - a 6.29170 - b 6.29170<br />

39085/C #16 D5MEAS - Program:MIN-MAG.DQLD5MEAS - Program:MIN-MAG.DQL - File:<br />

39086/C #17 D5MEAS - Program:MIN-MAG.DQLD5MEAS - Program:MIN-MAG.DQL - File:<br />

39087/C #18 D5MEAS - Program:MIN-MAG.DQLD5MEAS - Program:MIN-MAG.DQL - File:<br />

39088/C #25 D5MEAS - Program:MIN-MAG.DQLD5MEAS - Program:MIN-MAG.DQL - File:<br />

39086/C #17 D5MEAS - Program:MIN-MAG.DQLD5MEAS - Program:MIN-MAG.DQL - File:<br />

00-037-0471 (*) - Chalcopyrite - CuFeS2 - Y: 5.00 % - d x by: 1. - WL: 1.54056 - Tetragonal - a 5.28930 -<br />

FIGURE 35: XRD spectra of scales formed <strong>at</strong> the wellheads of <strong>wells</strong> NJ-14 <strong>and</strong> NJ-22,<br />

after the he<strong>at</strong> exchangers <strong>and</strong> <strong>at</strong> the entry to the retention tank<br />

7.3.4 Chemical analysis by Scann<strong>in</strong>g Electron Microscopy – Electron Dispersive Spectroscopy<br />

(SEM-EDS)<br />

SEM-EDS chemical analyses of all the scale samples are presented <strong>in</strong> Table 1 of Appendix C. They<br />

provide a semi-quantit<strong>at</strong>ive chemical composition of the scales. These are shown together with the<br />

spectra of spot analysis <strong>and</strong> the scanned electron micrographs <strong>in</strong> Appendix C. Chemical analysis can<br />

be <strong>in</strong>tepreted with respect to the test sites where the scale formed. A summary of the calcul<strong>at</strong>ed<br />

composition of the elements as oxides <strong>and</strong> sulphides are presented together with the chemical analysis<br />

of the scales <strong>in</strong> Tables 2 <strong>and</strong> 3 <strong>in</strong> Appendix C.<br />

Scales formed from the wellhead of NJ-14 are largely composed of a high percentage of sulphur (S)<br />

<strong>and</strong> iron (Fe) <strong>and</strong> a low percentage of silicon (Si) <strong>and</strong> oxygen (O). Major elements such as sodium<br />

(Na), potassium (K), calcium (Ca), magnesium (Mg), are detected <strong>at</strong> trace levels but these may not<br />

constitute the scale but could be derived<br />

from the w<strong>at</strong>er th<strong>at</strong> was dried on the<br />

surface of the coupons. Low<br />

concentr<strong>at</strong>ions of elements e.g. alum<strong>in</strong>ium<br />

(Al), copper(Cu), vanadium (V), z<strong>in</strong>c<br />

(Zn), silver (Ag), manganese (Mn), nickel<br />

(Ni) are detected <strong>in</strong> this scale.<br />

The large amounts of sulphur <strong>and</strong> iron <strong>in</strong><br />

the scale suggest the scale is largely iron<br />

sulphide ~ 96 percent as sulphides<br />

<strong>in</strong>dic<strong>at</strong>ed <strong>in</strong> Table 2 <strong>in</strong> Appendix C. Other<br />

sulphides of the elements such as Cu, V,<br />

Zn, Ag, Mn, Ni are present <strong>in</strong> trace<br />

amounts. The analysis reveals cubic<br />

crystals <strong>in</strong> this scale. A represent<strong>at</strong>ive<br />

Scann<strong>in</strong>g Electron Micrograph of the<br />

crystal<strong>in</strong>e sulphide phases is shown <strong>in</strong><br />

Figure 36.<br />

FIGURE 36: Scann<strong>in</strong>g Electron Micrograph show<strong>in</strong>g<br />

crystals of sulphides from scale on test coupons<br />

<strong>in</strong>serted <strong>at</strong> the wellhead of Well NJ-14<br />

37


Scales formed <strong>at</strong> the wellhead of well NJ-22 consist of a high percentage of oxygen <strong>and</strong> iron with trace<br />

amounts of the major elements i.e Na, K, Ca, <strong>and</strong> Mg, <strong>and</strong> traces of the elements V, Cr, Mn, Ni, Cu,<br />

Zn <strong>and</strong> S. The major elements detected may have formed on the scale dur<strong>in</strong>g dry<strong>in</strong>g of coupons.<br />

Slightly large amounts of Al <strong>and</strong> Si were observed <strong>in</strong> this scale. The major component of the scales<br />

constitutes mostly oxides of iron (42 %) mixed with silica (38 %) (Table 2 <strong>in</strong> Appendix C). This<br />

suggests th<strong>at</strong> the scale formed <strong>at</strong> this well is probably a mixed scale of oxides <strong>and</strong> sulphides.<br />

Scales formed after the he<strong>at</strong> exchanger, <strong>at</strong> the entry to the retention tank <strong>and</strong> <strong>at</strong> <strong>in</strong>jection well were<br />

formed from separ<strong>at</strong>ed w<strong>at</strong>er. This separ<strong>at</strong>ed w<strong>at</strong>er is rel<strong>at</strong>ively cool, between 60 ˚ <strong>and</strong> 95 ˚ C<br />

depend<strong>in</strong>g on the load for hot w<strong>at</strong>er <strong>in</strong> Reykjavίk. Chemical analysis of the scales us<strong>in</strong>g the SEM<br />

<strong>in</strong>dic<strong>at</strong>es th<strong>at</strong> the major components of the scale are silicon (Si) <strong>and</strong> oxygen (O). Traces of other<br />

elements such as sodium (Na), potassium (K), chloride (Cl), are found <strong>in</strong> the scale samples. They are<br />

likely derived from the w<strong>at</strong>er th<strong>at</strong> has dried on the surface of the coupons. Other elements detected <strong>in</strong><br />

the scale samples were Al., Fe, Cu <strong>and</strong> S. The presence of these elements is <strong>in</strong>dic<strong>at</strong>ive of some<br />

sulphides. Small concentr<strong>at</strong>ions of Mn, Fe, Ni <strong>and</strong> Cr <strong>in</strong> these samples are likely to orig<strong>in</strong><strong>at</strong>e the steel<br />

<strong>in</strong> the coupons. The composition of the scales <strong>in</strong>dic<strong>at</strong>es th<strong>at</strong> it is ma<strong>in</strong>ly silica. The presence of Al<br />

<strong>in</strong>dic<strong>at</strong>es th<strong>at</strong> the silica phase conta<strong>in</strong>s some impurity <strong>in</strong>clud<strong>in</strong>g this element.<br />

7.3.5 Chemical analysis of scales by the Inductively Coupled Plasma – Atomic Emission Spectra<br />

(ICP-AES)<br />

Weighed scale samples from two test sites, after the he<strong>at</strong> exchangers <strong>and</strong> <strong>at</strong> the entry to the retention<br />

tank were leached <strong>in</strong> 20 ml of 0.16N HNO 3 (Table 6 of Appendix A). These sites accumul<strong>at</strong>ed<br />

sufficient scale to scrape it off. Solutions of these scales were analysed by ICP-AES (Table 6 of<br />

Appendix A).<br />

The major elements Na, K, Ca, Mg <strong>and</strong> Si are present <strong>in</strong> trace amounts <strong>in</strong> all the leached solutions of<br />

the scales. Iron <strong>and</strong> Al are detectable. Significant Ni was present. It seems possible th<strong>at</strong> Ni comes from<br />

the coupon steel scraped with the scale from the coupon <strong>and</strong> leached <strong>in</strong>to solution. The analyses<br />

<strong>in</strong>dic<strong>at</strong>e a slightly higher silicon content of scales formed <strong>at</strong> the retention tank than those formed after<br />

the he<strong>at</strong> exchangers.<br />

7.3.6 Analysis of scales <strong>in</strong> the UV spectroscopy<br />

Weighed samples of scales were taken <strong>and</strong> dissolved <strong>in</strong> 0.5 ml of cold hydrofluoric acid + 4.5 ml<br />

distilled w<strong>at</strong>er. This was diluted to 100 ml for spectrophotometric analysis to determ<strong>in</strong>e the amount of<br />

silica <strong>in</strong> the scales. There may have been limit<strong>at</strong>ions here, as the dissolution of the scales was<br />

<strong>in</strong>complete <strong>and</strong> is equally dependent on the weight of scale sample taken. Some of the silica could<br />

have been leached <strong>in</strong>to the 20 ml of 0.16 N HNO 3 used to leach ions from the scale for the ICP-AES<br />

analysis. This was calcul<strong>at</strong>ed <strong>and</strong> added to the percent silica determ<strong>in</strong>ed spectrophotometrically. The<br />

percent silica seems to be rel<strong>at</strong>ed to the weight of scale sample taken. The silica concentr<strong>at</strong>ion as a<br />

percent varies between 26 -53 percent for the scales from the two test sites, after the he<strong>at</strong> exchangers<br />

<strong>and</strong> <strong>at</strong> the retention tank entry. Percent silica analysed spectrophotometrically decreases progressively<br />

with respect to the weight of the scale sample. Silica constitutes a higher percentage of the scales<br />

formed <strong>at</strong> the test site after the he<strong>at</strong> exchangers <strong>and</strong> the retention tanks. The other elements analysed <strong>in</strong><br />

solution us<strong>in</strong>g ICP-AES <strong>and</strong> calcul<strong>at</strong>ed as oxides are <strong>at</strong> low levels. The results of analysis by UV<br />

spectrophotometry <strong>and</strong> subsequent calcul<strong>at</strong>ion are shown <strong>in</strong> Table 7 of Appendix A.<br />

7.3.7 Quantity of scale<br />

Weight ga<strong>in</strong> <strong>and</strong> thickness on the n<strong>in</strong>e test coupons were determ<strong>in</strong>ed after removal of the coupons<br />

from the test sites. The results are shown <strong>in</strong> Table 8a <strong>in</strong> Appendix A. A different balance was used to<br />

measure the weights before <strong>and</strong> after the test. This required calibr<strong>at</strong>ion us<strong>in</strong>g a set of prepared test<br />

coupons on both balances. The calibr<strong>at</strong>ion results are shown <strong>in</strong> Table 8b <strong>in</strong> Appendix A.<br />

38


0,3<br />

13 Weeks (06-07-2005 to 14-10-2006)<br />

W eight ga<strong>in</strong> <strong>in</strong> gram<br />

0,25<br />

0,2<br />

0,15<br />

0,1<br />

0,05<br />

0<br />

A<br />

Well NJ-<br />

14, coupon<br />

# 10<br />

Well NJ-<br />

22, coupon<br />

# 25<br />

After he<strong>at</strong><br />

exchangers,<br />

coupon #<br />

16<br />

At retention<br />

tank,<br />

coupon #<br />

17<br />

A t <strong>in</strong>jection<br />

well,<br />

coupon #<br />

20<br />

0,3<br />

29 Weeks (06-07-2005 to 30-01-2006)<br />

Weight ga<strong>in</strong> <strong>in</strong> grams<br />

0,25<br />

0,2<br />

0,15<br />

0,1<br />

0,05<br />

0<br />

B<br />

At retention<br />

tank, coupon<br />

# 18<br />

At <strong>in</strong>jection<br />

well, coupon<br />

# 19<br />

FIGURE 37: Weight ga<strong>in</strong> of scale <strong>at</strong> various test sites for, a) 13 weeks test, <strong>and</strong> b) 29 weeks test<br />

The gre<strong>at</strong>est weight ga<strong>in</strong> <strong>and</strong> scale thickness are observed <strong>at</strong> the test site just upstream of the retention<br />

tank. Weight ga<strong>in</strong> <strong>and</strong> scale thickness <strong>at</strong> the various test sites are shown <strong>in</strong> Figures 37 <strong>and</strong> 38,<br />

respectively.<br />

The smallest weight ga<strong>in</strong> was measured <strong>at</strong> the wellheads of NJ-14 <strong>and</strong> NJ-22. The fluid <strong>at</strong> the<br />

wellheads is two phase <strong>and</strong> very fast flow<strong>in</strong>g. This may affect the amount of scale deposited on the<br />

coupons. At the wellheads, the two phase fluid is <strong>at</strong> high temper<strong>at</strong>ure <strong>and</strong> is amorphous silica<br />

unders<strong>at</strong>ur<strong>at</strong>ed. Therefore amorphous silica is not expected to form <strong>at</strong> the respective wellheads. By<br />

contrast the separ<strong>at</strong>ed w<strong>at</strong>er studied for scale form<strong>at</strong>ion is <strong>at</strong> 60-90˚ C <strong>and</strong> amorphous silica<br />

supers<strong>at</strong>ur<strong>at</strong>ed. The weight ga<strong>in</strong> of the coupons after the he<strong>at</strong> exchangers <strong>and</strong> the retention tank entry<br />

is significantly higher than <strong>at</strong> the <strong>in</strong>jection well. The difference is a measure of the success of the<br />

polymeriz<strong>at</strong>ion <strong>in</strong> the retention tank to slow down amorphous silica deposition. The weight ga<strong>in</strong> of<br />

280 mg after 29 weeks was measured <strong>at</strong> the retention tank entry <strong>and</strong> a scale thickness of 0.146 mm.<br />

This transl<strong>at</strong>es to a deposition r<strong>at</strong>e of 0.26 mm/yr. At the <strong>in</strong>jection well weight ga<strong>in</strong> on the coupons<br />

was 14.1 mg <strong>and</strong> the scale thickness 0.0094 mm. This transl<strong>at</strong>es to a deposition r<strong>at</strong>e of ~0.017 mm/yr<br />

or 20 times less.<br />

39


0,3<br />

13 Weeks (06-07-2006 to 14-10-2005)<br />

0,25<br />

Thickness (mm)<br />

0,2<br />

0,15<br />

0,1<br />

0,05<br />

A<br />

0<br />

Well NJ-<br />

14,coupon #<br />

10<br />

Well NJ-22,<br />

coupon # 25<br />

After he<strong>at</strong><br />

exchangers,<br />

coupon # 16<br />

At retention<br />

tank, coupon<br />

# 17<br />

At <strong>in</strong>jection<br />

well, coupon<br />

# 20<br />

thickness (mm)<br />

B<br />

0,35<br />

0,3<br />

0,25<br />

0,2<br />

0,15<br />

0,1<br />

0,05<br />

0<br />

29 Weeks (06-07-2005 to 30-01-2006)<br />

At retention tank, coupon # 18 At <strong>in</strong>jection well, coupon # 19<br />

FIGURE 38: Scale thickness <strong>at</strong> the various test sites for, a) 13 weeks test, <strong>and</strong> b) 29 weeks test<br />

40


8. EVALUATION OF SCALES DEPOSITED AT OLKARIA WELL OW-34, KENYA<br />

Olkaria well OW-34 was drilled as a make up well together with <strong>wells</strong> OW-33, OW-32, OW-31,<br />

OW30 <strong>and</strong> OW-29 after steam decl<strong>in</strong>e was experienced <strong>in</strong> the Olkaria East Production Field dur<strong>in</strong>g<br />

the first five years of production. Well OW-34 was connected to the steam g<strong>at</strong>her<strong>in</strong>g system <strong>in</strong><br />

March, 2001 <strong>and</strong> was disconnected <strong>in</strong> September, 2002 after its output, as measured by the pressure<br />

drop across the orifice pl<strong>at</strong>e, <strong>in</strong>dic<strong>at</strong>ed a substantial drop. On dismantl<strong>in</strong>g the flow pipes <strong>and</strong> wellhead<br />

equipment, a thick deposit of scale which was <strong>in</strong>tense, almost 1 <strong>in</strong>ch thick, was found <strong>in</strong>side the two<br />

phase pipe l<strong>in</strong>e. The scale also formed <strong>in</strong> the wellhead separ<strong>at</strong>or <strong>and</strong> <strong>in</strong> the separ<strong>at</strong>ed w<strong>at</strong>er flowl<strong>in</strong>e.<br />

S<strong>in</strong>ce the commission<strong>in</strong>g of the Olkaria I plant <strong>and</strong> production from the Olkaria East Production Field,<br />

until 2002 no other well had experienced this k<strong>in</strong>d of <strong>in</strong>tense scale deposition. Well OW-34 is<br />

anomalous. The concentr<strong>at</strong>ion of chloride <strong>in</strong> the w<strong>at</strong>er is high because of its discharge enthalpy. This<br />

was unusual <strong>and</strong> wh<strong>at</strong> caused the scale to form was not known. The general loc<strong>at</strong>ion of <strong>wells</strong> <strong>in</strong><br />

Olkaria East Production Field with well OW-34 is shown <strong>in</strong> Figure 39.<br />

8.1 Output characteristics of well OW-34<br />

Three flow tests have been conducted on this well, <strong>in</strong> 1993, 1996 <strong>and</strong> 2003. The first flow test was<br />

carried out upon completion of drill<strong>in</strong>g, the second to monitor tracer tests <strong>and</strong> the effect of cold w<strong>at</strong>er<br />

<strong>in</strong>jection <strong>in</strong> well OW-R3 <strong>and</strong> the third to <strong>in</strong>vestig<strong>at</strong>e the causes of decl<strong>in</strong>e <strong>in</strong> steam output. The well<br />

was discharged under different throttle conditions us<strong>in</strong>g different “lip pressure” pipe sizes i.e. 8”, 6”,<br />

5”, 4” <strong>and</strong> 3”. Dur<strong>in</strong>g the first test enthalpy varied between 2640 kJ/kg <strong>and</strong> 2680 kJ/kg <strong>and</strong> the w<strong>at</strong>er<br />

flow r<strong>at</strong>e between 0.85 <strong>and</strong> 1.55 t/hr. In the second test, the discharge enthalpy was about 2650 kJ/kg<br />

<strong>and</strong> w<strong>at</strong>er flow r<strong>at</strong>e between 2.2<br />

<strong>and</strong> 3.3 t/hr, while <strong>in</strong> the third test<br />

enthalpy ranged from 2670 kJ/kg to<br />

2675 kJ/kg <strong>and</strong> w<strong>at</strong>er flow r<strong>at</strong>e from<br />

1.5 t/hr to 2.1 t/hr. A summary of<br />

these tests is shown <strong>in</strong> Table 9a, <strong>in</strong><br />

Appendix A (Opondo <strong>and</strong> Ofwona,<br />

2003).<br />

FIGURE 39: Loc<strong>at</strong>ion of <strong>wells</strong> <strong>in</strong> Olkaria East<br />

production field<br />

When the well was connected to the<br />

production system, steam output<br />

well decl<strong>in</strong>ed from ~42.8 t/h<br />

(Kariuki <strong>and</strong> Opondo 2001) <strong>in</strong> June<br />

2001 to 7.2 t/h <strong>in</strong> March 2002. The<br />

output of well OW-34 with time<br />

when it was connected to the<br />

production system is shown <strong>in</strong><br />

Table 9 b, <strong>in</strong> Appendix A.<br />

While the enthalpy differences may<br />

appear small, <strong>at</strong> such high<br />

enthalpies close to the enthalpy of<br />

dry steam these small differences<br />

have tremendous effects on the<br />

solute content of the w<strong>at</strong>er discharged <strong>at</strong> <strong>at</strong>mospheric pressure. Over all the discharge tests, the<br />

discharge enthalpy varied between 2640 kJ/kg <strong>and</strong> 2680 kJ/kg <strong>at</strong> the throttle conditions <strong>and</strong> the steam<br />

fractions calcul<strong>at</strong>ed <strong>at</strong> <strong>at</strong>mospheric pressure (X s ) are high, or between 0.9973 <strong>and</strong> 0.9996.<br />

41


8.2 W<strong>at</strong>er composition of well OW-34<br />

Well OW-34 is w<strong>at</strong>er composition is shown <strong>in</strong> Table 10 of Appendix A together with th<strong>at</strong> of a selected<br />

few make up <strong>wells</strong>, i.e. <strong>wells</strong> OW-33 <strong>and</strong> OW-32 <strong>and</strong> some <strong>wells</strong> where discharge enthalpy is very<br />

high, or <strong>wells</strong> OW-10 <strong>and</strong> OW-18 which have been under exploit<strong>at</strong>ion for long. Well OW-18 has<br />

w<strong>at</strong>er flowr<strong>at</strong>es <strong>and</strong> discharge enthalpy trends th<strong>at</strong> resemble those of Olkaria well OW-34. The<br />

concentr<strong>at</strong>ion of the solute constituents Cl, F, K <strong>and</strong> Na are much higher <strong>in</strong> the separ<strong>at</strong>ed w<strong>at</strong>er of well<br />

OW-34 than th<strong>at</strong> of well OW-18. The silica concentr<strong>at</strong>ion is rel<strong>at</strong>ively high <strong>in</strong> this well w<strong>at</strong>er, higher<br />

than <strong>in</strong> most separ<strong>at</strong>ed w<strong>at</strong>ers of the other <strong>wells</strong>. The Cl - concentr<strong>at</strong>ion <strong>in</strong> the separ<strong>at</strong>ed w<strong>at</strong>er <strong>at</strong><br />

<strong>at</strong>mospheric pressure <strong>in</strong> well OW-34 is ~ 4000 ppm <strong>and</strong> Na ~ 2400 ppm. The silica concentr<strong>at</strong>ion is<br />

rel<strong>at</strong>ively high, ~ 900 ppm SiO 2 .<br />

8.3 Chloride concentr<strong>at</strong>ion as a function of vapour pressure <strong>at</strong> selected discharge enthalpies<br />

Chloride concentr<strong>at</strong>ion was modelled as a function of selected discharge enthalpies <strong>and</strong> vapour<br />

pressures. Discharge enthalpies selected were 2450, 2500, 2550, 2600, 2650 <strong>and</strong> 2675 kJ/kg <strong>and</strong> the<br />

vapour pressures ranged from 25 bars to 0.8 bar absolute. An <strong>in</strong>itial chloride concentr<strong>at</strong>ion of 100<br />

ppm <strong>at</strong> a vapour pressure of 25 bars was selected.<br />

Calcul<strong>at</strong>ion of any solute constituent concentr<strong>at</strong>ion e.g. chloride (Cl) <strong>in</strong> w<strong>at</strong>er <strong>at</strong> any pressure given the<br />

<strong>in</strong>itial concentr<strong>at</strong>ion <strong>in</strong> the fluid is based on the follow<strong>in</strong>g equ<strong>at</strong>ion:<br />

Cl = Cl<br />

s<br />

<strong>in</strong><br />

1 − X<br />

1 −X<br />

<strong>in</strong><br />

s<br />

8.3.0<br />

where X s <strong>and</strong> X <strong>in</strong> represent the steam fraction <strong>at</strong> any vapour pressure <strong>and</strong> 25 bar-abs, respectively.<br />

Cl s <strong>and</strong> Cl <strong>in</strong> represent the Cl concentr<strong>at</strong>ions <strong>in</strong> w<strong>at</strong>er <strong>at</strong> vapour pressure P s <strong>and</strong> 25 bars, <strong>and</strong>:<br />

100000<br />

X<br />

s<br />

h − h<br />

L<br />

t s<br />

= 8.3.1<br />

s<br />

Log chloride (ppm)<br />

10000<br />

1000<br />

2675 kJ/kg<br />

2650kJ/kg<br />

2550 kJ/kg<br />

2600kJ/kg<br />

2500 kJ/kg<br />

2450 kJ/kg<br />

X<br />

h − h<br />

t <strong>in</strong><br />

<strong>in</strong> = 8.3.2<br />

L<strong>in</strong><br />

h t represent the selected discharge<br />

enthalpy <strong>and</strong> h <strong>in</strong> <strong>and</strong> h s denote the enthalpy<br />

of steam s<strong>at</strong>ur<strong>at</strong>ed w<strong>at</strong>er <strong>at</strong> vapour<br />

pressures of 25 bar-abs, respectively. L <strong>in</strong><br />

<strong>and</strong> L s represent the l<strong>at</strong>ent he<strong>at</strong> of<br />

vaporis<strong>at</strong>ion <strong>at</strong> 25 bar-abs vapour pressure.<br />

100<br />

0 5 10 15 20 25<br />

Vapour pressure bars<br />

FIGURE 40: Modelled chloride concentr<strong>at</strong>ions <strong>at</strong><br />

selected enthalpies with vari<strong>at</strong>ions <strong>in</strong> vapour pressure<br />

Calcul<strong>at</strong>ed Cl concentr<strong>at</strong>ions as a function<br />

of vapour pressure <strong>at</strong> the selected<br />

enthalpies are shown <strong>in</strong> Figure 40.<br />

At high enthalpies, especially enthalpies<br />

close to those of dry steam i.e 2675 kJ/kg<br />

<strong>and</strong> <strong>at</strong> low vapour pressures close to<br />

<strong>at</strong>mospheric pressure the chloride<br />

concentr<strong>at</strong>ion <strong>in</strong>crease exponentially <strong>and</strong><br />

by more than 2 orders of magnitude. By<br />

lower<strong>in</strong>g the enthalpy of the well by 25 - 2650 kJ/kg the chloride concentr<strong>at</strong>ions <strong>at</strong> the low vapour<br />

pressures drops drastically. It drops by almost 2 orders of magnitude <strong>at</strong> vapour pressures close to<br />

42


<strong>at</strong>mospheric pressure. The results demonstr<strong>at</strong>e th<strong>at</strong> <strong>at</strong> discharge enthalpy close to th<strong>at</strong> of dry steam <strong>and</strong><br />

<strong>at</strong> low vapour pressures close to <strong>at</strong>mospheric pressure, most of the liquid is evapor<strong>at</strong>ed <strong>and</strong> the solutes<br />

become highly concentr<strong>at</strong>ed <strong>in</strong> the residual w<strong>at</strong>er.<br />

8.4 Scales deposited <strong>at</strong> well OW-34<br />

Scales formed from Olkaria well<br />

OW-34 fluids dur<strong>in</strong>g production<br />

were <strong>in</strong> the two phase l<strong>in</strong>e, <strong>in</strong>side<br />

the separ<strong>at</strong>or <strong>and</strong> <strong>in</strong> the separ<strong>at</strong>ed<br />

w<strong>at</strong>er l<strong>in</strong>e. The wellhead pressure<br />

<strong>in</strong> well OW-34 dur<strong>in</strong>g the time the<br />

well was <strong>in</strong> production was ~ 6 bar<br />

g. The fluids are separ<strong>at</strong>ed <strong>at</strong> 6 bar<br />

g <strong>in</strong> the wellhead separ<strong>at</strong>or. The<br />

separ<strong>at</strong>ed w<strong>at</strong>er l<strong>in</strong>e is exposed to<br />

the <strong>at</strong>mosphere <strong>at</strong> the <strong>at</strong>mospheric<br />

silencer. Atmospheric pressure <strong>at</strong><br />

Olkaria is ~ 0.8 bars. The layout<br />

of the flowl<strong>in</strong>e <strong>and</strong> wellhead<br />

equipment where the scale samples<br />

were collected is shown <strong>in</strong> Figure<br />

41.<br />

A<br />

In February to March 2003 a<br />

discharge flow test was conducted<br />

<strong>and</strong> the discharge gear left on the<br />

well pad after the tests until<br />

December 2004. The master valve<br />

of this well was leak<strong>in</strong>g <strong>and</strong> <strong>in</strong> the<br />

process formed a scale <strong>in</strong> the two<br />

phase flow l<strong>in</strong>e. This scale was ~<br />

1 <strong>in</strong>ch thick <strong>at</strong> the Tee connection.<br />

The layout of the discharge test<br />

gear <strong>and</strong> the loc<strong>at</strong>ion where the<br />

scale sample was collected are<br />

shown <strong>in</strong> Figure 41 b.<br />

Dur<strong>in</strong>g production of the well <strong>in</strong><br />

2001-2002 the heaviest scale<br />

formed <strong>in</strong> the two phase pipel<strong>in</strong>e <strong>at</strong><br />

B<br />

FIGURE 41: a) Layout of wellhead for well OW-34 fluids<br />

show<strong>in</strong>g where the scale th<strong>at</strong> formed dur<strong>in</strong>g production from<br />

March 2001 to September 2002 was collected;<br />

b) Layout of wellhead dur<strong>in</strong>g discharge tests <strong>in</strong><br />

which scale samples were collected<br />

a sharp bend th<strong>at</strong> lead to the steam separ<strong>at</strong>or st<strong>at</strong>ion. The thickness of this scale was about 1 <strong>in</strong>ch after<br />

about 18 months of the well be<strong>in</strong>g connected to the steam g<strong>at</strong>her<strong>in</strong>g system. The scale constricted the<br />

two-phase pipel<strong>in</strong>e <strong>and</strong> drastically reduced the amount of fluid th<strong>at</strong> flowed <strong>in</strong> the pipe <strong>and</strong> the total<br />

steam output of the well. The scale <strong>in</strong> the two phase l<strong>in</strong>e <strong>at</strong> loc<strong>at</strong>ion 2 (see Figure 41 a) is shown <strong>in</strong><br />

Figure 42. Scale sample # 3 was collected from <strong>in</strong>side the separ<strong>at</strong>or vessel, as shown <strong>in</strong> Figure 43.<br />

Other scale samples were collected from the wellhead Tee connection after the master valve (Figure<br />

44). The texture of the scale deposited <strong>at</strong> the well head Tee connection was similar to those deposited<br />

<strong>in</strong> the two phase pipel<strong>in</strong>e, though the thickness of the scales varied. About ½ <strong>in</strong>ch of scale was<br />

deposited <strong>and</strong> was hard. The fourth scale sample was collected from the separ<strong>at</strong>ed waste w<strong>at</strong>er l<strong>in</strong>e.<br />

This scale was ma<strong>in</strong>ly white <strong>in</strong> colour, with a little brown t<strong>in</strong>ge. The deposit formed globules <strong>and</strong><br />

ripples <strong>and</strong> was about ½ <strong>in</strong>ch <strong>in</strong> thickness. The scale deposited from the waste w<strong>at</strong>er l<strong>in</strong>e is shown <strong>in</strong><br />

Figure 45.<br />

43


Inside separ<strong>at</strong>or<br />

FIGURE 42. Scale deposited on<br />

the two phase l<strong>in</strong>e (scale # 2)<br />

FIGURE 43: Scale sample from <strong>in</strong>side the separ<strong>at</strong>or<br />

of well OW-34 (scale # 3)<br />

FIGURE 44: Scale formed <strong>at</strong> the Tee<br />

connection on well OW-34<br />

master valve (scale # 1)<br />

FIGURE 45: Scale deposit <strong>in</strong> the waste<br />

w<strong>at</strong>er l<strong>in</strong>e of well OW-34 (scale # 4)<br />

A fifth scale was collected from the Tee<br />

connection of the dismantled well discharge<br />

test gear. The scale was layered <strong>and</strong> the top<br />

layer was black <strong>and</strong> brittle while the layer<br />

below was slightly brown to white. The<br />

thickness of scale deposit was close to 1 <strong>in</strong>ch,<br />

formed between March 2003 <strong>and</strong> December<br />

2004. The leakage could have contributed to<br />

further cool<strong>in</strong>g of the fluid under flow<br />

conditions th<strong>at</strong> are not typical when the well<br />

is free flow<strong>in</strong>g. The scale deposit is shown <strong>in</strong><br />

Figure 46.<br />

8.5 Analysis of scales from well OW-34<br />

Techniques for the analysis of scales from<br />

Olkaria well OW-34 were similar to those<br />

applied <strong>in</strong> the analysis of scales deposited on<br />

coupons <strong>at</strong> Nesjavellir described <strong>in</strong> section<br />

Scale<br />

deposit<br />

FIGURE 46: Deposit of scale formed when<br />

well OW-34 master valve was leak<strong>in</strong>g<br />

(scale # 5 December 2004)<br />

7.3. Infrared analysis of the scale samples from the process flow from sample # 1 to # 5 are shown <strong>in</strong><br />

Figure 47.<br />

44


The IR spectra of scale samples #1<br />

to # 5 all have IR fe<strong>at</strong>ures similar to<br />

those of precipit<strong>at</strong>ed silica gel or<br />

amorphous silica. A broad<br />

asymmetric stretch<strong>in</strong>g b<strong>and</strong> is<br />

observed <strong>in</strong> all the spectra between<br />

3200 cm -1 <strong>and</strong> 3600 cm -1 . In all the<br />

scales the spectra b<strong>and</strong>s <strong>at</strong> ~ 3469 to<br />

3554 cm -1 are associ<strong>at</strong>ed with the<br />

hydroxyl group (OH) of the bound<br />

w<strong>at</strong>er <strong>in</strong> the crystal l<strong>at</strong>tice. Weak<br />

symmetric stretch<strong>in</strong>g vibr<strong>at</strong>ion<br />

b<strong>and</strong>s are observed <strong>at</strong> ~ 2852 cm -1<br />

<strong>and</strong> 2848 cm -1 <strong>and</strong> these represent<br />

C-H groups th<strong>at</strong> could be due to<br />

contam<strong>in</strong><strong>at</strong>ion by grease or oil.<br />

Molecular w<strong>at</strong>er (H 2 O) is present <strong>in</strong><br />

these scales represented by the<br />

spectra b<strong>and</strong> <strong>at</strong> 1641 cm -1 . In all the<br />

scales there is a strong peak <strong>in</strong> the<br />

range ~1099 - ~1033 cm -1 from<br />

bend<strong>in</strong>g O-Si-O vibr<strong>at</strong>ions due to<br />

antisymmetric Si-O-Si stretches.<br />

The second strongest peak between<br />

~ 469 <strong>and</strong> 465 cm -1 is due to O-Si-O<br />

bend<strong>in</strong>g vibr<strong>at</strong>ions <strong>and</strong> a weaker<br />

Counts<br />

3.4<br />

3.2<br />

3<br />

2.8<br />

2.6<br />

2.4<br />

2.2<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

# 4<br />

# 2<br />

# 3<br />

3469 -3554<br />

2852-2848 1641-1654<br />

1099 -1033<br />

950-970<br />

793-795<br />

465-469<br />

4500 4000 3500 3000 2500 2000 1500 1000 500 0<br />

Wavelength cm -1<br />

FIGURE 47: Infrared spectra of scale samples #1 - # 5<br />

collected from Olkaria well OW-34<br />

b<strong>and</strong> near 793-795 cm -1 is evalu<strong>at</strong>ed as due to symmetrical stretch<strong>in</strong>g of tetrahedrally co-ord<strong>in</strong><strong>at</strong>ed Si<br />

<strong>and</strong> Al. The 1099-1033 cm -1 b<strong>and</strong> has shoulders <strong>at</strong> ~1200 cm -1 on the low energy side <strong>and</strong> ~ 950-970<br />

cm -1 on the high energy side. The 950-970 cm -1 peak is particularly characteristic of amorphous silica.<br />

Scanned Electron Micrographs of the scale samples from well OW-34 fluids are presented <strong>in</strong><br />

Appendix C together with chemical analysis, shown <strong>in</strong> Table 2 <strong>and</strong> a summary of elements calcul<strong>at</strong>ed<br />

as oxides is presented <strong>in</strong> Table 3 of Appendix C.<br />

All the scale samples # 1 to # 5 are predom<strong>in</strong>antly composed of Silicon (Si) <strong>and</strong> Oxygen (O). The<br />

percent silicon composition <strong>in</strong> the scale samples # 1 to # 3 suggest th<strong>at</strong> silicon composition (Si) ranged<br />

between ~58 <strong>and</strong> ~37% <strong>and</strong> th<strong>at</strong> of oxygen (O) varied between 61 <strong>and</strong> 39%. These samples did not<br />

show any trace amounts of other elements <strong>in</strong> them. They could represent almost pure amorphous silica<br />

phases (Appendix C). Scale samples # 4 <strong>and</strong> # 5, though largely silica rich had a higher iron <strong>and</strong><br />

alum<strong>in</strong>ium content. Trace concentr<strong>at</strong>ions of iron <strong>in</strong> scale # 4 could have its orig<strong>in</strong> <strong>in</strong> the pipework or<br />

probably the walls of the separ<strong>at</strong>or while th<strong>at</strong> of scale # 5 could have its orig<strong>in</strong> from the pipework <strong>in</strong><br />

the discharge flow l<strong>in</strong>e.<br />

X-ray diffraction p<strong>at</strong>terns for the scales formed from Olkaria well OW-34 are shown <strong>in</strong> Figure 48. All<br />

the scales of samples # 1 to # 5 are largely amorphous to X rays. They all depict a broad peak <strong>at</strong> ~ 23˚<br />

2θ, characteristic of amorphous silica or opal<strong>in</strong>e silic<strong>at</strong>es. Scale sample # 5 has a small diffraction<br />

peak centred <strong>at</strong> ~ 27˚ 2θ alongwith the broad spectra b<strong>and</strong> <strong>at</strong> ~ 23˚ 2θ for amorphous silica phases.<br />

The diffraction peak <strong>at</strong> ~ 27 ˚ 2θ could be due to quartz <strong>in</strong> the scale sample.<br />

Results of chemical analysis of the scales by ICP are shown <strong>in</strong> Table 6 of Appendix A together with<br />

analysis of scales formed on coupons <strong>at</strong> Nesjavellir. Scales # 1 to # 4 have trace amounts of the major<br />

aqueous c<strong>at</strong>ions except for calcium which is present <strong>in</strong> high concentr<strong>at</strong>ions <strong>in</strong> scale # 3 Z<strong>in</strong>c is<br />

abundant <strong>in</strong> scale # 1. The source of high calcium (Ca) <strong>and</strong> z<strong>in</strong>c (Zn) concentr<strong>at</strong>ions <strong>in</strong> these scales is<br />

hard to establish but could be due to contam<strong>in</strong><strong>at</strong>ion. The calcium may also reflect the presence of a<br />

# 1<br />

# 5<br />

45


calcium silic<strong>at</strong>e or calcium carbon<strong>at</strong>e. Concentr<strong>at</strong>ions of the major elements, sodium, potassium,<br />

calcium are rel<strong>at</strong>ively high <strong>in</strong> scale sample # 5 has <strong>and</strong> also those of the transition elements rel<strong>at</strong>ive to<br />

the other scale samples. The high concentr<strong>at</strong>ions of the major elements could be due to <strong>in</strong>corpor<strong>at</strong>ion<br />

of br<strong>in</strong>e <strong>in</strong>to the scale. The iron (Fe) <strong>and</strong> alum<strong>in</strong>ium (Al) contents <strong>in</strong> this scale sample are rel<strong>at</strong>ively<br />

high. It is probable th<strong>at</strong> the Fe was dissolved from the flowpipe. Iron content is also rel<strong>at</strong>ively high <strong>in</strong><br />

scales #1 <strong>and</strong> #2 <strong>and</strong> it is likely th<strong>at</strong> the source of this rel<strong>at</strong>ively high iron is the two phase pipel<strong>in</strong>e <strong>and</strong><br />

th<strong>at</strong> it is dissolved from the pipel<strong>in</strong>e. The high contents of Al <strong>in</strong> scale #5 could be <strong>in</strong>dic<strong>at</strong>ive of some<br />

clays <strong>in</strong> the scale or Al <strong>in</strong> the amorphous silica phase.<br />

Silica content of scale samples # 1 to # 5 as also analysed spectrophotometrically. The percentage of<br />

silica <strong>in</strong> all scales was above ~ 40 percent. In scale # 3 the percentage of silica is close to 90 percent.<br />

The percentage of silica <strong>in</strong> the scales could vary dur<strong>in</strong>g dissolution. It is probable th<strong>at</strong> all or most of<br />

the silica did not dissolve dur<strong>in</strong>g dissolution. Silica constitutes a major component of these scales as<br />

determ<strong>in</strong>ed by the UV spectrophotometry. The total silica composition determ<strong>in</strong>ed by UV<br />

spectrophotometry plus th<strong>at</strong> obta<strong>in</strong>ed from the analysis by ICP totalled ~ 45 percent for the scale with<br />

the lowest silica concentr<strong>at</strong>ion <strong>and</strong> ~ 100 percent for the scale with highest silica concentr<strong>at</strong>ion. The<br />

results of analysis by UV spectrophotometry <strong>and</strong> subsequent calcul<strong>at</strong>ion are shown <strong>in</strong> Table 7 of<br />

Appendix A.<br />

2300<br />

2200<br />

2100<br />

2000<br />

Kizito samples<br />

1900<br />

1800<br />

1700<br />

Amorph silica<br />

1600<br />

1500<br />

L<strong>in</strong> (Counts)<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

OW-34 #1<br />

OW-34 #2<br />

OW-34 #3<br />

OW-34 #4<br />

OW-34 #5<br />

100<br />

0<br />

3 10 20 30 40 50 60<br />

2-Theta - Scale<br />

39078/OW-34 #1 D5MEAS - Program:MIN-MAG.DQLD5MEAS - Program:MIN-MAG.DQL - File: 39078.RAW - Type: 2Th/Th locked - Start: 4.000 ° - End: 64.000 ° - Step: 0.040 ° - Step time: 1. s - Temp.: 2<br />

39079/OW-34 #2 D5MEAS - Program:MIN-MAG.DQLD5MEAS - Program:MIN-MAG.DQL - File: 39079.RAW - Type: 2Th/Th locked - Start: 4.000 ° - End: 64.000 ° - Step: 0.040 ° - Step time: 1. s - Temp.: 2<br />

39080/OW-34 #3 D5MEAS - Program:MIN-MAG.DQLD5MEAS - Program:MIN-MAG.DQL - File: 39080.RAW - Type: 2Th/Th locked - Start: 4.000 ° - End: 64.000 ° - Step: 0.040 ° - Step time: 1. s - Temp.: 2<br />

39081/OW-34 #4 D5MEAS - Program:MIN-MAG.DQLD5MEAS - Program:MIN-MAG.DQL - File: 39081.RAW - Type: 2Th/Th locked - Start: 4.000 ° - End: 64.000 ° - Step: 0.040 ° - Step time: 1. s - Temp.: 2<br />

39082/OW-34 #5 D5MEAS - Program:MIN-MAG.DQLD5MEAS - Program:MIN-MAG.DQL - File: 39082.RAW - Type: 2Th/Th locked - Start: 4.000 ° - End: 64.000 ° - Step: 0.040 ° - Step time: 1. s - Temp.: 2<br />

FIGURE 48: X-Ray diffraction analysis of scale samples # 1 - # 5 from Olkaria well OW-34<br />

46


9. CONCLUSIONS<br />

Olkaria well fluids generally exhibit a discharge enthalpy th<strong>at</strong> ranges from slightly less than 1000<br />

kJ/kg to a s<strong>at</strong>ur<strong>at</strong>ed steam enthalpy of about 2700 kJ/kg. Most <strong>wells</strong> have “excess enthalpy”.<br />

Enthalpy for selected <strong>wells</strong> from Svartsengi, Reykjanes, <strong>and</strong> Nesjavellir is variable. In Svartsengi the<br />

enthalpy of the fluids is fairly homogenous <strong>and</strong> apart from <strong>wells</strong> th<strong>at</strong> tap <strong>in</strong>to the shallow steam cap,<br />

average enthalpy for the fluids is ~ 1030 kJ/kg. Enthalpy of well fluids <strong>in</strong> Reykjanes is slightly higher,<br />

between 1300 kJ/kg <strong>and</strong> 1400 kJ/kg for the selected <strong>wells</strong>. At Nesjavellir the discharge enthalpies of<br />

the <strong>wells</strong> are high <strong>and</strong> most <strong>wells</strong> have enthalpy >1600 kJ/kg. For the selected <strong>wells</strong>, the enthalpy<br />

varied between ~ 1400 kJ/kg <strong>and</strong> ~ 1800 kJ/kg. “Excess enthalpy” <strong>in</strong> all <strong>wells</strong> considered for the<br />

present study is adequ<strong>at</strong>ely expla<strong>in</strong>ed by phase segreg<strong>at</strong>ion <strong>in</strong> produc<strong>in</strong>g aquifers.<br />

The average of tqtz <strong>and</strong> tNa/K for the <strong>wells</strong> studied <strong>in</strong> Olkaria <strong>and</strong> Nesjavellir were taken to represent<br />

the aquifer temper<strong>at</strong>ures. Quartz equilibrium temper<strong>at</strong>ures were calcul<strong>at</strong>ed us<strong>in</strong>g the phase segreg<strong>at</strong>ion<br />

model. Large differences are observed between tqtz <strong>and</strong> tNaK for some <strong>wells</strong> <strong>in</strong> Olkaria. These <strong>wells</strong><br />

have discharge enthalpy close to th<strong>at</strong> of steam s<strong>at</strong>ur<strong>at</strong>ed w<strong>at</strong>er <strong>at</strong> aquifer temper<strong>at</strong>ure so aquifer w<strong>at</strong>er<br />

composition is not the source of error. Measured downhole aquifer temper<strong>at</strong>ures <strong>in</strong> thermally<br />

stabilised <strong>wells</strong> were used for Reykjanes <strong>and</strong> Svartsengi.<br />

The phase segreg<strong>at</strong>ion model does not take <strong>in</strong>to account changes <strong>in</strong> composition of the flow<strong>in</strong>g fluid<br />

between the wellhead <strong>and</strong> <strong>in</strong>itial conditions by precipit<strong>at</strong>ion or dissolution of m<strong>in</strong>erals. When<br />

geothermal w<strong>at</strong>er degasses by boil<strong>in</strong>g, many reactions tend to occur. Changes <strong>in</strong> temper<strong>at</strong>ure occur as<br />

a consequence of depressuris<strong>at</strong>ion boil<strong>in</strong>g <strong>and</strong> may cause changes <strong>in</strong> s<strong>at</strong>ur<strong>at</strong>ion with respect to many<br />

m<strong>in</strong>erals. Speci<strong>at</strong>ion calcul<strong>at</strong>ions may thus <strong>in</strong>dic<strong>at</strong>e significant departures from equilibrium between<br />

m<strong>in</strong>erals <strong>and</strong> the w<strong>at</strong>er <strong>in</strong> the aquifer beyond the depressuris<strong>at</strong>ion zone, even when such equilibrium is<br />

closely approached <strong>in</strong> the <strong>in</strong>itial fluid. Large errors <strong>in</strong> SI values can arise when potential m<strong>in</strong>eral <strong>and</strong><br />

precipit<strong>at</strong>ion reactions are ignored, especially for m<strong>in</strong>erals which conta<strong>in</strong> chemical components<br />

present <strong>in</strong> low concentr<strong>at</strong>ions <strong>in</strong> the <strong>in</strong>itial w<strong>at</strong>er. The effect is much smaller for components, which<br />

are abundant <strong>in</strong> the fluid such as reactive gases (CO 2 , H 2 S <strong>and</strong> H 2 )<br />

The concentr<strong>at</strong>ion of CO 2 <strong>in</strong> the aquifer w<strong>at</strong>er of Olkaria, Reykjanes, Svartsengi <strong>and</strong> Nesjavellir is<br />

generally <strong>in</strong> the range of 60-5000 ppm except <strong>in</strong> Olkaria West where it is as high as 43,026 ppm. In<br />

Olkaria West the aquifer fluid CO 2 concentr<strong>at</strong>ions are considered to be much affected by its r<strong>at</strong>e of<br />

supply from the magm<strong>at</strong>ic he<strong>at</strong> source where <strong>in</strong> other parts of Olkaria <strong>and</strong> the other study areas aquifer<br />

w<strong>at</strong>er CO 2 is fixed by equilibr<strong>at</strong>ion with a specific m<strong>in</strong>eral buffer. The CO 2 -rich w<strong>at</strong>ers <strong>in</strong> Olkaria west<br />

could cause corrosion on the outside of well cas<strong>in</strong>g. This should be <strong>in</strong>vestig<strong>at</strong>ed. Condens<strong>at</strong>es th<strong>at</strong><br />

form due to dissolution of CO 2 would be lower for Olkaria West than <strong>in</strong> the rest of the study areas.<br />

The rel<strong>at</strong>ively low concentr<strong>at</strong>ions of CO 2 <strong>in</strong> the other sectors of Olkaria, as well as Reykjanes,<br />

Svartsengi <strong>and</strong> Nesjavellir do pose a low risk <strong>in</strong> develop<strong>in</strong>g CO 2 rich w<strong>at</strong>er th<strong>at</strong> would be <strong>corrosive</strong>.<br />

HCl concentr<strong>at</strong>ions <strong>in</strong> the aquifer w<strong>at</strong>ers <strong>and</strong> steam are controlled by pH, temper<strong>at</strong>ure <strong>and</strong> chloride<br />

concentr<strong>at</strong>ions. The Olkaria <strong>and</strong> Nesjavellir aquifer w<strong>at</strong>ers conta<strong>in</strong> very low HCl concentr<strong>at</strong>ions<br />

(1.65×10 -5 <strong>and</strong> 2×10 -3 ppm <strong>in</strong> Olkaria <strong>and</strong> 1×10 -5 ppm <strong>in</strong> Nesjavellir). In Reykjanes <strong>and</strong> Svartsengi,<br />

the HCl concentr<strong>at</strong>ion is higher (0.32 <strong>and</strong> 0.81 ppm <strong>and</strong> 0.056 <strong>and</strong> 0.083 ppm, respectively) due to a<br />

lower pH <strong>and</strong> higher chloride concentr<strong>at</strong>ions <strong>in</strong> the fluids. Much higher HCl concentr<strong>at</strong>ions are<br />

present <strong>in</strong> the steam <strong>at</strong> the wellheads <strong>at</strong> Reykjanes (0.65 ppm) than <strong>at</strong> Svartsengi due to high steam<br />

separ<strong>at</strong>ion pressures. The HCl <strong>in</strong> the steam <strong>at</strong> Reykjanes would produce a pH of about 5.5 <strong>in</strong> a<br />

condens<strong>at</strong>e. It is accord<strong>in</strong>gly concluded th<strong>at</strong> HCl <strong>in</strong> steam (0.65 ppm) <strong>at</strong> the wellheads <strong>at</strong> Reykjanes is<br />

an unlikely corrosion c<strong>and</strong>id<strong>at</strong>e <strong>and</strong> even much less likely <strong>in</strong> the other study areas.<br />

The undisturbed aquifer w<strong>at</strong>ers <strong>in</strong> all the study areas are expected to be close to equilibrium with<br />

calcite. Calcul<strong>at</strong>ed s<strong>at</strong>ur<strong>at</strong>ion <strong>in</strong>dices for calcite show, however, considerable sc<strong>at</strong>ter. The cause of this<br />

sc<strong>at</strong>ter is partly considered to be analytical imprecision, particularly with respect to pH but also<br />

removal of calcium from solution between <strong>in</strong>itial aquifer conditions <strong>and</strong> wellhead by calcite<br />

precipit<strong>at</strong>ion. Further the quality of the thermodynamic d<strong>at</strong>a used to calcul<strong>at</strong>e the calcite activity<br />

47


product may contribute as well as the presence of equilibrium steam <strong>in</strong> the aquifer. In calcul<strong>at</strong><strong>in</strong>g<br />

aqueous <strong>species</strong> distribution <strong>in</strong> the aquifer w<strong>at</strong>er such equilibrium steam was assumed not to be<br />

present. Calcul<strong>at</strong>ed vari<strong>at</strong>ion <strong>in</strong> the calcite s<strong>at</strong>ur<strong>at</strong>ion st<strong>at</strong>e upon adiab<strong>at</strong>ic boil<strong>in</strong>g is considerably more<br />

accur<strong>at</strong>e than calcul<strong>at</strong>ion of the absolute s<strong>at</strong>ur<strong>at</strong>ion st<strong>at</strong>e. Upon boil<strong>in</strong>g degass<strong>in</strong>g of the w<strong>at</strong>er with<br />

respect to CO 2 generally causes an <strong>in</strong>itially calcite s<strong>at</strong>ur<strong>at</strong>ed w<strong>at</strong>er to become supers<strong>at</strong>ur<strong>at</strong>ed. This is<br />

particularly the case with w<strong>at</strong>ers high <strong>in</strong> CO 2 such as <strong>in</strong> Olkaria West <strong>and</strong> where aquifer temper<strong>at</strong>ures<br />

are around 200°C but CO 2 solubility <strong>in</strong> w<strong>at</strong>er <strong>at</strong> m<strong>in</strong>imum around 200°C. In rel<strong>at</strong>ively high<br />

temper<strong>at</strong>ure <strong>and</strong> low CO 2 w<strong>at</strong>ers, such as <strong>at</strong> Nesjavellir, early boil<strong>in</strong>g may only cause limited<br />

degass<strong>in</strong>g <strong>and</strong> not calcite supers<strong>at</strong>ur<strong>at</strong>ion. Prolonged depressuriz<strong>at</strong>ion boil<strong>in</strong>g, which leads to a<br />

decrease <strong>in</strong> fluid temper<strong>at</strong>ure, decreases the calcite s<strong>at</strong>ur<strong>at</strong>ion <strong>in</strong>dex due to the retrograde solubility of<br />

calcite with respect to temper<strong>at</strong>ure. This often causes boiled geothermal w<strong>at</strong>ers to be calcite<br />

unders<strong>at</strong>ur<strong>at</strong>ed. Calcite <strong>scal<strong>in</strong>g</strong> is not expected to be a problem <strong>at</strong> Olkaria <strong>and</strong> Nesjavellir <strong>and</strong> neither<br />

<strong>at</strong> Svartsengi <strong>and</strong> Reykjanes if the first depth level of boil<strong>in</strong>g is outside <strong>wells</strong> i.e. <strong>in</strong> the produc<strong>in</strong>g<br />

aquifers.<br />

Scal<strong>in</strong>g tests <strong>at</strong> Nesjavellir showed th<strong>at</strong> <strong>at</strong> high temper<strong>at</strong>ures of the wellheads of <strong>wells</strong> NJ-14 <strong>and</strong> NJ-<br />

22, the two phase fluids deposited scales th<strong>at</strong> were dom<strong>in</strong>antly sulphide phases <strong>in</strong> well NJ-14 fluids<br />

<strong>and</strong> mixed sulphides <strong>and</strong> oxides <strong>in</strong> the case of well NJ-22. The scales were essentially amorphous to<br />

X-rays. There were however, some <strong>in</strong>dic<strong>at</strong>ions of some m<strong>in</strong>eral phases <strong>in</strong> the scales such as<br />

chalcopyrite <strong>and</strong> clayey m<strong>at</strong>erial. Separ<strong>at</strong>ed w<strong>at</strong>ers after the he<strong>at</strong> exchangers, entry to the retention<br />

tank <strong>and</strong> <strong>at</strong> the <strong>in</strong>jection well deposited ma<strong>in</strong>ly amorphous silica but there are also some <strong>in</strong>dic<strong>at</strong>ions of<br />

the presence of clays <strong>in</strong> the scales. The r<strong>at</strong>e of deposition of ~0.261 mm/yr was highest <strong>at</strong> the entry to<br />

the retention tank <strong>and</strong> much lower of ~ 0.0168 mm/yr <strong>at</strong> the <strong>in</strong>jection well. Silica polymeris<strong>at</strong>ion<br />

occurs <strong>in</strong> the retention tank <strong>and</strong> this reduces the r<strong>at</strong>e of silica deposition <strong>at</strong> the <strong>in</strong>jection well. At entry<br />

to the retention tank, the high r<strong>at</strong>e of deposition could be due to supers<strong>at</strong>ur<strong>at</strong>ion by monomeric silica<br />

which causes a higher r<strong>at</strong>e of precipit<strong>at</strong>ion (Yanagase et al., 1970; Rothbaum, 1979). An <strong>in</strong>termedi<strong>at</strong>e<br />

test site between the steam separ<strong>at</strong>ors <strong>and</strong> the wellheads could be chosen to <strong>in</strong>vestig<strong>at</strong>e the type of<br />

scales th<strong>at</strong> would form.<br />

The solute content of the w<strong>at</strong>er discharged from the <strong>at</strong>mospheric silencer of Olkaria well OW-34 is<br />

high The discharge enthalpy of the well fluids is close to th<strong>at</strong> of dry steam lead<strong>in</strong>g to extensive<br />

evapor<strong>at</strong>ion of the w<strong>at</strong>er fraction <strong>in</strong> the discharge by depressuriz<strong>at</strong>ion boil<strong>in</strong>g to a low pressure. This<br />

extensive evapor<strong>at</strong>ion is thought to be the cause of the high salt content of the w<strong>at</strong>er discharged <strong>at</strong><br />

<strong>at</strong>mospheric pressure as well as the extensive amorphous silica scale form<strong>at</strong>ion.<br />

A solution to this <strong>scal<strong>in</strong>g</strong> problem <strong>in</strong>volves mix<strong>in</strong>g of the discharge of well OW-34 with separ<strong>at</strong>ed<br />

br<strong>in</strong>e or condens<strong>at</strong>e from another well e.g. well R-3 where separ<strong>at</strong>ed br<strong>in</strong>es from the Olkaria II plant<br />

are be<strong>in</strong>g re-<strong>in</strong>jected to lower the discharge enthalpy of OW-34. This will reduce the amount of<br />

evapor<strong>at</strong>ion of w<strong>at</strong>er <strong>in</strong> well OW-34. Theoretical calcul<strong>at</strong>ions based on mass balance equ<strong>at</strong>ions,<br />

chloride concentr<strong>at</strong>ion of spent br<strong>in</strong>e be<strong>in</strong>g re-<strong>in</strong>jected <strong>in</strong> well R-3 <strong>and</strong> th<strong>at</strong> of well OW-34 for<br />

purposes of dilut<strong>in</strong>g the w<strong>at</strong>er have been tried. In this way aqueous silica concentr<strong>at</strong>ions will not build<br />

up to the same extent <strong>and</strong> amorphous silica deposition will be reduced or <strong>in</strong>hibited.<br />

48


REFERENCES<br />

Allegr<strong>in</strong>i, G., <strong>and</strong> Benvenuti, G., 1970: Corrosion characteristics <strong>and</strong> geothermal power plant<br />

protection (Coll<strong>at</strong>eral processes of abrasion, erosion <strong>and</strong> <strong>scal<strong>in</strong>g</strong>) U.N. Symposium on the development<br />

<strong>and</strong> utilis<strong>at</strong>ion of geothermal resources, Pisa, Geothermics, 865-881.<br />

Ármannsson, H., 1989: Predict<strong>in</strong>g calcite deposition <strong>in</strong> Krafla boreholes. Geothermics, 18, 25-32.<br />

Ármannsson, H., 2003: CO 2 emissions from geothermal plants. Proc. of the Intern<strong>at</strong>ional Geothermal<br />

Conference IC2003, Reykjavik, 56-62.<br />

Ármannsson, H., Gíslason, G., <strong>and</strong> Haukson, T., 1982: Magm<strong>at</strong>ic gases <strong>in</strong> well fluids aid the mapp<strong>in</strong>g<br />

of the flow of p<strong>at</strong>tern <strong>in</strong> a geothermal system. Geochim. Cosmochim. Acta, 46, 167-177<br />

Arnόrsson, S., 1978: Precipit<strong>at</strong>ion of calcite from flashed geothermal w<strong>at</strong>ers <strong>in</strong> Icel<strong>and</strong>. Contrib.<br />

M<strong>in</strong>eral. Petrol., 66, 21-28.<br />

Arnόrsson, S., 1981: M<strong>in</strong>eral deposition from Icel<strong>and</strong>ic geothermal w<strong>at</strong>ers, environmental <strong>and</strong><br />

utilis<strong>at</strong>ion problems. J. Petr. Techn., 33, 181-187.<br />

Arnόrsson, S., 1989: Deposition of calcium carbon<strong>at</strong>e from geothermal w<strong>at</strong>ers – theoretical<br />

consider<strong>at</strong>ions. Geothermics, 18, 33-89.<br />

Arnόrsson, S., 1995: Scal<strong>in</strong>g problems <strong>and</strong> tre<strong>at</strong>ment of separ<strong>at</strong>ed w<strong>at</strong>er before <strong>in</strong>jection. In: Rivera, J.<br />

(ed), Injection technology. World Geothermal Congress 1995; IGA pre-congress course, Pisa, Italy,<br />

May 1995, 65-111.<br />

Arnόrsson, S., 2000a: The quartz <strong>and</strong> Na/K geothermeters. I. New thermodynamic caliber<strong>at</strong>ion. Proc.<br />

of World Geothermal Congress 2000, Kyushu- Tohuku, Japan, 929-933.<br />

Arnόrsson, S., 2000b: Injection of waste geothermal fluids: Chemical aspects. Proc. of the World<br />

Geothermal Congres 2000, Kyushu- Tohuku, Japan, 3021-3025.<br />

Arnόrsson, S., <strong>and</strong> Stefánsson, A., 2005: Wet steam well discharges.I. Sampl<strong>in</strong>g <strong>and</strong> calcul<strong>at</strong>ion of<br />

total discharge compositions. Proc. of World Geothermal Congress 2005, Antalya, Turkey,<br />

Arnórsson, S., D’Amore, F., <strong>and</strong> Gerardo-Abaya, J., 2000: Isotopic <strong>and</strong> chemical techniques <strong>in</strong><br />

geothermal explor<strong>at</strong>ion, development <strong>and</strong> use. In: Arnórsson, S. (ed.), Isotopic <strong>and</strong> chemical<br />

techniques <strong>in</strong> geothermal explor<strong>at</strong>ion, development <strong>and</strong> use. Sampl<strong>in</strong>g methods, d<strong>at</strong>a h<strong>and</strong>l<strong>in</strong>g,<br />

<strong>in</strong>terpret<strong>at</strong>ion. Intern<strong>at</strong>ional Atomic Energy Agency, Vienna.<br />

Arnόrsson, S., Geirsson, K., Andrésdόttir, A., <strong>and</strong> Sigurdsson, S., 1996: Compil<strong>at</strong>ion <strong>and</strong> evalu<strong>at</strong>ion<br />

of thermodynamic d<strong>at</strong>a on aqueous <strong>species</strong> <strong>and</strong> dissoci<strong>at</strong>ional equilibria <strong>in</strong> aqueous solution I. The<br />

solubility of CO 2 , H 2 S, H 2 , N 2 , O 2 <strong>and</strong> Ar <strong>in</strong> pure w<strong>at</strong>er. University of Icel<strong>and</strong>, Science Institute, report<br />

No. RH-17-96, 74 pp.<br />

Arnόrsson, S., Sigurdsson, S., <strong>and</strong> Svavarsson, H., 1982: The chemistry of geothermal w<strong>at</strong>ers <strong>in</strong><br />

Icel<strong>and</strong> I. Calcul<strong>at</strong>ion of aqueous speci<strong>at</strong>ion from 0°C to 370°C. Geochim. Cosmochim. Acta, 46,<br />

1513-1532.<br />

Benoit, W., 1989: Carbon<strong>at</strong>e <strong>scal<strong>in</strong>g</strong> characteristics <strong>in</strong> Dixie Valley, Nevada geothermal wellbores.<br />

Geothermics, 18, 41-48.<br />

Bert<strong>in</strong>i, R., 2005: World geothermal power gener<strong>at</strong>ion <strong>in</strong> the period 2001-2005. Geothermics, 34, 651-<br />

690.<br />

49


Bjarnasson, J.Ö., 1984: Chemical composition of geothermal br<strong>in</strong>e <strong>and</strong> steam <strong>in</strong> well 9 <strong>in</strong> Reykjanes.<br />

<strong>Orkustofnun</strong>, Reykjavík, report OS-84049/JHDY3B (<strong>in</strong> Icel<strong>and</strong>ic).<br />

Bjarnasson, J.Ö., 1994: Computer code WATCH, version 2.1. <strong>Orkustofnun</strong>, Reykjavík, 56 pp.<br />

Bjarnasson, J.Ö., <strong>and</strong> Björnsson, G., 1995: Computer Code TAFLA, version 2.0. <strong>Orkustofnun</strong>,<br />

Reykjavík, 56 pp.<br />

Björnsson, G., 1999: Predict<strong>in</strong>g future performance of a shallow steam zone <strong>in</strong> the Svartsengi<br />

geothermal field, Icel<strong>and</strong>. Proc. of 24 th Workshop on Geothermal Reservoir Eng<strong>in</strong>eer<strong>in</strong>g, Stanford<br />

University, Stanford, California.<br />

Björnsson, G., <strong>and</strong> Ste<strong>in</strong>grίmsson, B., 1992: “Fifteen years of pressure <strong>and</strong> temper<strong>at</strong>ure monitor<strong>in</strong>g <strong>in</strong><br />

the Svartsengi geothermal field, Icel<strong>and</strong>”. GRC, Transactions, 16, 627-632.<br />

Björnsson, S., Arnόrsson, S. <strong>and</strong> Tómasson, J., 1972: Economic evalu<strong>at</strong>ion of Reykjanes thermal<br />

br<strong>in</strong>e area. Am. Ass. of Petrol. Geol. Bull. 56 (12), 238-239.<br />

Bodvarsson, G. S., <strong>and</strong> Pruess, K., 1987: Numerical simul<strong>at</strong>ion studies of the Olkaria geothermal field.<br />

Kenya Power Company Co. Ltd, unpublished <strong>in</strong>ternal report.<br />

Boulton, L.H., <strong>and</strong> Wright, G.A., 1983: Fundamentals of metallic corrosion <strong>and</strong> its prevention.<br />

Australasian Corrosion Associ<strong>at</strong>ion, New Zeal<strong>and</strong> Branch Inc., Auckl<strong>and</strong>, New Zeal<strong>and</strong>, 40 pp.<br />

Browne, P.R.L., 1984: Subsurface str<strong>at</strong>igraphy <strong>and</strong> alter<strong>at</strong>ion of the eastern section of Olkaria<br />

geothermal field, Kenya. Proc of 6 th New Zeal<strong>and</strong> Geothermal Workshop, Geothermal Institute,<br />

Auckl<strong>and</strong>, 33-42.<br />

Busenberg, E., <strong>and</strong> Plummer, L.N., 1986: A compar<strong>at</strong>ive study of the dissolution <strong>and</strong> crystal growth<br />

k<strong>in</strong>etics of calcite <strong>and</strong> aragonite. USGS Bull. 1578, 139-168.<br />

C<strong>and</strong>elaria, M.R., Cabel Jr., A.C., Bun<strong>in</strong>g, B.C., <strong>and</strong> Noriega Jr., M.T., 2000: Calcite <strong>in</strong>hibition field<br />

trials <strong>at</strong> the M<strong>in</strong>danao geothermal production field (MGPH), Philipp<strong>in</strong>es. Proc.of World Geothermal<br />

Congress, Kyushu-Tohuku, Japan, 2171-2176.<br />

Chen, C.T., <strong>and</strong> Marshall, W.L., 1982: Amorphous silica solubilities IV: Behaviour <strong>in</strong> pure w<strong>at</strong>er <strong>and</strong><br />

aqueous sodium chloride, sodium sulph<strong>at</strong>e, magnesium chloride <strong>and</strong> magnesium sulph<strong>at</strong>e solutions<br />

upto 350°C. Geochim. Cosmochim. Acta, 46, 279-28.<br />

Clarke, M.C.G., Woodhall, D.G., Allen, D., <strong>and</strong> Darl<strong>in</strong>g, G., 1990: Geological, volcanological <strong>and</strong><br />

hydrological controls on the occurrence of geothermal activity <strong>in</strong> the area surround<strong>in</strong>g Lake<br />

Naivasha, Kenya, with coloured 1:100,000 geological maps. M<strong>in</strong>istry of Energy, Nairobi, 138 pp.<br />

Conover, M., Ellis, P., <strong>and</strong> Curzon, A., 1979: M<strong>at</strong>erial selection guidel<strong>in</strong>es for geothermal power<br />

systems – An overview. In: Casper, L.A., <strong>and</strong> P<strong>in</strong>chback, T.R., (eds), Geothermal <strong>scal<strong>in</strong>g</strong> <strong>and</strong><br />

corrosion. ASTM, STP 717, 17 pp.<br />

Corsi, R., 1986; Corrosion <strong>and</strong> <strong>scal<strong>in</strong>g</strong> <strong>in</strong> geothermal fluids. Geothermics, 15, 94 -96.<br />

D’Amore, F., Cel<strong>at</strong>i, R., Ferrara, G.C., <strong>and</strong> Panichi, C., 1977: Secondary changes <strong>in</strong> chemical <strong>and</strong><br />

isotopic composition of the geothermal fluids <strong>in</strong> Larderallo. Geothermics, 5, 153-163.<br />

D’Amore, F., Giusti, D., Abdallah, A., 1998: Geochemistry of high-sal<strong>in</strong>ity geothermal field of Asal.,<br />

Republic of Djibouti, Africa. Geothermics, 27, 197-210.<br />

50


D’Amore, F., Truesdell, A.H., <strong>and</strong> Haizlip, R.J., 1990: Production of HCl by m<strong>in</strong>eral reactions <strong>in</strong><br />

high-temper<strong>at</strong>ure geothermal systems. Proc. of 15 th Workshop on Geothermal Reservoir Eng<strong>in</strong>eer<strong>in</strong>g,<br />

Stanford, Stanford University, Ca., 199-210.<br />

Dom<strong>in</strong>guiz, A., 1980: Well completion <strong>and</strong> development <strong>at</strong> Cerro Prieto. Geothermics, 9, 101-131.<br />

Durak, S., Erkan, B., Askoy,N., 1993: Calcite removal from the wellbores of Kizildere geothermal<br />

field, Turkey. Proc. of the 15 th New Zeal<strong>and</strong> Geothermal Workshop, Auckl<strong>and</strong>, NZ, 5-10.<br />

Ellis, A.J., <strong>and</strong> Mahon, W.A.J., 1977: Chemistry <strong>and</strong> geothermal systems. Academic Press, New<br />

York, 392 pp.<br />

Franzson, H., 1983: The Svartsengi high-temper<strong>at</strong>ure field, Icel<strong>and</strong>. GRC, Transactions, 7, 627-633.<br />

Franzson, H., 1995: Geological aspects of the Svartsengi high-T field Reykjanes pen<strong>in</strong>sula, Icel<strong>and</strong>.<br />

Proc. of the 8 th Intern<strong>at</strong>ional Symposium on W<strong>at</strong>er-Rock Interaction - WRI-8, 497-500.<br />

Fournier, R.O., 1973: Silica <strong>in</strong> thermal w<strong>at</strong>ers: Labor<strong>at</strong>ory <strong>and</strong> field <strong>in</strong>vestig<strong>at</strong>ions. In: Proc. Int. Symp.<br />

on Hydrogeochemistry <strong>and</strong> Biochemistry, Tokyo, 1970, I - Hydrochemistry. Clark, Wash<strong>in</strong>gton, D.C.,<br />

122-139.<br />

Fournier, R.O., 1983: A method of calcul<strong>at</strong><strong>in</strong>g quartz solubilities <strong>in</strong> aqueous sodium chloride<br />

solutions. Geochim. Cosmochim Acta, 47, 579-586.<br />

Fournier, R.O., 1985: The behaviour of silica <strong>in</strong> hydrothermal solutions. In: Berger, B.R., <strong>and</strong> Bethte,<br />

P.M. (eds.), Geology <strong>and</strong> geochemistry of epithermal systems. Society of Economic Geologists, 45-61.<br />

Fournier, R.O., <strong>and</strong> Marshall., 1983: Calcul<strong>at</strong>ion of amorphous silica solubilities <strong>at</strong> 25˚ C to 300˚ C<br />

<strong>and</strong> apparent c<strong>at</strong>ion hydr<strong>at</strong>ion numbers <strong>in</strong> aqueous salt solutions us<strong>in</strong>g the concept of effective density<br />

of w<strong>at</strong>er. Geochim. Cosmochim Acta, 47, 587-596.<br />

Fournier, R.O., <strong>and</strong> Potter, R.W., 1982: The solubility of quartz from 25˚C to 900˚C <strong>at</strong> pressures upto<br />

10,000 bars. Geochim. Cosmochim. Acta, 46, 1969-1973.<br />

Fournier, R.O., <strong>and</strong> Rowe, J.J., 1966: Estim<strong>at</strong>ion of underground temper<strong>at</strong>ures from the silica contents<br />

of w<strong>at</strong>er from hot spr<strong>in</strong>gs <strong>and</strong> wet steam <strong>wells</strong>. Am. J. Sci., 264, 685-697.<br />

Fournier, R.O., <strong>and</strong> Rowe, J.J., 1977: The solubility of amorphous silica <strong>in</strong> w<strong>at</strong>er <strong>at</strong> high temper<strong>at</strong>ures<br />

<strong>and</strong> pressures. Am. M<strong>in</strong>. Sci., 62, 1052-1056.<br />

Fridriksson, T., Kristjánson, B.R., Ármannsson, H., Margétardόttir, E., Ólafsdóttir, E., <strong>and</strong> Chiod<strong>in</strong>i,<br />

G., 2006: CO 2 emissions <strong>and</strong> he<strong>at</strong> flow through soil, fumaroles <strong>and</strong> steam he<strong>at</strong>ed mud pools <strong>at</strong><br />

Reykjanes geothermal area, SW Icel<strong>and</strong>. Applied Geochemistry, 21, 151-1569.<br />

Gallup, D.L., 1989: Iron silic<strong>at</strong>e scale form<strong>at</strong>ion <strong>and</strong> <strong>in</strong>hibition <strong>at</strong> the Salton Sea geothermal field.<br />

Geothermics, 18, 97-103.<br />

Gallup, D.L., 1993: The <strong>in</strong>fluence of iron on the solubility of amorphous silica on hypersal<strong>in</strong>e<br />

geothermal br<strong>in</strong>es. Proc. of 1991 Symposium on Chemistry <strong>in</strong> High Temper<strong>at</strong>ure Aqueous Solutions,<br />

Provo, UT F6f, 1-16.<br />

Gallup, D.L., 1998: Alum<strong>in</strong>ium silic<strong>at</strong>e scale form<strong>at</strong>ion <strong>and</strong> <strong>in</strong>hibition (2): Scale solubilities <strong>and</strong><br />

labor<strong>at</strong>ory <strong>and</strong> field <strong>in</strong>hibition tests. Geothermics, 27, 485-501.<br />

Gallup, D.L., Andersen, G.R. <strong>and</strong> Holligan, D., 1990: Metal sulphide <strong>scal<strong>in</strong>g</strong> <strong>in</strong> production well <strong>at</strong><br />

Salton Sea geothermal field. GRC Transactions, 14, 1583-1590.<br />

51


Garcia, S.E., C<strong>and</strong>elaria, M.N.R., Baltazar, A.D.Jr. Solis, R.P., Cabel, A.C.Jr., Nogara, J.B., <strong>and</strong><br />

Jordan, O.T., 1996: Methods of cop<strong>in</strong>g with silica deposition, the PNOC-experience. Proc. of 17 th<br />

Annual PNOC-EDC Geothermal Conference, Manila, 93-109.<br />

Giggenbach,W.F., 1975: Vari<strong>at</strong>ions <strong>in</strong> the carbon, sulphur <strong>and</strong> chlor<strong>in</strong>e contents of volcanic gas<br />

discharges from White Isl<strong>and</strong>, New Zeal<strong>and</strong>. Bull. Volcanol., 39, 15-27.<br />

Giroud, N.R., 2006: Personal communic<strong>at</strong>ion<br />

Gίslason, G., <strong>and</strong> Gunnlaugsson, E., 1994-1995: Research on silica polymeris<strong>at</strong>ion <strong>in</strong> he<strong>at</strong> exchangers<br />

(<strong>in</strong> Icel<strong>and</strong>ic). Hitaveita Reykjavikur, Reykjavík, three reports, 9 pp.<br />

Gίslason, S.R., Heaney, P.J., Oelkers, H.E., <strong>and</strong> Schott, J., 1997: K<strong>in</strong>etic <strong>and</strong> thermodynamic<br />

properties of moganite, a novel silica polymorph. Geochim. Cosmochim. Acta, 61, 1193-1204.<br />

Gunnarsson, Á., Ste<strong>in</strong>grímsson, B.S., Gunnlaugsson, E., Magnússon, J., <strong>and</strong> Maack, R., 1992:<br />

Nesjavellir geothermal co-gener<strong>at</strong>ion power plant. Geothermics, 21, 673-681.<br />

Gunnarsson, I., <strong>and</strong> Arnórsson, S., 2000; Amorphous silica solubility <strong>and</strong> the thermodynamic<br />

properties of H 4 SiO° 4 <strong>in</strong> the range of 0° to 350°C <strong>at</strong> P s<strong>at</strong>. Geochim. Cosmochim. Acta, 64, 2295-2307.<br />

Gunnarsson, I., <strong>and</strong> Arnórsson, S., 2005: Impact of silica <strong>scal<strong>in</strong>g</strong> on the efficiency of he<strong>at</strong> extraction<br />

from high-temper<strong>at</strong>ure geothermal fluids, Geothermics, 34, 320-329.<br />

Haizlip, J.R., <strong>and</strong> Truesdell, A.H., 1988: Hydrogen Chloride <strong>in</strong> superhe<strong>at</strong>ed steam <strong>and</strong> chloride <strong>in</strong> deep<br />

br<strong>in</strong>e <strong>at</strong> the Geysers geothermal field, California. Proc. of 13 th Workshop on Geothermal Reservoir<br />

Eng<strong>in</strong>eer<strong>in</strong>g, Stanford, California, SGP-TR, 93-99.<br />

Hardardόttir, V., Ármannsson, H., Thόrhallsson, S., 2004: Scal<strong>in</strong>g studies on br<strong>in</strong>e from <strong>wells</strong> 9 <strong>and</strong><br />

11, <strong>in</strong> the Reykjanes high temper<strong>at</strong>ure area, Icel<strong>and</strong>. 13 th Sc<strong>and</strong><strong>in</strong>avian Corrosion Congress (Nordisk<br />

Korrosionsmöte) NKM 13, Reykjavik, Icel<strong>and</strong>, 14 pp.<br />

Hardardόttir, V., Ármannsson, H., <strong>and</strong> Thόrhallson, S., 2005: Characteris<strong>at</strong>ion of sulphide-rich scales<br />

<strong>in</strong> br<strong>in</strong>e <strong>at</strong> Reykjanes. Proc. World Geothermal Congress 2005, Antalya, Turkey.<br />

Hardardóttir, V., Kristmannsdóttir, H., <strong>and</strong> Ármannson, H., 2001: Scale form<strong>at</strong>ion <strong>in</strong> <strong>wells</strong> RN-09 <strong>and</strong><br />

RN-08 <strong>in</strong> the Reykjanes geothermal field, Icel<strong>and</strong>. Proc of the 10 th Inter. Symp. on W<strong>at</strong>er-Rock<br />

Interaction, Villasimius, Italy, Balkema. Rotterdam, 851-854.<br />

Hauksson, T., 1996: Silica polymeris<strong>at</strong>ion <strong>in</strong> high temper<strong>at</strong>ure geothermal w<strong>at</strong>er – Explor<strong>at</strong>ion on<br />

r<strong>at</strong>e of silica polymeris<strong>at</strong>ion <strong>in</strong> turbulence flow (<strong>in</strong> Icel<strong>and</strong>ic). Report for Hitaveita Reykjavίkur,<br />

Reykjavik, 138 pp.<br />

Hedenquist, J.W., <strong>and</strong> Stewart, M.K., 1985: N<strong>at</strong>ural CO 2 -rich steam- he<strong>at</strong>ed w<strong>at</strong>ers <strong>in</strong> the Broadl<strong>and</strong>s-<br />

Ohaaki geothermal system, New Zeal<strong>and</strong>: Their chemistry, distribution <strong>and</strong> <strong>corrosive</strong> n<strong>at</strong>ure. GRC,<br />

Transactions, 9, 245-250.<br />

Henley, R.W., 1983: pH <strong>and</strong> silica <strong>scal<strong>in</strong>g</strong> control <strong>in</strong> geothermal field development. Geothermics, 12,<br />

307-321.<br />

Henley, R.W., Truesdell, A.H., <strong>and</strong> Barton, P.B., 1984: Fluid-m<strong>in</strong>eral equilibria <strong>in</strong> hydrothermal<br />

systems. Reviews <strong>in</strong> Economic Geology, 1, 267 pp.<br />

Horne, R.N., S<strong>at</strong>ik, C., Mahiya, G., Li, K., Ambusso, W., Tovar, R., Wang, C., Nassori, H., 2000:<br />

Steam-w<strong>at</strong>er rel<strong>at</strong>ive permeability. Proc. World Geothermal Congress 2000, Kyushu-Tohoku, Japan,<br />

2609-2615.<br />

52


Hurtado, R., Andritsos, N., Mouza, A., Mitrakas, M., Vrouzi, F., <strong>and</strong> Christanis, K., 1989:<br />

Characteristics of scales from Milos geothermal plant. Geothermics, 18, 169-174.<br />

Itoi, R., Fukuda, M., J<strong>in</strong>no, K., Hirow<strong>at</strong>ari, H., Sh<strong>in</strong>ohara, N., Tomita, T., 1989: Longterm<br />

experiments of waste w<strong>at</strong>er re-<strong>in</strong>jection <strong>in</strong> the Otake geothermal field, Japan. Geothermics, 18, 153-<br />

160.<br />

Jones, D.A., 1996: Pr<strong>in</strong>ciples <strong>and</strong> prevention of corrosion (2 nd edition). Prentice Hall, Upper Saddle<br />

River, NJ, 572 pp.<br />

Karabelas, A.J., Andristsos, N., Mouza, A., Mitrakas, M., Vrouzi, F., Christanis, K., 1989:<br />

Characteristics of scales from the Milos geothermal plant. Geothermics, 18, 169-175.<br />

Kariuki, M.N., <strong>and</strong> Opondo, K.M., 2001: St<strong>at</strong>us report on steam production assessment of reservoir<br />

<strong>and</strong> steam st<strong>at</strong>us <strong>in</strong> Olkaria East Field, 1 st half 2001. KenGen, Nairobi, unpublished <strong>in</strong>ternal report.<br />

Karlsdóttir, R., 1997: TEM resistivity survey on the outer Reykjanes Pen<strong>in</strong>sula. <strong>Orkustofnun</strong>, report<br />

OS-9700 (<strong>in</strong> Icel<strong>and</strong>ic,) 63 pp.<br />

Kar<strong>in</strong>githi, C.W., Arnόrsson, S, Opondo, K.M., <strong>and</strong> Grönvold, K., 2006: Hydrothermal m<strong>in</strong>eral<br />

buffers controll<strong>in</strong>g reactive gas concentr<strong>at</strong>ions <strong>in</strong> Olkaria geothermal system, Kenya. Geochim.<br />

Cosmochim. Acta, submitted.<br />

K<strong>at</strong>o, K., Ueda, A., Mogi, K., Nakazawa, H., Shimizu, K., 2003: Silica recovery from Sumikawa <strong>and</strong><br />

Onuma geothermal br<strong>in</strong>es (Japan) by addition of CaO <strong>and</strong> c<strong>at</strong>ionic precipitants <strong>in</strong> a newly deviced<br />

seed circul<strong>at</strong>ion device. Geothermics, 32, 239-274.<br />

Kiyota, Y., Hirow<strong>at</strong>ari, K., Tokita, H., Haruguchi, K., Uog<strong>at</strong>a, K., 2000: Evalu<strong>at</strong>ion on geothermal<br />

<strong>in</strong>jection tre<strong>at</strong>ment by pH modific<strong>at</strong>ion. Proc. of the World Geothermal Congress 2000, Khushu-<br />

Tohuku, Japan, 3077-3082.<br />

Kjartansson, G., 1996: Nesjavellir - Experimental test on geothermal br<strong>in</strong>e he<strong>at</strong> exchanger <strong>in</strong> pilot<br />

plant <strong>and</strong> power plant 1985-1996 (<strong>in</strong> Icel<strong>and</strong>ic). Report from Hitaveita Reykjavíkur, Reykjavik,<br />

Icel<strong>and</strong>, 102 pp.<br />

Li, K., Horne, R.N., 2004: Universal capillary pressure <strong>and</strong> rel<strong>at</strong>ive permeability model from fractal<br />

characteris<strong>at</strong>ion of rock. Proc. of the 29 th Workshop on Geothermal Reservoir Eng<strong>in</strong>eer<strong>in</strong>g, Stanford<br />

University, Stanford, California, SGP-TR-175.<br />

Mahon, W.A.J., 1966: Silica <strong>in</strong> hot w<strong>at</strong>er discharged from drillholes <strong>at</strong> Wairakei, New Zeal<strong>and</strong> Jour.<br />

Sci. 9, 135-144.<br />

Marshall, W.L., <strong>and</strong> Chen, C.T.A., 1982: Amorphous silica solubilities -V. Predictions of solubility<br />

behaviour <strong>in</strong> aqueous mixed electrolyte solutions to 300˚ C. Geochim. Cosmochim. Acta, 46, 289-291<br />

Marshall, W.L., <strong>and</strong> Warakomski, M.J., 1980: Amorphous silica solubilities–II. Effects of aqueous salt<br />

solutions <strong>at</strong> 25˚C. Geochim. Cosmochim. Acta, 46, 289-291.<br />

Meeker, K.A., <strong>and</strong> Haizlip, J.R., 1990: Factors controll<strong>in</strong>g pH <strong>and</strong> optimum corrosion mitig<strong>at</strong>ion <strong>in</strong><br />

chloride-bear<strong>in</strong>g geothermal steam <strong>at</strong> the Geysers. GRC Transactions, 14, 677-1684<br />

Mercerdo, S., Bermejo, F., Hurtado, R., Terrazas, Hernández, L., 1989: Scale <strong>in</strong>cidence on production<br />

pipes of Cerro Prieto geothermal <strong>wells</strong>. Geothermics, 18, 225-232.<br />

Moya, P., Nietzen, F., Rivera, E.S., 2005; Development of the neutraliz<strong>at</strong>ion system for production<br />

<strong>wells</strong> <strong>at</strong> the Miravalles Geothermal Field. Proc. World Geothermal Congress 2005, Antalya- Turkey.<br />

53


Mungania, J., 1992: Geology of the Olkaria geothermal complex. Kenya Power Company Ltd.,<br />

<strong>in</strong>ternal report, 38 pp.<br />

Mwangi, M.N., 2005: Country upd<strong>at</strong>e report for Kenya 2000-2005. Proc. of the World Geothermal<br />

Congress 2005, Antalya, Turkey.<br />

Naylor, W.I., 1972: Geology of Eburru <strong>and</strong> Olkaria prospects. U.N. Geothermal explor<strong>at</strong>ion project,<br />

report.<br />

Nouralie, J., 2000: Borehole geology <strong>and</strong> hydrothermal alter<strong>at</strong>ion of well NJ-20, Nesjavellir hightemper<strong>at</strong>ure<br />

area, SW-Icel<strong>and</strong>. Report 15 <strong>in</strong>: Geothermal tra<strong>in</strong><strong>in</strong>g <strong>in</strong> Icel<strong>and</strong> 2000. UNU-GTP,<br />

Icel<strong>and</strong>, 303-330.<br />

Ogoso-Odongo, M.E., 1986: Geology of the Olkaria geothermal field. Geothermics, 15, 741-748.<br />

Omenda, P.A., 1998; The geology <strong>and</strong> structural controls of the Olkaria geothermal system, Kenya.<br />

Geothermics, 27, 55-74<br />

Opondo, K.M., <strong>and</strong> Ofwona, C.O., 2003: Investig<strong>at</strong>ions of unusual scale deposition <strong>in</strong> Olkaria well<br />

OW-34. Kengen, Nairobi, unpublished <strong>in</strong>ternal report, 11 pp.<br />

Parlaktuna, M., <strong>and</strong> Ok<strong>and</strong>an. E., 1989: The use of chemical <strong>in</strong>hibitors for prevention of calcium<br />

carbon<strong>at</strong>e <strong>scal<strong>in</strong>g</strong>. Geothermics, 18, 241-248<br />

Pieri, S., Sab<strong>at</strong>elli, F., <strong>and</strong> Tarqu<strong>in</strong>, 1989: Field test<strong>in</strong>g results of downhole scale <strong>in</strong>hibitor <strong>in</strong>jection.<br />

Geothermics, 18, 249-258.<br />

Plummer, L.N., <strong>and</strong> Busenburg, E., 1982: The solubilities of calcite, aragonite <strong>and</strong> vetrite <strong>in</strong> CO 2 -H 2 O<br />

solutions between 0 <strong>and</strong> 90˚ C, <strong>and</strong> an evalu<strong>at</strong>ion of the aqueous model for the system CaCO 3 -CO 2 -<br />

H 2 O: Geochim. Cosmochim. Acta, 46, 1011-1042.<br />

Potter, R.W., <strong>and</strong> Brown, D.L., 1977: The volumetric properties of aqueous sodium chloride solutions<br />

NaCl solutions from 0˚C <strong>at</strong> 500˚C up to 2000 bars based on a regression of available d<strong>at</strong>a <strong>in</strong> the<br />

liter<strong>at</strong>ure. USGS Bullet<strong>in</strong>, 1421 C, 36 pp.<br />

Preuss, C., 2002: M<strong>at</strong>hem<strong>at</strong>ical modell<strong>in</strong>g of fluid flow <strong>and</strong> he<strong>at</strong> transfer <strong>in</strong> geothermal systems. An<br />

<strong>in</strong>troduction <strong>in</strong> five lectures. UNU-GTP, Icel<strong>and</strong>, report 3, 84 pp.<br />

Reshef, T., <strong>and</strong> Citr<strong>in</strong>, D., 2003; Review of Olkaria III geothermal project, history, present st<strong>at</strong>us <strong>and</strong><br />

salient characteristics of Kenya’s pioneer<strong>in</strong>g priv<strong>at</strong>e geothermal project. Proc. of 2 nd KenGen<br />

Geothermal Conference, Nairobi-Kenya.<br />

Rimstidt, J.D. <strong>and</strong> Barnes, H.L., 1980: The k<strong>in</strong>etics of silica reactions. Geochim. Cosmochim. Acta,<br />

44, 1683-1699.<br />

Rosell, J.B., <strong>and</strong> Ramos, S.G., 1998: Orig<strong>in</strong> of acid fluids <strong>in</strong> the Cawayan sector Bacman Geothermal<br />

production field. Proc. of 23 rd Workshop on Geothermal Reservoir Eng<strong>in</strong>eer<strong>in</strong>g, Stanford University,<br />

Stanford, Ca.<br />

Rothbaum, H.P., Anderton, B.H., Rhode, A.G., Sl<strong>at</strong>ter, A., 1979: Effect of silica polymeris<strong>at</strong>ion <strong>and</strong><br />

pH on geothermal <strong>scal<strong>in</strong>g</strong>. Geothermics, 8, 1-20.<br />

Ruaya, J,R., <strong>and</strong> Seward, T.M., 1987; The ion pair constant <strong>and</strong> other thermodynamic properties of<br />

HCl up to 350˚C. Geochim. Cosmochim. Acta, 51, 121-130.<br />

54


Saemundsson, K., <strong>and</strong> Fridleifsson, I.B., 1980: Applic<strong>at</strong>ion of geology <strong>in</strong> geothermal research <strong>in</strong><br />

Icel<strong>and</strong>. J. Icel<strong>and</strong> N<strong>at</strong>. Hist., 50, 157-188 (In Icel<strong>and</strong>ic with English Summary).<br />

Siega, F.L., Herras, E.B., <strong>and</strong> Bunig, B.C., 2005: Calcite scale <strong>in</strong>hibition: The case of Mahanadong<br />

<strong>wells</strong> <strong>in</strong> Lyete geothermal production field, Philipp<strong>in</strong>es. Proc. of World Geothermal Congress 2005,<br />

Antalya, Turkey<br />

Simmons, S.F., <strong>and</strong> Christenson, B.W., 1993: Towards a unified theory on calcite form<strong>at</strong>ion <strong>in</strong> boil<strong>in</strong>g<br />

geothermal systems. Proc. of 15 th New Zeal<strong>and</strong> Geothermal Workshop, Auckl<strong>and</strong>. 145-148<br />

Simmons, S.F., <strong>and</strong> Chritenson, B.W., 1994: Orig<strong>in</strong>s of calcite <strong>in</strong> boil<strong>in</strong>g geothermal systems. Am. J.<br />

of Sci. 294, 361-400.<br />

Simonson, J.M., <strong>and</strong> Palmer, D.A., 1993; Liquid-Vapour partition<strong>in</strong>g of HCl (aq) to 350 ˚C. Geochim.<br />

Cosmochim. Acta, 57, 1-7.<br />

Solis, P.R., Bondc, E.L., Frag<strong>at</strong>a, J.J., <strong>and</strong> See, F.S., 2000: Calcite deposition <strong>in</strong> two phase l<strong>in</strong>es of<br />

Bacman Geothermal production field, Philipp<strong>in</strong>es. Proc. of World Geothermal Congress 2000,<br />

Kyushu-Tohuku, Japan.<br />

Sugiaman, F., Sunio, E., Moll<strong>in</strong>, P. <strong>and</strong> Stimac, J., 2004: Geochemical response to production of the<br />

Tiwi geothermal field, Philipp<strong>in</strong>es, Geothermics, 33, 57-86.<br />

Tha<strong>in</strong>, I.A., Stacey,R.E., Nicholson., 1981: Zero solids condens<strong>at</strong>e corrosion <strong>in</strong> steam pipes <strong>at</strong><br />

Wairakei. GRC, Transactions, 7, 71-73.<br />

Thórhallsson, S., 2005: Personal communic<strong>at</strong>ion.<br />

Thórhallsson, S., M<strong>at</strong>tίasson, J., <strong>and</strong> Kristmannsdόttir, H., 1979: Inspection of the steam g<strong>at</strong>her<strong>in</strong>g<br />

systm <strong>and</strong> the turb<strong>in</strong>e of the Krafla power st<strong>at</strong>ion <strong>in</strong> June 1979 <strong>and</strong> comparison with the turb<strong>in</strong>es of<br />

the Laxá <strong>and</strong> Svartsengi power plants. <strong>Orkustofnun</strong>, Reykjavík, report OS79041/JHD19, 100 pp.<br />

Thórhallsson, S., Ragnars, K., Arnórsson, S., <strong>and</strong> Kristmannsdóttir, H., 1975: Rapid <strong>scal<strong>in</strong>g</strong> of silica <strong>in</strong><br />

district he<strong>at</strong><strong>in</strong>g systems. Proceed<strong>in</strong>gs of the 2 nd United N<strong>at</strong>ions Symposium on the development <strong>and</strong><br />

use of geothermal resources, San Francisco, 2, 1445-1449.<br />

Thórólfsson, G., 2005: Ma<strong>in</strong>tenance history of a geothermal plant: Svartsengi Icel<strong>and</strong>. Proc. of World<br />

Geothermal Congress 2005, Antalya,Turkey.<br />

Todaka, N., Kawano,Y., Ishii, H., Iwai, N., 1995: Prediction of calcite <strong>scal<strong>in</strong>g</strong> <strong>at</strong> the Oguni geothermal<br />

field, Japan. Chemical modell<strong>in</strong>g approach. Proc.of World Geothermal Congress,Florence, Italy, 2475<br />

- 2480.<br />

Tomasson, J., 1971: Analysis of drill cutt<strong>in</strong>gs from Reykjanes. <strong>Orkustofnun</strong>, report, July 1971 (<strong>in</strong><br />

Icel<strong>and</strong>ic), 91 pp.<br />

Truesdell,A.H.,1991: Orig<strong>in</strong> of acid fluids <strong>in</strong> geothermal reservoirs. GRC Transactions, 15, 289-296.<br />

Truesdell, A.H., <strong>and</strong> Haizlip, J.R., 1988: Hydrogen chloride <strong>in</strong> superhe<strong>at</strong>ed steam <strong>and</strong> chloride <strong>in</strong> deep<br />

br<strong>in</strong>e <strong>at</strong> the Geysers Geothermal Field, California. Proc. of 13 th Workshop on Geothermal Reservoir<br />

Eng<strong>in</strong>eer<strong>in</strong>g, Stanford, Ca, 93-99.<br />

Truesdell, A.H., Haizlip, J.R., Ármannsson,H., <strong>and</strong> D’Amore, F., 1989: Orig<strong>in</strong> <strong>and</strong> transport of<br />

chloride <strong>in</strong> superhe<strong>at</strong>ed geothermal steam. Geothermics, 18, 295-304.<br />

55


Villa, R.R. Jr., <strong>and</strong> Salonga, N.D., 2000: Corrosion <strong>in</strong>duced by steam condens<strong>at</strong>es <strong>in</strong> Upper Mahio<br />

pipel<strong>in</strong>e, Leyte, Phillip<strong>in</strong>es. Proc. of World Geothermal Congress 2000, Kyushu-Tohuku, Japan, 5,<br />

3335-3340.<br />

Villa,R.R.,Jr., Alcober, E.H., Paraon, V.J.R., <strong>and</strong> Talens,M.A., 2001: Corrosion r<strong>at</strong>es <strong>in</strong> different<br />

condens<strong>at</strong>e l<strong>in</strong>es of Leyte geothermal production field,Philip<strong>in</strong>es. Proc.of 22 nd Annual PNOC.EDC<br />

Geothermal Conference, Manila, Philipp<strong>in</strong>es, 239-245.<br />

Weisberg, B.G., Browne, P.R.L., <strong>and</strong> Seward, T.M., 1979: Ore metals <strong>in</strong> active geothermal systems;<br />

In: Barnes, H.L. (ed), Geochemistry of hydrothermal ore deposits (2 nd Edition). Wiley Interscience,<br />

738-780.<br />

Weres, O., <strong>and</strong> Tsao, L., 1981: Chemistry <strong>and</strong> Silica <strong>in</strong> Cerro Prieto br<strong>in</strong>es. Geothermics, 10, 255-276.<br />

Yakoyama T., Takahashi, Y., Yamanaka, C., Tarutani., 1989: Effect of alum<strong>in</strong>ium on the<br />

polymeris<strong>at</strong>ion of silicic acid <strong>in</strong> aqueous solution <strong>and</strong> the deposition of silica. Geothermics, 18, 321-<br />

326.<br />

Yanagase,T., Sug<strong>in</strong>ohara, Y., <strong>and</strong> Yanagase, K., 1970: The properties of scales <strong>and</strong> methods to<br />

prevent them. Proc. U.N. Symp. Devel. Util. Geother. Res., Pisa, Geothermics, 2, 1619-1623.<br />

Zang, <strong>and</strong> Dawe, R.W., 1998: The K<strong>in</strong>etics of calcite precipit<strong>at</strong>ion from high sal<strong>in</strong>ity w<strong>at</strong>er. Appl.<br />

Geochem., 13, 177-184.<br />

Zarouk, S.J., 2004: External cas<strong>in</strong>g corrosion <strong>in</strong> New Zeal<strong>and</strong>’s Geothermal Fields. Proc. of the 26 th<br />

New Zeal<strong>and</strong> Geothermal Workshop, Auckl<strong>and</strong>.<br />

56


APPENDIX A: Tables with analyses, calcul<strong>at</strong>ion etc<br />

57


APPENDIX B: Methods for clean<strong>in</strong>g coupons <strong>and</strong> study<strong>in</strong>g scales<br />

Clean<strong>in</strong>g method for the sta<strong>in</strong>less steels coupons used <strong>in</strong> <strong>scal<strong>in</strong>g</strong>/corrosion tests<br />

1. The coupons were cleaned us<strong>in</strong>g an abrasive paper (silicon carbide) to remove surface oxide<br />

film <strong>and</strong> to condition the surface. A smooth surface does not yield a represent<strong>at</strong>ive result.<br />

2. Marked coupons are washed carefully, first <strong>in</strong> hot distilled w<strong>at</strong>er <strong>and</strong> then <strong>in</strong> cold distilled<br />

w<strong>at</strong>er.<br />

3. This was rewashed <strong>in</strong> acetone/isopropyl alcohol.<br />

4. The coupons were dried <strong>in</strong> an oven <strong>at</strong> 105°C.<br />

5. These were cooled <strong>and</strong> stored <strong>in</strong> a dessic<strong>at</strong>or until weigh<strong>in</strong>g.<br />

6. Weigh the coupons, put them back <strong>in</strong> the dessic<strong>at</strong>or <strong>and</strong> reweigh to constant weight.<br />

Stereo B<strong>in</strong>ocular Microscope analysis<br />

B<strong>in</strong>ocular microscope analyses of test coupons from Nesjavellir were done us<strong>in</strong>g the Wild Heerbrugg<br />

b<strong>in</strong>ocular microscope. Coupons were placed on the mount<strong>in</strong>g stage of the b<strong>in</strong>ocular microscope <strong>and</strong><br />

among the fe<strong>at</strong>ures noted were colours, size of scale, adherence properties of the scale.<br />

Infrared spectroscopy<br />

The spectra <strong>in</strong> the IR were obta<strong>in</strong>ed <strong>in</strong> absorbance mode from the KBR pellets with a Brucker IFS 66<br />

FTIR spectrometer. Pellets prepared by weigh<strong>in</strong>g about 2 mg samples or less <strong>in</strong> some <strong>in</strong>stances <strong>and</strong><br />

these were prepared <strong>in</strong> ~200 mg of Potassium Bromide (KBr). Resolution <strong>in</strong> the FTIR was 4 cm -1 , 100<br />

scans were taken us<strong>in</strong>g Mertz phase correction <strong>and</strong> Blackman-Harris 3 term apodiz<strong>at</strong>ion function with<br />

zerofill<strong>in</strong>g of two.<br />

X-Ray diffraction analysis.<br />

X-ray diffractometer is used to identify <strong>in</strong>dividual m<strong>in</strong>erals especially clays <strong>and</strong> zeolites. Scale<br />

samples were prepared to < 4 microns by use of a mechanical shaker. A Brucker series D8 FOCUS<br />

diffractometer was used, with CuKά radi<strong>at</strong>ion (<strong>at</strong> 40 kv<strong>and</strong> 50 mA), autom<strong>at</strong>ic divergence slit, f<strong>in</strong>e<br />

receiv<strong>in</strong>g slit, <strong>and</strong> graphite monochrom<strong>at</strong>or. Count d<strong>at</strong>a were collected from 2˚ -14 ˚ <strong>at</strong> <strong>in</strong>tervals of<br />

0.02˚, 2 θ for a time of 1 second.<br />

Scann<strong>in</strong>g Electron Microscope (SEM)<br />

A type LEO SUPRA 25 Scann<strong>in</strong>g Electron Microscope where the scann<strong>in</strong>g conditions were 20 kv<br />

acceler<strong>at</strong><strong>in</strong>g voltage <strong>and</strong> scan r<strong>at</strong>es of 100 µm. Scale samples were co<strong>at</strong>ed with gold before be<strong>in</strong>g<br />

placed <strong>in</strong> the SEM. The SEM is equipped with an energy dispersive spectrometer (EDS) th<strong>at</strong> was used<br />

to do several EDS spot analyses on the scale samples. The EDS analyses are semi-quantit<strong>at</strong>ive i.e they<br />

do not quantify the concentr<strong>at</strong>ions of elements, but give an idea of wh<strong>at</strong> elements could be present <strong>in</strong><br />

the scale samples.<br />

Inductively Coupled Plasma (ICP)<br />

Weighed scale samples were leached <strong>in</strong> 20 mls of 0.16 HNO 3 <strong>and</strong> filtered. The solutions were run <strong>in</strong> a<br />

multi-element analysis <strong>in</strong> the ICP SPECTRO AS 500.<br />

65


APPENDIX C: Analyses of scales <strong>and</strong> scales spectra<br />

66


SCALE SPECTRA<br />

Spectra for scale from coupon # 5<br />

Spectra for scale from Coupon # 10<br />

71


Spectra for scales from coupon # 16<br />

Spectra for scale from coupon # 17<br />

72


Spectra for scales from coupon # 18<br />

Spectra for scales from coupon # 19<br />

Spectra for scale from coupon # 20<br />

73


Spectra for Olkaria OW-34 scale # 1<br />

Spectra for Olkaria OW-34 scale # 2<br />

Spectra for Olkaria OW-34 scale # 3<br />

74


Spectra for Olkaria OW-34 Scale # 4<br />

Spectra for Olkaria OW-34 Scale # 5<br />

75

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!