26.11.2014 Views

Study on the solvent effects of benzamide in single solvents by FTIR

Study on the solvent effects of benzamide in single solvents by FTIR

Study on the solvent effects of benzamide in single solvents by FTIR

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Study</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>solvent</strong> <strong>effects</strong> <strong>of</strong> <strong>benzamide</strong> <strong>in</strong> s<strong>in</strong>gle <strong>solvent</strong>s<br />

<strong>by</strong> <strong>FTIR</strong><br />

Feiy<strong>in</strong>g Zhang, Huali S<strong>on</strong>g, Hui Zhang, Q<strong>in</strong>g Liu *<br />

Department <strong>of</strong> Chemistry, Zhejiang University, Hangzhou 310027, PR Ch<strong>in</strong>a<br />

Abstract:Infrared spectroscopy studies <strong>of</strong> <strong>benzamide</strong> (BA) <strong>in</strong> 18 different organic<br />

<strong>solvent</strong>s, both polar and n<strong>on</strong>polar, were undertaken to <strong>in</strong>vestigate <strong>the</strong> <strong>solvent</strong>-solute<br />

<strong>in</strong>teracti<strong>on</strong>s. The frequencies <strong>of</strong> carb<strong>on</strong>yl stretch<strong>in</strong>g vibrati<strong>on</strong> (ν(C=O)) <strong>of</strong> BA were<br />

correlated with <strong>the</strong> empirical parameters <strong>of</strong> <strong>the</strong> <strong>solvent</strong>s such as <strong>the</strong><br />

Kirkwood-Bauer-Magat (KBM) equati<strong>on</strong>, <strong>the</strong> <strong>solvent</strong> acceptor number (AN), Swa<strong>in</strong>’s<br />

parameters (Aj and Bj) and <strong>the</strong> l<strong>in</strong>ear solvati<strong>on</strong> energy relati<strong>on</strong>ships (LSER). The<br />

applicabilities <strong>of</strong> different <strong>solvent</strong> parameters were discussed and <strong>the</strong> solute-<strong>solvent</strong><br />

<strong>in</strong>teracti<strong>on</strong>s <strong>in</strong> s<strong>in</strong>gle <strong>solvent</strong>s were studied <strong>in</strong> detail .The <strong>solvent</strong>-<strong>in</strong>duced carb<strong>on</strong>yl<br />

stretch<strong>in</strong>g vibrati<strong>on</strong> frequency shifts <strong>of</strong> BA showed <strong>the</strong> best correlati<strong>on</strong> with <strong>the</strong> LSER<br />

than <strong>the</strong> o<strong>the</strong>rs.<br />

Keywords: Carb<strong>on</strong>yl stretch<strong>in</strong>g vibrati<strong>on</strong> frequency; Benzamide; L<strong>in</strong>ear solvati<strong>on</strong><br />

energy relati<strong>on</strong>ships; Swa<strong>in</strong>’s parameters; Solvent acceptor number; Kirkwood-Bauer<br />

-Magat equati<strong>on</strong><br />

* Corresp<strong>on</strong>d<strong>in</strong>g author. Fax: 86-571-87951289; Tel: 86-571-87951289;<br />

E-mail address: liuq<strong>in</strong>g@zju.edu.cn<br />

1


1. Introducti<strong>on</strong><br />

Infrared spectroscopy study provides an important tool for <strong>the</strong> qualitative study<br />

<strong>of</strong> <strong>solvent</strong>-solute <strong>in</strong>teracti<strong>on</strong>s [1-5]. A number <strong>of</strong> attempts to develop a quantitatively<br />

accurate and physically mean<strong>in</strong>gful explanati<strong>on</strong> <strong>of</strong> <strong>solvent</strong>-<strong>in</strong>duced vibrati<strong>on</strong><br />

frequency shifts <strong>of</strong> <strong>the</strong> solute have been also presented [6-14].<br />

The first <strong>the</strong>oretical treatment <strong>of</strong> <strong>solvent</strong>-<strong>in</strong>duced vibrati<strong>on</strong> frequency shifts was<br />

given <strong>by</strong> KBM, which is shown <strong>in</strong> Eq.(1):<br />

(ν o -ν s ) / ν o =Δν / ν o = C(ε-1)/(2ε+1) (1)<br />

ν o is <strong>the</strong> vibrati<strong>on</strong>al frequency <strong>of</strong> a solute <strong>in</strong> <strong>the</strong> gas phase, ν s is <strong>the</strong> vibrati<strong>on</strong>al<br />

frequency <strong>of</strong> a solute <strong>in</strong> <strong>the</strong> <strong>solvent</strong>, ε is <strong>the</strong> dielectric c<strong>on</strong>stant <strong>of</strong> <strong>solvent</strong> and C is a<br />

c<strong>on</strong>stant depend<strong>in</strong>g up<strong>on</strong> <strong>the</strong> dimensi<strong>on</strong>s and electrical properties <strong>of</strong> <strong>the</strong> vibrat<strong>in</strong>g<br />

solute dipole.<br />

Because <strong>the</strong> ν o could not be obta<strong>in</strong>ed from <strong>the</strong> experiment, <strong>the</strong> Eq (1) can be<br />

modified <strong>in</strong>to a generalized form (shown <strong>in</strong> Eq (1’) ), where <strong>the</strong> B equal to C*ν o .<br />

When <strong>the</strong> correlati<strong>on</strong> between <strong>the</strong> ν s and (ε-1)/(2ε+1) is l<strong>in</strong>ear, <strong>the</strong> slope is B and <strong>the</strong><br />

<strong>in</strong>tercept is ν o .<br />

ν s = ν o - B (ε-1)/(2ε+1) (1’)<br />

The <strong>solvent</strong> acceptor number (AN) is <strong>on</strong>e <strong>of</strong> <strong>the</strong> empirical parameters <strong>of</strong> <strong>solvent</strong><br />

shown <strong>in</strong> Eq. (2), which was developed <strong>by</strong> Gutmann from <strong>the</strong> 31 P NMR chemical<br />

shifts <strong>of</strong> triethylphosphane oxide to study <strong>the</strong> <strong>solvent</strong> <strong>effects</strong> [15–19], and is<br />

reportedly a measure <strong>of</strong> <strong>the</strong> electrophilicity (or <strong>the</strong> Lewis acidity) <strong>of</strong> <strong>the</strong> <strong>solvent</strong>:<br />

AN = [δ (solv) − δ (hexane) ] × 2.348 =Δδ × 2.348 (2)<br />

where δ (solv) and δ (hexane) are <strong>the</strong> 31 P NMR chemical shifts <strong>of</strong> triethylphosphane oxide<br />

<strong>in</strong> a <strong>solvent</strong> and <strong>in</strong> hexane, respectively. The <strong>solvent</strong> acceptor numbers (AN) have<br />

been found to be useful <strong>in</strong> <strong>the</strong> predicti<strong>on</strong> <strong>of</strong> 13 C chemical shifts and <strong>in</strong>frared<br />

vibrati<strong>on</strong>al band shifts <strong>in</strong> different <strong>solvent</strong>s for some simple molecules [20]. The<br />

relati<strong>on</strong> suitable to <strong>in</strong>frared spectroscopy is shown <strong>in</strong> Eq. (3):<br />

ν =ν 0 + K∗ AN (3)<br />

2


where ν 0 is <strong>the</strong> <strong>in</strong>frared vibrati<strong>on</strong>al frequency <strong>of</strong> a solute <strong>in</strong> hexane and K is <strong>the</strong><br />

sensitivity <strong>of</strong> <strong>in</strong>frared vibrat<strong>in</strong>g frequency (ν) to <strong>the</strong> <strong>solvent</strong> acceptor numbers (AN).<br />

Swa<strong>in</strong> proposed a two-parameter treatment <strong>of</strong> <strong>solvent</strong> <strong>effects</strong> [22]. It is based <strong>on</strong><br />

a computer calculati<strong>on</strong> <strong>in</strong>volv<strong>in</strong>g 1080 data sets for 61 <strong>solvent</strong>s and 77<br />

<strong>solvent</strong>-sensitive reacti<strong>on</strong>s and physicochemical properties. Accord<strong>in</strong>g to <strong>the</strong>se<br />

calculati<strong>on</strong>s, all <strong>solvent</strong> <strong>effects</strong> can be rati<strong>on</strong>alized <strong>in</strong> terms <strong>of</strong> two complementary<br />

<strong>solvent</strong> property scales, i.e. A j , measur<strong>in</strong>g <strong>the</strong> <strong>solvent</strong>’s ani<strong>on</strong>-solvat<strong>in</strong>g tendency or<br />

acidity, and B j , measur<strong>in</strong>g <strong>the</strong> <strong>solvent</strong>’s cati<strong>on</strong>-solvat<strong>in</strong>g tendency or basicity [21,22],<br />

both comb<strong>in</strong>ed <strong>in</strong> Eq.(4):<br />

ν = ν 0 +a i ∗A j +b i ∗ Bj (4)<br />

ν is <strong>the</strong> vibrati<strong>on</strong> frequency <strong>of</strong> solute <strong>in</strong> <strong>solvent</strong> j. ν 0 represents <strong>the</strong> predicated value<br />

for a reference <strong>solvent</strong> (n-heptane) for which A j = B j = 0.00. a i and b i represent <strong>the</strong><br />

sensitivity <strong>of</strong> solute to a <strong>solvent</strong> change.<br />

The l<strong>in</strong>ear solvati<strong>on</strong> energy relati<strong>on</strong>ships (LSER) is a multiparameter (that is, <strong>the</strong><br />

Kamlet-Taft <strong>solvent</strong> parameters α, β, π* and δ ) treatment used to describe <strong>the</strong> <strong>solvent</strong><br />

<strong>effects</strong> [21,23-25]. The model equati<strong>on</strong> <strong>of</strong> LSER applied <strong>in</strong> <strong>in</strong>frared spectroscopy is<br />

shown <strong>in</strong> Eq.(5):<br />

ν = ν 0 + (sπ* + dδ) + aα + bβ (5)<br />

ν is <strong>the</strong> vibrati<strong>on</strong> frequency <strong>of</strong> solute (such as ν(C=O)) <strong>in</strong> a pure <strong>solvent</strong> and ν 0 is <strong>the</strong><br />

regressi<strong>on</strong> value <strong>of</strong> <strong>the</strong> ν(C=O) <strong>in</strong> cyclohexane as a reference <strong>solvent</strong>. π* is an <strong>in</strong>dex<br />

<strong>of</strong> <strong>solvent</strong> dipolarity/polarizability. δ is a disc<strong>on</strong>t<strong>in</strong>uous polarizability correcti<strong>on</strong> term<br />

for poly-chlor<strong>in</strong>esubstituted aliphatics and aromatic <strong>solvent</strong>s. α is a measure <strong>of</strong> <strong>the</strong><br />

<strong>solvent</strong> hydrogen-b<strong>on</strong>d d<strong>on</strong>or acidity. β is a measure <strong>of</strong> <strong>the</strong> <strong>solvent</strong> hydrogen-b<strong>on</strong>d<br />

acceptor basicity. The regressi<strong>on</strong> coefficients s, d, a, and b <strong>in</strong> Eq. (5) can provide<br />

quantitative measures <strong>of</strong> <strong>the</strong> relative c<strong>on</strong>tributi<strong>on</strong> <strong>of</strong> <strong>the</strong> <strong>in</strong>dicated parameters.<br />

Benzamide (BA), a useful medic<strong>in</strong>e <strong>in</strong>termediate, is widely used for<br />

antipsychotic drugs syn<strong>the</strong>sis. In <strong>the</strong> present work, <strong>the</strong> <strong>in</strong>frared spectroscopy is<br />

applied to research <strong>the</strong> <strong>solvent</strong> <strong>effects</strong> <strong>in</strong> s<strong>in</strong>gle <strong>solvent</strong>s to probe <strong>in</strong>to <strong>the</strong> mechanism<br />

<strong>of</strong> <strong>the</strong> solute-<strong>solvent</strong> <strong>in</strong>teracti<strong>on</strong>s and make a c<strong>on</strong>clusi<strong>on</strong> <strong>on</strong> <strong>the</strong> practical applicati<strong>on</strong><br />

3


<strong>of</strong> different <strong>solvent</strong> parameters.<br />

2. Experimental details<br />

All <strong>solvent</strong>s used were <strong>of</strong> analytical purity. BA was dried and weighed before<br />

be<strong>in</strong>g added <strong>in</strong>to <strong>the</strong> <strong>solvent</strong>. The c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> <strong>the</strong> soluti<strong>on</strong> ranged from 1.0×10 -3<br />

to 5.0× 10 -3 mol/L.<br />

The spectra <strong>of</strong> <strong>the</strong> soluti<strong>on</strong>s were measured us<strong>in</strong>g a Nicolet Nexus 670 <strong>FTIR</strong><br />

spectrometer with a Ge/KBr beamsplitter and a DTGS detector at room temperature<br />

(21±2 °C) with <strong>the</strong> spectrum regi<strong>on</strong> 4000- 400cm -1 . For all spectra, 40 scans<br />

recorded at 1cm -1 resoluti<strong>on</strong> were averaged. Soluti<strong>on</strong> spectra were measured us<strong>in</strong>g 0.1<br />

mm path length NaCl cells as a sample. The <strong>solvent</strong> spectra were scanned at <strong>the</strong> same<br />

c<strong>on</strong>diti<strong>on</strong>s as a background. The Nicolet OMNIC s<strong>of</strong>tware, versi<strong>on</strong> 7.3, was used for<br />

all data manipulati<strong>on</strong>. The data files were transferred to a computer for analysis us<strong>in</strong>g<br />

a digital curve-fitt<strong>in</strong>g program (Orig<strong>in</strong>Pro 7.5).<br />

3.Results and discussi<strong>on</strong><br />

The ν(C=O) <strong>of</strong> BA <strong>in</strong> 18 different pure <strong>solvent</strong>s and <strong>the</strong> <strong>solvent</strong> parameters are<br />

presented <strong>in</strong> Table 1. The C=O stretch<strong>in</strong>g vibrati<strong>on</strong> band <strong>of</strong> BA appears <strong>in</strong> <strong>the</strong> regi<strong>on</strong><br />

<strong>of</strong> 1675-1695 cm -1 .<br />

Fig. 1 is a plot <strong>of</strong> ν(C=O) <strong>of</strong> BA versus (ε-1)/(2ε+1) <strong>of</strong> <strong>the</strong> KBM equati<strong>on</strong> <strong>of</strong> <strong>the</strong><br />

<strong>solvent</strong>. It is evident that <strong>the</strong>re is no l<strong>in</strong>ear correlati<strong>on</strong> between ν(C=O) and <strong>the</strong> KBM<br />

parameters. The carb<strong>on</strong>yl stretch<strong>in</strong>g vibrati<strong>on</strong>al frequency shift <strong>of</strong> <strong>the</strong> <strong>benzamide</strong><br />

molecule <strong>in</strong> <strong>the</strong> soluti<strong>on</strong> is a complex functi<strong>on</strong> <strong>of</strong> <strong>solvent</strong> properties. The frequency<br />

shifts depend not <strong>on</strong>ly <strong>on</strong> <strong>solvent</strong> dielectric c<strong>on</strong>stants, but also <strong>on</strong> o<strong>the</strong>r <strong>solvent</strong>-solute<br />

<strong>in</strong>teracti<strong>on</strong>s such as <strong>the</strong> hydrogen-b<strong>on</strong>d<strong>in</strong>g. The KBM equati<strong>on</strong> <strong>on</strong>ly takes account <strong>of</strong><br />

<strong>the</strong> <strong>solvent</strong> dielectric c<strong>on</strong>stants. Therefore, <strong>the</strong> correlati<strong>on</strong> between ν(C=O) and <strong>the</strong><br />

KBM parameters is poor. It <strong>in</strong>dicates that <strong>the</strong> KBM relati<strong>on</strong>ship which <strong>on</strong>ly takes <strong>in</strong>to<br />

account <strong>the</strong> dielectric c<strong>on</strong>stants is unsuitable for <strong>the</strong> correlative analysis <strong>of</strong> <strong>solvent</strong><br />

<strong>effects</strong> <strong>in</strong> this paper.<br />

Fig. 2 is a plot <strong>of</strong> ν(C=O) <strong>of</strong> BA versus <strong>the</strong> <strong>solvent</strong> acceptor number (AN) and<br />

4


shows two different l<strong>in</strong>es. It means that <strong>the</strong>re are two k<strong>in</strong>ds <strong>of</strong> <strong>solvent</strong>-<strong>in</strong>duced<br />

carb<strong>on</strong>yl bands <strong>of</strong> BA. The first <strong>on</strong>e (band A) is <strong>the</strong> carb<strong>on</strong>yl absorpti<strong>on</strong> <strong>of</strong> BA <strong>in</strong> <strong>the</strong><br />

n<strong>on</strong>-alcoholic <strong>solvent</strong>s, and <strong>the</strong> sec<strong>on</strong>d (band B) is <strong>the</strong> <strong>on</strong>e <strong>in</strong> <strong>the</strong> alcoholic <strong>solvent</strong>s.<br />

The l<strong>in</strong>ear correlati<strong>on</strong> analysis results and correlati<strong>on</strong> coefficient are shown <strong>in</strong> Eq. (6)<br />

and (7), respectively:<br />

Band A: ν A = – 0.65AN + 1694.85 (6)<br />

R 2 = 0.826 SD =2.167 cm -1<br />

Band B: ν B = – 0.10AN + 1679.33 (7)<br />

R 2 = 0.763 SD =0.304 cm -1--<br />

The negative slopes <strong>of</strong> <strong>the</strong> two l<strong>in</strong>es dem<strong>on</strong>strate that <strong>the</strong> ν(C=O) <strong>of</strong> BA are<br />

shifted to lower wavenumbers as <strong>the</strong> Lewis acidity <strong>of</strong> <strong>the</strong> <strong>solvent</strong> <strong>in</strong>creases. Because<br />

<strong>the</strong> AN is an experiential parameter, which expresses <strong>the</strong> electroaff<strong>in</strong>ity <strong>of</strong> <strong>solvent</strong> as<br />

electr<strong>on</strong> pair acceptor. With <strong>the</strong> ability <strong>of</strong> accept<strong>in</strong>g electr<strong>on</strong> pair <strong>of</strong> <strong>the</strong> <strong>solvent</strong><br />

enhances, <strong>the</strong> value <strong>of</strong> <strong>the</strong> <strong>solvent</strong> AN <strong>in</strong>creases and <strong>the</strong> <strong>in</strong>tensity <strong>of</strong> <strong>the</strong> <strong>in</strong>teracti<strong>on</strong><br />

between <strong>the</strong> solute as <strong>the</strong> electr<strong>on</strong> pair d<strong>on</strong>or and <strong>the</strong> <strong>solvent</strong> streng<strong>the</strong>ns, which lead<br />

to <strong>the</strong> electr<strong>on</strong> density <strong>of</strong> C=O decreases and <strong>the</strong> frequency <strong>of</strong> carb<strong>on</strong>yl stretch<strong>in</strong>g<br />

vibrati<strong>on</strong> shifts to a lower <strong>on</strong>e.<br />

From <strong>the</strong> Fig. 2, it can be observed that <strong>the</strong> slope <strong>of</strong> <strong>the</strong> correlati<strong>on</strong> l<strong>in</strong>e <strong>of</strong> band<br />

B is smaller than that <strong>of</strong> band A. It means <strong>the</strong> shift <strong>of</strong> ν(C=O) <strong>in</strong> alcoholic <strong>solvent</strong>s is<br />

less sensitive to <strong>the</strong> <strong>solvent</strong> AN. Because <strong>the</strong> ν(C=O) <strong>in</strong> alcohol is affected <strong>by</strong> <strong>the</strong><br />

strength <strong>of</strong> <strong>in</strong>termolecular hydrogen b<strong>on</strong>d between <strong>the</strong> C=O group and alcoholic OH<br />

prot<strong>on</strong>, which depends up<strong>on</strong> <strong>the</strong> polarity <strong>of</strong> <strong>the</strong> solute molecules, <strong>the</strong> acidity <strong>of</strong> <strong>the</strong><br />

alcoholic OH prot<strong>on</strong> and <strong>the</strong> steric factors. In alcoholic <strong>solvent</strong>, <strong>the</strong> alcohol molecule<br />

is easy to associate. The associated alcohol molecule is like a large molecule. The<br />

steric factor <strong>of</strong> <strong>the</strong> different associated alcohol molecule is alike, and <strong>the</strong> acidity <strong>of</strong> <strong>the</strong><br />

different associated alcohol molecules is also similar. As a result, <strong>the</strong> <strong>in</strong>teracti<strong>on</strong><br />

between <strong>the</strong> C=O <strong>of</strong> BA and <strong>the</strong> self-associated alcohols is similar, which makes <strong>the</strong><br />

ν(C=O) <strong>in</strong> alcoholic <strong>solvent</strong>s is less sensitive to <strong>the</strong> <strong>solvent</strong> parameter AN.<br />

The Swa<strong>in</strong>’s equati<strong>on</strong>s for <strong>the</strong> carb<strong>on</strong>yl stretch<strong>in</strong>g vibrati<strong>on</strong> band <strong>of</strong> BA is given<br />

<strong>in</strong> Eq.(8):<br />

5


ν (C=O) = 1696.74 – 28.87A(j) – 5.42B(j) (8)<br />

R 2 = 0.912 SD = 2.140 cm -1<br />

The <strong>solvent</strong> <strong>effects</strong> are divided <strong>in</strong>to two species <strong>by</strong> Swa<strong>in</strong>. One is <strong>the</strong> <strong>solvent</strong>’s<br />

ani<strong>on</strong>-solvat<strong>in</strong>g tendency (acidity), and <strong>the</strong> o<strong>the</strong>r is <strong>the</strong> <strong>solvent</strong>’s cati<strong>on</strong>-solvat<strong>in</strong>g<br />

tendency (basicity). It means <strong>on</strong>ly <strong>the</strong> specific solute-<strong>solvent</strong> <strong>in</strong>teracti<strong>on</strong>s are<br />

c<strong>on</strong>sidered.<br />

The l<strong>in</strong>ear correlati<strong>on</strong> <strong>of</strong> ν(C=O) for BA with Swa<strong>in</strong>’s <strong>solvent</strong> parameters is<br />

better than <strong>the</strong> <strong>on</strong>e with AN. It is probable that both <strong>the</strong> <strong>solvent</strong> Lewis acidity and <strong>the</strong><br />

<strong>solvent</strong> Lewis basicity are c<strong>on</strong>sidered <strong>in</strong> Swa<strong>in</strong>’s equati<strong>on</strong>, but <strong>the</strong> <strong>solvent</strong> acceptor<br />

number <strong>on</strong>ly takes <strong>the</strong> <strong>solvent</strong> Lewis acidity <strong>in</strong>to account.<br />

The negative signs <strong>of</strong> <strong>the</strong> regressi<strong>on</strong> coefficients <strong>of</strong> Aj and Bj represent <strong>the</strong> same<br />

<strong>in</strong>fluences <strong>on</strong> <strong>the</strong> C=O <strong>of</strong> <strong>benzamide</strong>: <strong>the</strong> hydrogen-b<strong>on</strong>d d<strong>on</strong>or acidity <strong>of</strong> <strong>solvent</strong>s<br />

and <strong>the</strong> hydrogen-b<strong>on</strong>d acceptor basicity <strong>of</strong> <strong>solvent</strong>s lead to <strong>the</strong> C=O band red shift.<br />

The ratio <strong>of</strong> <strong>the</strong> regressi<strong>on</strong> coefficients <strong>of</strong> Aj and Bj is equal to 5.33, which means that<br />

<strong>the</strong> red shift <strong>of</strong> <strong>the</strong> C=O band <strong>in</strong>duced <strong>by</strong> <strong>the</strong> <strong>solvent</strong> acidity is larger than <strong>the</strong> <strong>on</strong>e<br />

<strong>in</strong>duced <strong>by</strong> <strong>the</strong> <strong>solvent</strong> basicity.<br />

LSER developed <strong>by</strong> Kamlet, Taft and co-workers has been used to better<br />

understand and identify <strong>the</strong> different <strong>solvent</strong>–solute and <strong>solvent</strong>–<strong>solvent</strong><br />

<strong>in</strong>termolecular <strong>in</strong>teracti<strong>on</strong>s. LSER is a powerful tool for <strong>the</strong> study <strong>of</strong> <strong>the</strong> pr<strong>in</strong>cipal<br />

<strong>in</strong>termolecular <strong>in</strong>teracti<strong>on</strong>s that c<strong>on</strong>trol a specific physicochemical process <strong>in</strong> soluti<strong>on</strong>,<br />

such as <strong>in</strong>termolecular electr<strong>on</strong> transfer associated with a free-energy change. LSER<br />

assumes that <strong>the</strong> different <strong>solvent</strong>/solute <strong>in</strong>teracti<strong>on</strong>s are additive and can be<br />

categorized <strong>in</strong> two groups: <strong>the</strong> exoergic and endoergic <strong>in</strong>teracti<strong>on</strong>s. The exoergic<br />

<strong>in</strong>teracti<strong>on</strong>s have <strong>the</strong>ir orig<strong>in</strong>s <strong>in</strong> attractive solute/<strong>solvent</strong> <strong>in</strong>teracti<strong>on</strong>s and can be<br />

quantified <strong>by</strong> <strong>the</strong> solvatochromic parameters π*, α and β. These parameters can be<br />

classified <strong>in</strong> n<strong>on</strong>-specific (π*) and specific (α and β). The π* parameter measures <strong>the</strong><br />

exoergic <strong>effects</strong> <strong>of</strong> dipole/dipole and dipole/<strong>in</strong>duced dipole <strong>in</strong>teracti<strong>on</strong>s between <strong>the</strong><br />

solute and <strong>the</strong> <strong>solvent</strong> molecules. A disc<strong>on</strong>t<strong>in</strong>uous polarizability correcti<strong>on</strong> term, δ<br />

must be added to π* parameter when polichlor<strong>in</strong>esubstituted aliphatics and aromatic<br />

<strong>solvent</strong>s are used. The solvachromic parameter a is a quantitative empirical measure<br />

6


<strong>of</strong> <strong>the</strong> ability <strong>of</strong> a bulk <strong>solvent</strong> to act as hydrogen-b<strong>on</strong>d d<strong>on</strong>or towards a solute. By<br />

c<strong>on</strong>trast, <strong>the</strong> empirical parameter β measures <strong>the</strong> ability <strong>of</strong> a bulk <strong>solvent</strong> to act as a<br />

hydrogen-b<strong>on</strong>d acceptor or electr<strong>on</strong>-pair d<strong>on</strong>or towards a given standard solute.<br />

The LSER regressi<strong>on</strong> coefficients us<strong>in</strong>g <strong>the</strong> data for 18 <strong>solvent</strong>s <strong>in</strong> Table 1 are<br />

calculated and <strong>the</strong> l<strong>in</strong>ear correlati<strong>on</strong> analysis results and correlati<strong>on</strong> coefficient are<br />

shown <strong>in</strong> Eq.(9):<br />

ν (C=O) = 1701.08 – 16.22π* – 2.91δ – 12.72α – 8.40β (9)<br />

R 2 = 0.928 SD = 2.098 cm -1<br />

Then a l<strong>in</strong>ear correlati<strong>on</strong> between <strong>the</strong> C=O stretch<strong>in</strong>g frequencies <strong>of</strong> BA<br />

calculated from <strong>the</strong> Eq.(9) and <strong>the</strong> <strong>on</strong>es observed from <strong>the</strong> experiment is illustrated <strong>in</strong><br />

Fig. 3 with <strong>the</strong> correlati<strong>on</strong> factor (R 2 ) <strong>of</strong> 0.919 and <strong>the</strong> standard deviati<strong>on</strong> (SD) <strong>of</strong><br />

1.991cm -1 . In <strong>the</strong> LSER equati<strong>on</strong>s, <strong>the</strong>re are not <strong>on</strong>ly <strong>the</strong> specific <strong>in</strong>teracti<strong>on</strong><br />

parameters (measured <strong>by</strong> α, β) but also <strong>the</strong> n<strong>on</strong>-specific <strong>in</strong>teracti<strong>on</strong> parameters<br />

(measured <strong>by</strong> π*). The regressi<strong>on</strong> coefficients s, d, a, and b <strong>in</strong> equati<strong>on</strong> measure <strong>the</strong><br />

relative susceptibilities <strong>of</strong> <strong>the</strong> <strong>solvent</strong>-dependent solute property ν to <strong>the</strong> <strong>in</strong>dicated<br />

<strong>solvent</strong> parameters [21]. The regressi<strong>on</strong> coefficients <strong>of</strong> π* and α are close (<strong>the</strong> former<br />

equals 16.22 and <strong>the</strong> later is 12.72), which means <strong>the</strong> susceptibility <strong>of</strong> C=O band <strong>of</strong><br />

BA to <strong>the</strong> dipolarity/polarizability <strong>of</strong> <strong>solvent</strong>s is similar to <strong>the</strong> hydrogen-b<strong>on</strong>d d<strong>on</strong>or<br />

acidity <strong>of</strong> <strong>solvent</strong>s. C<strong>on</strong>sequently a complete descripti<strong>on</strong> <strong>of</strong> all solute-<strong>solvent</strong><br />

<strong>in</strong>teracti<strong>on</strong>s must <strong>in</strong>clude both n<strong>on</strong>-specific and specific <strong>effects</strong>. On <strong>the</strong> o<strong>the</strong>r hand,<br />

<strong>the</strong> two values are negative. It <strong>in</strong>dicates both <strong>of</strong> <strong>the</strong>m could <strong>in</strong>duce <strong>the</strong> carb<strong>on</strong>yl band<br />

<strong>of</strong> BA red shift. The regressi<strong>on</strong> coefficient <strong>of</strong> α is bigger than <strong>the</strong> regressi<strong>on</strong><br />

coefficient <strong>of</strong> β that means <strong>the</strong> C=O <strong>of</strong> <strong>benzamide</strong> is more susceptible to <strong>the</strong><br />

hydrogen-b<strong>on</strong>d d<strong>on</strong>or acidity <strong>of</strong> <strong>solvent</strong>s than <strong>the</strong> <strong>solvent</strong> hydrogen-b<strong>on</strong>d acceptor<br />

basicity. The regressi<strong>on</strong> coefficient <strong>of</strong> α and β are negative, which represent <strong>the</strong> same<br />

<strong>in</strong>fluences <strong>on</strong> <strong>the</strong> C=O <strong>of</strong> <strong>benzamide</strong>: <strong>the</strong> hydrogen-b<strong>on</strong>d d<strong>on</strong>or acidity <strong>of</strong> <strong>solvent</strong>s<br />

(measured <strong>by</strong> α) and <strong>the</strong> hydrogen-b<strong>on</strong>d acceptor basicity <strong>of</strong> <strong>solvent</strong>s (measured <strong>by</strong> β)<br />

lead to <strong>the</strong> C=O band red shift.<br />

4. C<strong>on</strong>clusi<strong>on</strong>s<br />

7


No l<strong>in</strong>ear relati<strong>on</strong>ship exists between <strong>the</strong> ν(C=O) <strong>of</strong> BA and KBM <strong>solvent</strong><br />

parameters. It <strong>in</strong>dicates that <strong>the</strong> KBM relati<strong>on</strong>ship which <strong>on</strong>ly takes <strong>in</strong>to account <strong>the</strong><br />

dielectric c<strong>on</strong>stants is unsuitable for <strong>the</strong> correlative analysis <strong>of</strong> <strong>solvent</strong> <strong>effects</strong> <strong>in</strong> this<br />

paper.<br />

Compar<strong>in</strong>g <strong>the</strong> correlati<strong>on</strong> <strong>of</strong> <strong>the</strong> ν(C=O) with <strong>the</strong> <strong>solvent</strong> parameter KBM and<br />

<strong>the</strong> <strong>solvent</strong> parameter AN, <strong>the</strong> latter is better than <strong>the</strong> former. The similarity <strong>of</strong> <strong>the</strong><br />

electrophilic ability for <strong>the</strong> associated alcohols makes <strong>the</strong> ν(C=O) <strong>of</strong> BA <strong>in</strong> different<br />

alcohols be less sensitive to <strong>solvent</strong> AN.<br />

The l<strong>in</strong>ear correlati<strong>on</strong> <strong>of</strong> <strong>the</strong> ν(C=O) with Swa<strong>in</strong>’s parameters is better than <strong>the</strong><br />

<strong>on</strong>e with AN. But <strong>the</strong> correlati<strong>on</strong> <strong>of</strong> <strong>the</strong> ν(C=O) with <strong>the</strong> LSER parameters <strong>of</strong> <strong>the</strong><br />

<strong>solvent</strong>s is <strong>the</strong> best. It <strong>in</strong>dicates that <strong>the</strong> special and n<strong>on</strong>-special solute-<strong>solvent</strong><br />

<strong>in</strong>teracti<strong>on</strong>s should be c<strong>on</strong>sidered toge<strong>the</strong>r to describe <strong>the</strong> <strong>solvent</strong> <strong>effects</strong>.<br />

Acknowledge<br />

The Analysis and Measurement Foundati<strong>on</strong> <strong>of</strong> Zhejiang Prov<strong>in</strong>ce, P.R. Ch<strong>in</strong>a<br />

supported this work(2007F70069).<br />

References<br />

[1] R.P. Sijbesma, A.P.M. Kentgens, E.T.G. Lutz, J.H. Vander Maas, R.J.M. Nolte, J. Am. Chem.<br />

Soc. 115 (1993)8999.<br />

[2] P. Bruni, C. C<strong>on</strong>ti, R. Galeazzi, J. Mol. Struct. 480-481(1999) 379.<br />

[3] A. Wener, (Ed.), Structrure and Dynamics <strong>of</strong> Weakly B<strong>on</strong>d Molecular Complexed; NATO<br />

Advanced Scientific Institute Seris C, 1987, 212.<br />

[4] A. Perjessy, J.B.F.N. Engberts, M<strong>on</strong>atsh. Chem. 126(1995) 871.<br />

[5] J.-N. Cha, B.-S. Che<strong>on</strong>g, H.-G. Cho, J. Mol. Struct. 570(2001) 97.<br />

[6] A.A. Stolov, J. Mol. Struct. 480-/481 (1999) 499.<br />

[7] B. Hernandez, J. Mol. Struct. 565-566 (2001)259.<br />

[8] A. Zimniak, J. Mol. Struct. 433 (1998) 115.<br />

[9] I. Bratu, Spectrochim. Acta 54A (1998) 501.<br />

[10] D.K. Cha, A.A. Kloss, A.C. Tikanen, W.R. Fawcett, Phys.Chem. Chem. Phys. 1 (1999) 4785.<br />

8


[11] R. Streck, Spectrochim. Acta 55 (1999) 1049.<br />

[12] M.M. Wohar, Spectrachimica Acta 54A (1998) 999.<br />

[13] R.A. Nyquist, App. Spectroscopy 43 (1989) 1053.<br />

[14] R. Navarro, J. Mol. Struct. 348 (1995) 253.<br />

[15] L. Onsager, J. Am. Chem. Soc. 58 (1936) 1486.<br />

[16] A.D. Buck<strong>in</strong>g, Proc. R. Soc. Am. 255 (1960) 32.<br />

[17] R.A. Nyquist, R. Streck, Spectrochim. Acta 51A (1995) 475.<br />

[18] R.A. Nyquist, R. Streck, G. Jeschek, J. Mol. Struct. 377 (1996) 113.<br />

[19] M.C.R. Sym<strong>on</strong>s, Chem. Soc. Rev. 12 (1983) 1.<br />

[20] M.M. Wohar, Spectrochim. Acta 44A (1988) 999.<br />

[21] C. Rcichardt, Solvents and Solvent Effects <strong>in</strong> Organic Chemistry, 2 nd rev. and enl. ed., Verlag<br />

Chemie We<strong>in</strong>heim, New York, 1988.<br />

[22] C.G. Swa<strong>in</strong>, M.S. Swa<strong>in</strong>, A.L. Powell and S. Alunni, J. Am. Chem. Soc. 105(1983) 502.<br />

[23] M.J. Kamlet, J.L. Abbound, R.W. Taft, J. Am. Chem.Soc. 99 (1977) 6027.<br />

[24] J.L. Abbound, M.J. Kamlet, R.W. Taft, Progr. Phys. Org.Chem. 13 (1981) 485.<br />

[25] Q. Liu, W.Q. Sang, X.M. Xu, J. Mol. Struct. 608 (2002)253.<br />

Fig. 1. A plot <strong>of</strong> ν(C=O) vs KBM parameter (ε-1)/(2ε+1)<br />

9


Fig. 2. A plot <strong>of</strong> ν(C=O) vs <strong>the</strong> <strong>solvent</strong> acceptor number<br />

Fig.3. The carb<strong>on</strong>yl frequencies <strong>of</strong> <strong>benzamide</strong> calculated from <strong>the</strong> LSER (Eq.(9)) versus <strong>the</strong><br />

carb<strong>on</strong>yl frequencies observed from <strong>the</strong> experiment<br />

10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!