27.11.2014 Views

OMMIC

OMMIC

OMMIC

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

All rights reserved © 2008 <strong>OMMIC</strong><br />

III/V MMIC‘s : The natural<br />

complement to Silicon<br />

Gelijk hebben en gelijk krijgen<br />

MarcRocchi<br />

18/08/2009 Confidential Information<br />

An ISO9001:2000, ISO14001:2004 Registered Company


All rights reserved © 2008 <strong>OMMIC</strong><br />

The last 40 years and the scalability issue<br />

What you cannot do with Silicon<br />

Bandgap engineering<br />

A III/V roadmap<br />

The convergence: III/V and Silicon<br />

Conclusion<br />

18/06/2010<br />

2 Confidential Information


The last 40 years: the scalability issue<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

• The Si BJT pioneers ( Fairchild, Philips, TI ,etc.;) of<br />

the 60’s all failed<br />

• Exotic technologies like Josephson junctions were<br />

discontinued because the memory cell was not<br />

scalable ( IBM)<br />

• In the early 70’s start-ups like INTEL understood the<br />

unique scalability of Si-CMOS<br />

• In the 80’s, Silicon advances were dictating the<br />

system roadmaps<br />

• III/V technologies pioneered by IBM Zurich in the late<br />

60’s had no applications except for Space and<br />

Defense<br />

18/06/2010<br />

3 Confidential Information


The last 40 years: III/V strengths and<br />

weaknesses<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

18/06/2010<br />

• Strengths :<br />

– Bandgap engineering<br />

(Binary, ternary , quaternary compounds)<br />

– High electron mobility and velocity ( high ft, fmax)<br />

– Wide and direct band gap ( high breakdown voltage)<br />

– fmax*Vb > 2 to 5 times that of Si<br />

– Low knee voltage<br />

– Semi –insulating and conducting substrates<br />

• Weaknesses<br />

– No natural oxide: no CMOS,<br />

– High surface state density<br />

– Deep traps in substrates<br />

– Difficult growth of large substrates<br />

– Reduced scalability<br />

4 Confidential Information


What you cannot do with Silicon :<br />

Microwave applications are growing faster than Si<br />

Sat com,<br />

GPS<br />

High bit rate internet<br />

Défense<br />

Mobile handsets<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

Security<br />

Screening<br />

Identification<br />

Healthcare<br />

Radio<br />

Astronomy<br />

DBS<br />

WLAN, WiFi, WiMAX<br />

Point to point and<br />

point multi point<br />

communication<br />

Base stations<br />

Parking and<br />

Anti collision<br />

radars<br />

18/06/2010<br />

5 Confidential Information


What you cannot do with Silicon<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

• In the early 90’s , for the first time , the Silicon motto<br />

« good is good enough » was no longer valid<br />

• The new system needs were ruthless and meant:<br />

– More linearity with ultimate low NF for cellular base stations<br />

– More linear power with high PAE for mobile handsets<br />

– Extreme multi-tone linear amplifiers for CATV<br />

– Low noise and high power up to 100GHz for telecom<br />

infrastructure<br />

– Low phase noise for 77GHz anti-collision radars<br />

– Highly linear and integrated corechips for electronically<br />

steerable antenna<br />

– Zero biased W band receivers for security portals<br />

– Shottky based components for low energy power electronics<br />

– Etc…<br />

18/06/2010<br />

6 Confidential Information


18/06/2010<br />

Competition<br />

7 Confidential Information<br />

All rights reserved © 2008 <strong>OMMIC</strong>


Bandgap engineering: WB<br />

heterostructures: AlN/GaN/InN<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

18/06/2010<br />

8 Confidential Information


Bandgap engineering: Heterostructures:<br />

AlAs/GaAs/InAs, AlSb/GaSb/InSb<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

18/06/2010<br />

9 Confidential Information


GaAs, InP, GaN Process Roadmap<br />

D05PH<br />

0,5µm<br />

35GHz<br />

D01PH<br />

135 nm<br />

100GHz<br />

D01MH<br />

130nm<br />

150GHZ<br />

GaN/Si 6inch MOVPE epitaxy<br />

D01GH<br />

( GaN/Si)<br />

100nm<br />

100 GHz<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

ED02AH<br />

180nm<br />

60GHz<br />

AFP<br />

AFP<br />

AFP<br />

DH15IB<br />

HBT InP<br />

180 GHz<br />

AFP<br />

D007IH<br />

70nm<br />

300GHz<br />

AFP<br />

AMI<br />

DH05IB<br />

HBT InP<br />

300 GHz<br />

AMI<br />

D005IH<br />

50 nm<br />

400 GHz<br />

AMI<br />

2009<br />

2010 2011<br />

2012<br />

AFP = approval for production AMI: approval for market introduction<br />

6 inch Line<br />

18/06/2010<br />

10 Confidential Information


GaN/Si process<br />

GaN MMIC Technology in Development ( 125nm, 75GHz, 125GHz,<br />

1A/mm, 40V , 2,5W/mm @ 30GHz)<br />

0.700<br />

I ds (V ds ) pour V g s de 0 à -4 V par pas de 0,5V<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

0.600<br />

0.500<br />

0.400<br />

0.300<br />

0.200<br />

Vgs=0V<br />

Vgs=-<br />

0,5V<br />

Vgs=-1V<br />

Vgs=-<br />

1,5V<br />

Vgs=-2V<br />

Vgs=-<br />

2,5V<br />

Vgs=-3V<br />

Vgs=-<br />

3,5V<br />

Vgs=-4V<br />

0.100<br />

0.000<br />

0 2 4 6 8 10 12<br />

18/06/2010<br />

11 Confidential Information


18/06/2010<br />

<strong>OMMIC</strong> Core chips<br />

12 Confidential Information<br />

All rights reserved © 2008 <strong>OMMIC</strong>


CGY2175 : 6 bit C-band Core Chip<br />

On Wafer Measurements : All attenuation and phase states<br />

(Un-corrected data)<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

18/06/2010<br />

13 Confidential Information


Millimeter wave imaging requirement<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

The chipset to be developed :<br />

Wide-band detector<br />

LNA amplifier<br />

18/06/2010<br />

14 Confidential Information


Millimeter wave imaging chip set<br />

Wide band detector<br />

W band LNA<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

Integration can be key to system optimization if !!!!….<br />

18/06/2010<br />

15 Confidential Information


Millimeter wave imaging chip<br />

RITD<br />

70 nm HEMT<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

HEMT active layers<br />

Substrate<br />

18/06/2010<br />

16 Confidential Information


The CONVERGENCE :<br />

take the best of all technologies<br />

45nm<br />

32 nm<br />

20 nm<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

256 nm<br />

700GHz<br />

50 nm<br />

400GHz<br />

30 nm<br />

600GHz<br />

32 nm<br />

2,7 THz<br />

18/06/2010<br />

2008<br />

2010 2012 2014<br />

17 Confidential Information


Conclusion<br />

• III /V MMICs represent 1% of the Si IC market today<br />

All rights reserved © 2008 <strong>OMMIC</strong><br />

• We have entered an era of system push, making III/V<br />

solutions indispensable<br />

• European companies have neglected these<br />

technologies, by lack of vision and by not listening<br />

to the customers ( RFMD grew nearly 1B$ in 10 years)<br />

• The whole III/V industry inlcuding optoelectronics<br />

will be as large as Si in a few years time<br />

18/06/2010<br />

18 Confidential Information

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!