26.11.2014 Views

Slides in PDF format - hep

Slides in PDF format - hep

Slides in PDF format - hep

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

dark energy<br />

phenomenology<br />

Mart<strong>in</strong> Kunz<br />

University of Sussex<br />

ma<strong>in</strong>ly with Luca Amendola and Domenico Sapone


Outl<strong>in</strong>e<br />

• State of the nation: w(z)<br />

– And ask questions at any time<br />

– Please slow me down if needed!!<br />

• Why go beyond w?<br />

– Because we need to / we do it already<br />

– Because we learn more<br />

• The future<br />

• Conclusions


how much vacuum energy?<br />

Let us count the energy density <strong>in</strong> the<br />

universe:<br />

(Ω X<br />

=ρ X<br />

/ρ c<br />

=8πGρ X<br />

/(3H 02<br />

))<br />

- radiation: CMB-temp ⇒ Ω γ<br />

≈ 5x10 -5<br />

too small to matter…<br />

comb<strong>in</strong>e SN-Ia and CMB distance<br />

measurements:<br />

- matter: Ω m<br />

≈ 0.3<br />

(whereof baryons ≈ 0.05! [BBN/CMB])<br />

-cosmological const.: Ω Λ<br />

≈ 0.7<br />

(and space is close to flat)


what is the problem with Λ?<br />

log ρ<br />

radiation (~1/a 4 )<br />

matter<br />

(~1/a 3 )<br />

Let’s guess the size of the<br />

contribution by Λ:<br />

• QM contribution ~ k 4 .<br />

• Planck cutoff: Λ ≈ 10 76 GeV 4<br />

• measured: Λ ≈ 10 -47 GeV 4<br />

• worst prediction ever?<br />

cosmological<br />

constant (~constant)<br />

log a<br />

imag<strong>in</strong>ation<br />

dom<strong>in</strong>ated<br />

radiation<br />

dom<strong>in</strong>ated<br />

matter<br />

dom<strong>in</strong>ated<br />

Lambda<br />

dom<strong>in</strong>ated<br />

p=wρ


homogeneous dark energy<br />

Assume that the universe is perfectly homogeneous and isotropic<br />

(and flat): FLRW metric<br />

T µν<br />

must be:<br />

ds 2 = dt 2 - a(t) 2 dr 2<br />

E<strong>in</strong>ste<strong>in</strong>:<br />

H 2 =<br />

probed by<br />

distance<br />

measurements<br />

matter: p = 0 -> ρ ~ a -3<br />

radiation: p = ρ/3 -> ρ ~ a -4<br />

dark energy: p = ? (< -ρ/3)<br />

(def<strong>in</strong>e w = p/ρ)<br />

-> the only th<strong>in</strong>g to measure<br />

is w(z) or H(z) / a(t)


distances <strong>in</strong> the universe<br />

( 1+z = a 0<br />

/a )<br />

standard ruler<br />

(CMB peak, BAO, …)<br />

D<br />

standard candle<br />

(supernova)<br />

r<br />

r


(current) qu<strong>in</strong>tessence results<br />

WMAP-3yr + SNLS-1yr limits:<br />

• scalar field model<br />

[ c s2<br />

=1, σ=0]<br />

• regularised transition of w=-1<br />

• uses “k<strong>in</strong>k” model for w(z)<br />

• cosmological constant fits well<br />

• strong constra<strong>in</strong>ts only at low-z<br />

• dark energy becomes subdom<strong>in</strong>ant<br />

<strong>in</strong> the past<br />

excluded<br />

95% confidence<br />

region<br />

MK & D. Sapone, PRD 74, 123503 (2006)<br />

B.A. Bassett, P.S. Corasaniti & MK, ApJL 617, L1 (2004)<br />

P.S. Corasaniti, MK, D. Park<strong>in</strong>son, E.J. Copeland & B.A. Bassett, PRD 70, 083006 (2004);<br />

MK, P.S. Corasaniti, D. Park<strong>in</strong>son & E.J. Copeland, PRD 70, 041301R (2004);<br />

B.A. Bassett, MK, D. Park<strong>in</strong>son & C. Ungarelli, PRD 68, 043504 (2003);<br />

B.A. Bassett, MK, J. Silk & C. Ungarelli, MNRAS 336, 1217 (2002) + diverse proceed<strong>in</strong>gs


Short summary<br />

• Flat LCDM good fit to data<br />

• -0.7


measur<strong>in</strong>g dark th<strong>in</strong>gs<br />

E<strong>in</strong>ste<strong>in</strong>:<br />

(<strong>in</strong> cosmology)<br />

(determ<strong>in</strong>ed by the<br />

metric)<br />

geometry<br />

stuff<br />

(what is it?)<br />

your favourite theory<br />

someth<strong>in</strong>g<br />

Cosmologists observe the<br />

geometry of space time<br />

someth<strong>in</strong>g<br />

else<br />

This depends on the total<br />

energy momentum tensor<br />

That is what we measure!


In our m<strong>in</strong>ds, dark matter and<br />

dark energy are neatly<br />

separated concepts.<br />

hot<br />

cold<br />

But <strong>in</strong> reality we can only observed their<br />

comb<strong>in</strong>ed effect.<br />

If we can adjust the temperature and<br />

flow of the hot water, we can vary the<br />

flow of the cold water without chang<strong>in</strong>g<br />

the total flow or the total temperature.


What do you th<strong>in</strong>k?<br />

Do we understand the dark energy?<br />

YES<br />

NO<br />

Do you believe that <strong>in</strong> a flat universe Ω m<br />

≈ 0.2 - 0.4?<br />

YES<br />

NO


The true value of Ω m<br />

is…


the dark degeneracy<br />

How well do we know Ω m<br />

<strong>in</strong> general (flat) DE models?<br />

Different question: given H(z), what is w(z)?<br />

We get a solution for any Ω m<br />

!<br />

impossible to measure simultaneously w(z) and Ω m<br />

only total dark energy-momentum tensor is measurable<br />

good test for generality of a parametrisation…


perturbations are important!<br />

Only a cosmological constant has no perturbations<br />

c s2<br />

=0<br />

c s2<br />

=1<br />

Λ<br />

c s2<br />

=1<br />

(c s<br />

2<br />

> 1 , X = (∇φ) 2 , also DBI, f(R)? )<br />

M.Kunz, astro-ph/0702615, arXiv:0710.5712


Where are we (go<strong>in</strong>g)?<br />

• Whether we can measure Ω m<br />

depends<br />

decisively on the DE perturbations<br />

• So what def<strong>in</strong>es the properties of the DE<br />

perturbations?<br />

• Are modified gravity models different?<br />

• Notice a very strong degeneracy between<br />

smooth DE and curvature: what is Ω K<br />

?<br />

(exercise: can you break this degeneracy?)


measur<strong>in</strong>g the dark side<br />

small perturbations: extended metric<br />

φ, ψ gravitational potentials δρ and V perturbations of T µν<br />

E<strong>in</strong>ste<strong>in</strong> eqs.<br />

fluid properties<br />

measure total w, δp, σ !<br />

δp = c s<br />

2<br />

δρ <strong>in</strong> DE rest frame<br />

σ (anisotropic stress, φ =ψ for σ=0)<br />

(and compare with predictions)<br />

(alternatively, measure φ and ψ: weak lens<strong>in</strong>g (WL) measures φ+ψ,<br />

while peculiar velocities / redshift space distortions measure ψ alone)


equations<br />

metric:<br />

conservation equations (for each fluid <strong>in</strong>dependently)<br />

(vars: δ=δρ/ρ, V ~ divergence of velocity field, δp , σ anisotropic stress)<br />

E<strong>in</strong>ste<strong>in</strong> equations (common, may be modified if not GR)<br />

(Bardeen 1980)


What do you th<strong>in</strong>k?<br />

Can we dist<strong>in</strong>guish dark energy from<br />

modified gravity and rule out GR<br />

by measur<strong>in</strong>g the growth-rate?<br />

YES<br />

NO<br />

it depends


dark gravity vs dark energy<br />

• DGP: brane-world model<br />

without dark energy<br />

• scalar field: high sound speed<br />

prevents DE cluster<strong>in</strong>g<br />

• the perturbations <strong>in</strong> the dark<br />

energy can perturb the dark<br />

matter<br />

• and mimic models of modified<br />

gravity<br />

• σ = 0 kills DGP, S/T, f(R)<br />

• σ ≠ 0 kills scalar field DE<br />

-> we can test such models!<br />

-> but we cannot rule out GR<br />

dark matter pert. growth rate δ m<br />

/a<br />

σ<br />

δp<br />

scalar field<br />

DGP<br />

MK & D. Sapone, PRL 98, 121301 (2007)


The general argument<br />

modified “E<strong>in</strong>ste<strong>in</strong>” eq: X µν<br />

= -8πGT µν<br />

(e.g. projection to 3+1D from higher-D scenario)<br />

Y µν<br />

can be seen as an effective DE energy-momentum<br />

tensor.<br />

Is it conserved?<br />

Yes, s<strong>in</strong>ce T µν<br />

is conserved, and s<strong>in</strong>ce G µν<br />

obeys the Bianchi<br />

identities!<br />

There is also no place “to hide”, s<strong>in</strong>ce T µν<br />

is also derived<br />

from a general symmetric tensor.


ug or feature?<br />

• bug:<br />

– cannot directly test GR<br />

• feature:<br />

– strong clues <strong>in</strong> result + need theory anyway<br />

– clear target for what should be measured<br />

– <strong>in</strong>dependent of whether MG or DE is<br />

realised<br />

it’s a feature!


dark energy phenomenology<br />

• Perturbations are an essential part of many<br />

cosmological measurements<br />

• If we “ignore” them, we are effectively just<br />

choos<strong>in</strong>g someth<strong>in</strong>g without be<strong>in</strong>g aware of it<br />

• Results do strongly depend on that choice<br />

• Observationally, they can be characterised by two<br />

(possibly effective) additional functions,<br />

<strong>in</strong>dependently of the mechanism that generates<br />

the accelerated expansion<br />

• Models make specific predictions for the<br />

perturbations – much more so than for w(z)!


How can we measure it?<br />

• w(z) from SN-Ia, BAO directly (and conta<strong>in</strong>ed <strong>in</strong><br />

most other probes)<br />

• Curvature from radial & transverse BAO<br />

• In addition 5 quantities, e.g. φ, ψ, bias, δ m<br />

, V m<br />

• Could even skip DM, we cannot see it (yet)<br />

• Need 3 probes (s<strong>in</strong>ce 2 cons eq for DM)<br />

• e.g. 3 power spectra: lens<strong>in</strong>g, galaxy, velocity<br />

• Lens<strong>in</strong>g probes φ + ψ<br />

• Velocity probes ψ (z-space distortions?)<br />

• And galaxy P(k) then gives bias (reqd for z-dist)<br />

→ Euclid / JDEM can do it all!


weak lens<strong>in</strong>g forecasts [DUNE]<br />

different nonl<strong>in</strong>ear<br />

mapp<strong>in</strong>gs<br />

lens<strong>in</strong>g potential:<br />

not just φ!<br />

don’t<br />

forget!<br />

4πGa 2 ρ m<br />

∆ m<br />

but ∆ m<br />

is also affected directly! [with γ=γ(Q,η)]<br />

qu<strong>in</strong>tessence<br />

DGP<br />

Σ = Q (1+η/2) ~ 1+O(0.1)<br />

• these are very optimistic plots<br />

• weak lens<strong>in</strong>g has uncerta<strong>in</strong> systematics<br />

• and requires l<strong>in</strong>ear -> non-l<strong>in</strong>ear mapp<strong>in</strong>g<br />

• very powerful if it works!<br />

L. Amendola, MK and D. Sapone, JCAP 04, 013 (2008)


future experiments<br />

• CMB: parameters, ISW; Planck, ground (SZ/B-pol)<br />

• SN-Ia: w(z); lots (FEADEP*, ground † )<br />

– low-z : normalisation, probe of local universe<br />

– perturbations, “lum<strong>in</strong>osity tomography”<br />

– theoretical & statistical advances (reduce dispersion)<br />

• BAO: w(z); SDSS, WFMOS, photo † , FEADEP, Ly-α (z ≤ 3)<br />

– complementary to SN-Ia (mostly l<strong>in</strong>ear physics, different)<br />

– can <strong>in</strong> pr<strong>in</strong>ciple measure evolution of curvature<br />

• weak lens<strong>in</strong>g: φ+ψ [not DM!]; FEADEP, ground †<br />

• galaxy surveys: growth rate, φ; SDSS, WFMOS, FEADEP<br />

• peculiar velocities: ψ; redshift space distortions?<br />

• LHC / dark matter searches: p<strong>in</strong> down DM, theory<br />

†<br />

e.g. FMOS, DES, darkCAM, Pan-STARRS [~2009] / LSST, SKA [2014+]<br />

* Future European American Dark Energy Probe [~2017+]


f<strong>in</strong>al summary<br />

• still no really good theoretical model …<br />

Λ fits all obs.<br />

• cosmology can (and will!) measure just a few<br />

functions, e.g. w(z), φ(k,z), ψ(k,z)<br />

• good (clear target for observations) and bad (no<br />

unique identification of physical mechanism)<br />

• requires multiple probes, e.g. weak lens<strong>in</strong>g +<br />

galaxy surveys + supernovae<br />

• control of systematics will be crucial as effects<br />

are very small!<br />

• but the data is only just beg<strong>in</strong>n<strong>in</strong>g to pour <strong>in</strong>!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!