27.11.2014 Views

OMMIC

OMMIC

OMMIC

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

All rights reserved © 2008 <strong>OMMIC</strong><br />

III/V MMIC‘s : The natural<br />

complement to Silicon<br />

Gelijk hebben en gelijk krijgen<br />

MarcRocchi<br />

18/08/2009 Confidential Information<br />

An ISO9001:2000, ISO14001:2004 Registered Company


All rights reserved © 2008 <strong>OMMIC</strong><br />

The last 40 years and the scalability issue<br />

What you cannot do with Silicon<br />

Bandgap engineering<br />

A III/V roadmap<br />

The convergence: III/V and Silicon<br />

Conclusion<br />

18/06/2010<br />

2 Confidential Information


The last 40 years: the scalability issue<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

• The Si BJT pioneers ( Fairchild, Philips, TI ,etc.;) of<br />

the 60’s all failed<br />

• Exotic technologies like Josephson junctions were<br />

discontinued because the memory cell was not<br />

scalable ( IBM)<br />

• In the early 70’s start-ups like INTEL understood the<br />

unique scalability of Si-CMOS<br />

• In the 80’s, Silicon advances were dictating the<br />

system roadmaps<br />

• III/V technologies pioneered by IBM Zurich in the late<br />

60’s had no applications except for Space and<br />

Defense<br />

18/06/2010<br />

3 Confidential Information


The last 40 years: III/V strengths and<br />

weaknesses<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

18/06/2010<br />

• Strengths :<br />

– Bandgap engineering<br />

(Binary, ternary , quaternary compounds)<br />

– High electron mobility and velocity ( high ft, fmax)<br />

– Wide and direct band gap ( high breakdown voltage)<br />

– fmax*Vb > 2 to 5 times that of Si<br />

– Low knee voltage<br />

– Semi –insulating and conducting substrates<br />

• Weaknesses<br />

– No natural oxide: no CMOS,<br />

– High surface state density<br />

– Deep traps in substrates<br />

– Difficult growth of large substrates<br />

– Reduced scalability<br />

4 Confidential Information


What you cannot do with Silicon :<br />

Microwave applications are growing faster than Si<br />

Sat com,<br />

GPS<br />

High bit rate internet<br />

Défense<br />

Mobile handsets<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

Security<br />

Screening<br />

Identification<br />

Healthcare<br />

Radio<br />

Astronomy<br />

DBS<br />

WLAN, WiFi, WiMAX<br />

Point to point and<br />

point multi point<br />

communication<br />

Base stations<br />

Parking and<br />

Anti collision<br />

radars<br />

18/06/2010<br />

5 Confidential Information


What you cannot do with Silicon<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

• In the early 90’s , for the first time , the Silicon motto<br />

« good is good enough » was no longer valid<br />

• The new system needs were ruthless and meant:<br />

– More linearity with ultimate low NF for cellular base stations<br />

– More linear power with high PAE for mobile handsets<br />

– Extreme multi-tone linear amplifiers for CATV<br />

– Low noise and high power up to 100GHz for telecom<br />

infrastructure<br />

– Low phase noise for 77GHz anti-collision radars<br />

– Highly linear and integrated corechips for electronically<br />

steerable antenna<br />

– Zero biased W band receivers for security portals<br />

– Shottky based components for low energy power electronics<br />

– Etc…<br />

18/06/2010<br />

6 Confidential Information


18/06/2010<br />

Competition<br />

7 Confidential Information<br />

All rights reserved © 2008 <strong>OMMIC</strong>


Bandgap engineering: WB<br />

heterostructures: AlN/GaN/InN<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

18/06/2010<br />

8 Confidential Information


Bandgap engineering: Heterostructures:<br />

AlAs/GaAs/InAs, AlSb/GaSb/InSb<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

18/06/2010<br />

9 Confidential Information


GaAs, InP, GaN Process Roadmap<br />

D05PH<br />

0,5µm<br />

35GHz<br />

D01PH<br />

135 nm<br />

100GHz<br />

D01MH<br />

130nm<br />

150GHZ<br />

GaN/Si 6inch MOVPE epitaxy<br />

D01GH<br />

( GaN/Si)<br />

100nm<br />

100 GHz<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

ED02AH<br />

180nm<br />

60GHz<br />

AFP<br />

AFP<br />

AFP<br />

DH15IB<br />

HBT InP<br />

180 GHz<br />

AFP<br />

D007IH<br />

70nm<br />

300GHz<br />

AFP<br />

AMI<br />

DH05IB<br />

HBT InP<br />

300 GHz<br />

AMI<br />

D005IH<br />

50 nm<br />

400 GHz<br />

AMI<br />

2009<br />

2010 2011<br />

2012<br />

AFP = approval for production AMI: approval for market introduction<br />

6 inch Line<br />

18/06/2010<br />

10 Confidential Information


GaN/Si process<br />

GaN MMIC Technology in Development ( 125nm, 75GHz, 125GHz,<br />

1A/mm, 40V , 2,5W/mm @ 30GHz)<br />

0.700<br />

I ds (V ds ) pour V g s de 0 à -4 V par pas de 0,5V<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

0.600<br />

0.500<br />

0.400<br />

0.300<br />

0.200<br />

Vgs=0V<br />

Vgs=-<br />

0,5V<br />

Vgs=-1V<br />

Vgs=-<br />

1,5V<br />

Vgs=-2V<br />

Vgs=-<br />

2,5V<br />

Vgs=-3V<br />

Vgs=-<br />

3,5V<br />

Vgs=-4V<br />

0.100<br />

0.000<br />

0 2 4 6 8 10 12<br />

18/06/2010<br />

11 Confidential Information


18/06/2010<br />

<strong>OMMIC</strong> Core chips<br />

12 Confidential Information<br />

All rights reserved © 2008 <strong>OMMIC</strong>


CGY2175 : 6 bit C-band Core Chip<br />

On Wafer Measurements : All attenuation and phase states<br />

(Un-corrected data)<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

18/06/2010<br />

13 Confidential Information


Millimeter wave imaging requirement<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

The chipset to be developed :<br />

Wide-band detector<br />

LNA amplifier<br />

18/06/2010<br />

14 Confidential Information


Millimeter wave imaging chip set<br />

Wide band detector<br />

W band LNA<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

Integration can be key to system optimization if !!!!….<br />

18/06/2010<br />

15 Confidential Information


Millimeter wave imaging chip<br />

RITD<br />

70 nm HEMT<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

HEMT active layers<br />

Substrate<br />

18/06/2010<br />

16 Confidential Information


The CONVERGENCE :<br />

take the best of all technologies<br />

45nm<br />

32 nm<br />

20 nm<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

256 nm<br />

700GHz<br />

50 nm<br />

400GHz<br />

30 nm<br />

600GHz<br />

32 nm<br />

2,7 THz<br />

18/06/2010<br />

2008<br />

2010 2012 2014<br />

17 Confidential Information


Conclusion<br />

• III /V MMICs represent 1% of the Si IC market today<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

• We have entered an era of system push, making III/V<br />

solutions indispensable<br />

• European companies have neglected these<br />

technologies, by lack of vision and by not listening<br />

to the customers ( RFMD grew nearly 1B$ in 10 years)<br />

• The whole III/V industry inlcuding optoelectronics<br />

will be as large as Si in a few years time<br />

18/06/2010<br />

18 Confidential Information

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!