Laser diodes with phase conjugate feedback

Laser diodes with phase conjugate feedback Laser diodes with phase conjugate feedback

Risø National Laboratory<br />

<strong>Laser</strong> <strong>diodes</strong> <strong>with</strong> <strong>phase</strong> <strong>conjugate</strong> <strong>feedback</strong><br />

Paul M. Petersen<br />

Risø National Laboratory, Denmark<br />

Paul Michael Petersen, <strong>Laser</strong> Diodes <strong>with</strong> External Feedback (tutorial)


Risø National Laboratory<br />

Generation of <strong>phase</strong> <strong>conjugate</strong> waves<br />

A 4<br />

A 1<br />

Nonlinear<br />

medium χ (3)<br />

A 2<br />

A 3<br />

The classic configuration for four-wave mixing<br />

The interaction between the three waves A 1 , A 2 and A 3 inside<br />

the nonlinear medium leads to the generation of a <strong>phase</strong> <strong>conjugate</strong><br />

beam A 3 propagating exactly counteropposed to A 4<br />

Paul Michael Petersen, <strong>Laser</strong> Diodes <strong>with</strong> External Feedback (tutorial)


Risø National Laboratory<br />

Phase aberration correcting properties of<br />

<strong>phase</strong> <strong>conjugate</strong> waves<br />

original distorted corrected<br />

• Corrects for <strong>phase</strong> aberrations inside the laser cavity<br />

• Output beam of laser cavity close to the diffraction limit<br />

Paul Michael Petersen, <strong>Laser</strong> Diodes <strong>with</strong> External Feedback (tutorial)


Risø National Laboratory<br />

Phase <strong>conjugate</strong> mirrors<br />

normal mirror <strong>phase</strong> <strong>conjugate</strong> mirror<br />

The autoretracing property of <strong>phase</strong> <strong>conjugate</strong> mirrors<br />

is important for the basic understanding of how these<br />

mirrors work in laser cavities<br />

Paul Michael Petersen, <strong>Laser</strong> Diodes <strong>with</strong> External Feedback (tutorial)


Risø National Laboratory<br />

High-power laser diode arrays<br />

proton implantation<br />

metallization<br />

GaAs (p-type)<br />

GaAlAs (p-type)<br />

GaAlAs<br />

GaAlAs (n-type)<br />

GaAs (n-type)<br />

gain<br />

High output power (>50 W)<br />

Long lifetimes (>30.000 h)<br />

Very poor spatial and temporal coherence<br />

Paul Michael Petersen, <strong>Laser</strong> Diodes <strong>with</strong> External Feedback (tutorial)


Risø National Laboratory<br />

Optical <strong>phase</strong> conjugation using<br />

photorefractive materials<br />

BaTiO 3<br />

crystals<br />

Self-pumped <strong>phase</strong> conjugation<br />

using photorefractive materials<br />

•Self-organizing process leads to optical <strong>phase</strong> conjugation<br />

•No external pump beams are needed<br />

•High reflectivities (> 90 %) even at low optical power levels<br />

Paul Michael Petersen, <strong>Laser</strong> Diodes <strong>with</strong> External Feedback (tutorial)


Risø National Laboratory<br />

Improvement of the coherence properties<br />

of laser diode arrays<br />

Method: <strong>phase</strong> <strong>conjugate</strong> <strong>feedback</strong><br />

-effective coupling of the laser elements<br />

-self starting <strong>feedback</strong> configuration<br />

-at high output power instabilities take place<br />

Paul Michael Petersen, <strong>Laser</strong> Diodes <strong>with</strong> External Feedback (tutorial)


Risø National Laboratory<br />

Phase <strong>conjugate</strong> <strong>feedback</strong><br />

Løbel et al., Optics Lett. 23, 825 (1998)<br />

Frequency selective <strong>phase</strong> <strong>conjugate</strong> <strong>feedback</strong><br />

eliminates instabilities<br />

Paul Michael Petersen, <strong>Laser</strong> Diodes <strong>with</strong> External Feedback (tutorial)<br />

.


Risø National Laboratory<br />

Single-mode operation<br />

Intensity [arb.]<br />

FWHM=0.02 nm<br />

(10 GHz)<br />

PC-Feedback<br />

Freely run.<br />

0.63<br />

nm<br />

0.63<br />

nm<br />

810 811 812 813 814 815 816 817<br />

Wavelength [nm]<br />

100 µm<br />

Paul Michael Petersen, <strong>Laser</strong> Diodes <strong>with</strong> External Feedback (tutorial)


Risø National Laboratory<br />

Asymmetric <strong>phase</strong> <strong>conjugate</strong> <strong>feedback</strong><br />

Single-lobe configuration<br />

Paul Michael Petersen, <strong>Laser</strong> Diodes <strong>with</strong> External Feedback (tutorial)


Risø National Laboratory<br />

Far-field<br />

output<br />

Diffraction<br />

limited output<br />

<strong>with</strong> singlelobe<br />

config.<br />

Intensity [arb. units]<br />

0<br />

0<br />

0<br />

1.4 times the<br />

diffraction limit<br />

-5 -4 -3 -2 -1 0 1 2 3 4 5<br />

Radiation angle [deg]<br />

Single-lobe<br />

Twin-lobe<br />

Runs freely<br />

Paul Michael Petersen, <strong>Laser</strong> Diodes <strong>with</strong> External Feedback (tutorial)


Risø National Laboratory<br />

Etalon setup<br />

Coherence degree γ<br />

1,0<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

Array runs freely (2I th )<br />

Feedback applied (2I th )<br />

Feedback applied (3I th )<br />

Output sent<br />

to Michelson<br />

interferometer<br />

Coherence<br />

length is<br />

increased<br />

several orders<br />

of magnitude<br />

0,1 1 10 100<br />

Path difference [mm]<br />

Paul Michael Petersen, <strong>Laser</strong> Diodes <strong>with</strong> External Feedback (tutorial)<br />

.


Risø National Laboratory<br />

Grating configuration<br />

Phase <strong>conjugate</strong><br />

<strong>feedback</strong> only applied<br />

to one of two far-field<br />

lobes.<br />

Paul Michael Petersen, <strong>Laser</strong> Diodes <strong>with</strong> External Feedback (tutorial)


Risø National Laboratory<br />

Singlemode<br />

(a)<br />

Single-mode<br />

operation<br />

BW < 0.03 nm<br />

Wavelength<br />

is tunable<br />

over 20 nm !<br />

Intensity [arbitrary units]<br />

807 808 809 810 811 812 813 814<br />

Wavelength [nm]<br />

(b)<br />

(c)<br />

(d)<br />

(e)<br />

Paul Michael Petersen, <strong>Laser</strong> Diodes <strong>with</strong> External Feedback (tutorial)


Risø National Laboratory<br />

Optical <strong>phase</strong> conjugation using<br />

semiconductor lasers<br />

P. Kürz, R. Nagar, and T. Mukai, Appl.<br />

Phys. Lett. 68, pp.1180-1182, 1996<br />

•Highly efficient <strong>phase</strong> conjugation is obtained (R>>100 %)<br />

•May be used for frequency stabilization of semiconductor<br />

lasers in external <strong>feedback</strong> configurations<br />

Paul Michael Petersen, <strong>Laser</strong> Diodes <strong>with</strong> External Feedback (tutorial)


Risø National Laboratory<br />

Four-wave mixing operation in high power <strong>diodes</strong><br />

0<br />

L<br />

The nonlinear polarization is given by P=<br />

ε χ( N)<br />

E<br />

nc<br />

where χ( N) =− ( β+i)g(N) , g(N)=a(N-N<br />

0)<br />

ω<br />

Z<br />

R=R 1 Z=0<br />

R=0<br />

Gain and refractive<br />

index gratings<br />

A 1<br />

A 3<br />

Semiconductor<br />

amplifier<br />

A 2<br />

Electrode<br />

0<br />

Z=L<br />

dA1<br />

* *<br />

=−α0A1− γ( AA<br />

1 4<br />

+ A2A3) A4<br />

(1A)<br />

dz<br />

*<br />

dA2<br />

* * * *<br />

=+ α0A2 − γ( AA<br />

1 4<br />

+ A2A3) A3<br />

(1B)<br />

dz<br />

dA3<br />

* *<br />

=+ α0A3+ γ( AA<br />

1 4<br />

+ A2A3) A2<br />

(1C)<br />

dz<br />

*<br />

dA4<br />

* * * *<br />

=− α0A4 + γ( AA<br />

1 4<br />

+ A2A3) A1<br />

(1D)<br />

dz<br />

(1 − iβ<br />

) g0<br />

α0<br />

=− is the effective gain<br />

2(1 + P )<br />

P<br />

0<br />

=<br />

E<br />

0<br />

P<br />

s<br />

2<br />

0<br />

0<br />

is the average intercavity pump intensity<br />

2C<br />

γ=-i α0<br />

is the coupling factor<br />

1+<br />

P<br />

Paul Michael Petersen, <strong>Laser</strong> Diodes <strong>with</strong> External Feedback (tutorial)


Risø National Laboratory<br />

DFWM in <strong>diodes</strong> using total internal reflection<br />

0<br />

Gain and refractive<br />

index gratings<br />

A 1<br />

High reflective<br />

coating<br />

Z=0<br />

Semiconductor<br />

amplifier<br />

Electrode<br />

L<br />

Z<br />

A 3<br />

A 2<br />

Z=L<br />

Antireflection<br />

coating<br />

Spatial- and temporal<br />

filtering<br />

Output<br />

beam<br />

M<br />

Paul Michael Petersen, <strong>Laser</strong> Diodes <strong>with</strong> External Feedback (tutorial)


Risø National Laboratory<br />

Generation of carriers is governed by the rate Equation:<br />

dN I N 2<br />

= − + D ∇ N − g ( N ) E<br />

0<br />

dt qV τ<br />

s<br />

(1)<br />

where N(x,y,z) is the excited carrier population,<br />

s<br />

is the carrier recombination time,I is the injected current<br />

D the ambipolar diffusivity, E 0 is the total optical field<br />

g(N)=a(N-N 0 ) is the gain.<br />

Assuming that:<br />

N = N +∆nexp( i∆ky)<br />

(2)<br />

We find that the third order susceptibility is given by:<br />

χ<br />

FWM<br />

⎛<br />

⎞<br />

⎜<br />

⎟<br />

χ<br />

FWM ,max<br />

1<br />

=<br />

⎜<br />

⎟<br />

2 2<br />

E ⎜ IkD<br />

0<br />

s<br />

τ ⎟<br />

s 2<br />

1+ 1+<br />

2 θ<br />

I ⎜ I<br />

s<br />

s<br />

E ⎟<br />

⎝ +<br />

0 ⎠<br />

2<br />

(3)<br />

Paul Michael Petersen, <strong>Laser</strong> Diodes <strong>with</strong> External Feedback (tutorial)


Risø National Laboratory<br />

The nonlinear susceptibility χ (3)<br />

χ (3)<br />

The third order nonlinear susceptibility versus the angle [in units of 1/( k(D<br />

a<br />

<br />

R<br />

)-½)]<br />

<br />

The nonlinear susceptibility is reduced to half the maximum at an angle<br />

corresponding to:<br />

2<br />

E0<br />

1+<br />

1 Is<br />

θ½<br />

=<br />

k Dτ<br />

Paul Michael Petersen, <strong>Laser</strong> Diodes <strong>with</strong> External Feedback (tutorial)<br />

s


Risø National Laboratory<br />

The mode suppression factor<br />

0<br />

Z=0<br />

Semiconductor<br />

amplifier<br />

Electrode<br />

L<br />

Z<br />

Z=L<br />

The output beam is a result of diffraction in the induced gratings inside<br />

the semiconductor amplifier. The diffraction angle ’ inside the<br />

semiconductor is given by: sin θ’ = λ/(Λn). For small angles the <strong>phase</strong><br />

difference between a wave diffracted at the front facet and the back facet<br />

of the amplifier is given by:<br />

δ = 2πnL/λ -2πnLcos θ’/λ = 2πn(1-cosθ’)/λ<br />

Since 1-cosθ’= 2sin 2 (θ’/2) and n sin’ = sin we obtain:<br />

4π<br />

L<br />

δ = Sin<br />

λn<br />

2<br />

θ<br />

2<br />

Paul Michael Petersen, <strong>Laser</strong> Diodes <strong>with</strong> External Feedback (tutorial)


Risø National Laboratory<br />

The mode suppression factor<br />

8<br />

The mode suppression factor δ<br />

6<br />

4<br />

2<br />

1 2 3 4 5<br />

<br />

The mode suppression factor δ of the induce<br />

grating versus the angle between the interfering<br />

laser beams in the four-wave interaction (L=1 mm,<br />

n=3.4, •=810 nm)<br />

In practice the factor must be somewhat larger 2 π to have effectively<br />

suppression of different axial modes in the broad area amplifier.<br />

The critical angle for which mode suppression occurs depends on the length of<br />

the amplifier and is determined by :<br />

θ =<br />

crit<br />

nλ<br />

2Arcsin( )<br />

2L<br />

Paul Michael Petersen, <strong>Laser</strong> Diodes <strong>with</strong> External Feedback (tutorial)


Risø National Laboratory<br />

Fundamental condition for laser action<br />

In general, the laser system needs mode suppression from the<br />

gratings and a large nonlinear susceptibility. This condition leads to<br />

the condition that the angle must be chosen according to:<br />

E0<br />

1+<br />

⎛ nλ<br />

⎞ 1 Is<br />

2arcsin<br />

⎜<br />

θ<br />

2L ⎟ < <<br />

⎝ ⎠ k Dτ<br />

s<br />

2<br />

Paul Michael Petersen, <strong>Laser</strong> Diodes <strong>with</strong> External Feedback (tutorial)


Risø National Laboratory<br />

Nonlinear gratings and mode suppression<br />

(Numerical example)<br />

Mode suppression<br />

Inserting L=1 mm, n=3.4, •=810 nm for GaAlAs we<br />

obtain crit<br />

= 4.2<br />

Nonlinear gratings<br />

For GaAlAs the parameters are D a<br />

=13cm 2 /s and R<br />

=1<br />

ns and consequently we obtain at 810 nm ½<br />

= 6.5<br />

Mode suppression and strong gratings are obtained<br />

when 4.2 < < 6.5°<br />

Paul Michael Petersen, <strong>Laser</strong> Diodes <strong>with</strong> External Feedback (tutorial)


Dynfrac amic tivein dexg gain andre rating -s<br />

A1<br />

Sem icond uctor<br />

E lectro<br />

amp lifier<br />

A3 A2<br />

O utpu t<br />

b eam<br />

Risø National Laboratory<br />

Monolithic dynamic grating laser<br />

Permanent grating<br />

A 1<br />

Dynamic gain and refractive<br />

index gratings<br />

Semiconductor<br />

amplifier<br />

A 3<br />

A 2<br />

Electrode<br />

Output<br />

beam<br />

Paul Michael Petersen, <strong>Laser</strong> Diodes <strong>with</strong> External Feedback (tutorial)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!