25.11.2014 Views

超新星爆発 - 東京大学宇宙線研究所

超新星爆発 - 東京大学宇宙線研究所

超新星爆発 - 東京大学宇宙線研究所

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2010112<br />

1


Thermonuclear Supernova<br />

(1.4 M ⦿ )<br />

Core Collapse Supernova<br />

(8-140 M ⦿ )<br />

()<br />

()=0<br />

Pair Instability Supernova<br />

(140-270M ⦿ )<br />

(?)<br />

2010112<br />

2


THERMONUCLEAR SN<br />

<br />

<br />

(1.38 M ⦿ )<br />

<br />

P∝ρ 4/3<br />

dP/dr∝M 4/3 r -4-1<br />

∝GMρ/r 2 ∝M 2 r -3-2<br />

<br />

Carbon burning<br />

<br />

2010112<br />

3


→→→→<br />

<br />

()<br />

56 Ni()<br />

Si, S,C, O<br />

56<br />

Ni( 56 Ni→ 56 Co→ 56 Fe)γ<br />

~10 51 erg<br />

2010112<br />

4


→→→→<br />

<br />

→→<br />

()<br />

56 Ni()<br />

Si, S,C, O<br />

56<br />

Ni( 56 Ni→ 56 Co→ 56 Fe)γ<br />

~10 51 erg<br />

2010112<br />

4


Nomoto, Thielemann, Yokoi 1984<br />

1984ApJ...286..644N<br />

<br />

2010112<br />

5


1000<br />

()<br />

<br />


Single degenerate or Double degenerate<br />

<br />

<br />

<br />

M Ni >1.4 M ⦿<br />

2?<br />

SN<br />

SN<br />

<br />

()()<br />

?<br />

2010112<br />

7


CORE COLLAPSE<br />

<br />

~1-2 M⦿<br />

~ GM 2 /R<br />

~5x10 53 erg<br />

<br />

<br />

~10 51 -10 52 erg<br />

<br />

2010112<br />

8


CORE COLLAPSE<br />

<br />

~1-2 M⦿<br />

~ GM 2 /R<br />

~5x10 53 erg<br />

<br />

<br />

~10 51 -10 52 erg<br />

<br />

2010112<br />

8


ρ>10 12 g/cc :<br />

<br />

ρ>: <br />

+<br />

ν e <br />

200 km<br />

<br />

wind<br />

Janka et al. 2007<br />

2010112<br />

9


1.40<br />

<br />

1000<br />

1.30<br />

10 M ⦿ , 15 M ⦿<br />

<br />

radius [km]<br />

100<br />

<br />

10<br />

<br />

-100 0 100 200 300<br />

time [ms]<br />

Janka et al. 2007<br />

2010112<br />

10


Si<br />

T ≈<br />

⎛⎛<br />

⎜⎜<br />

⎝⎝<br />

3E<br />

4πR 3 a<br />

⎞⎞<br />

⎟⎟<br />

⎠⎠<br />

1 4<br />

T>5×10 9 K <br />

T


1990ApJ...360..242S<br />

1990ApJ...349..222T<br />

SN 1987A <br />

Nomoto, TS 1991<br />

Thielemann, Hashimoto, Nomoto 1990<br />

2010112<br />

12


Neutrino driven wind(?)<br />

r-: <br />

inelastic scattering<br />

C: 12 C(ν, ν’p ) 11 B<br />

He: 4 He(ν, ν’p) 3 H(α, γ) 7 Li<br />

<br />

C,OWolf-Rayet(WC)<br />

(~10 -5 M⦿)H, He, LiBeB<br />

2010112<br />

13


2010112<br />

14


2010112<br />

15


2010112<br />

16


1998 FOSSIL IMPRINTS OF FIRST-GENERATION SN EJECTA<br />

or the solar abundances is used. Then L primordial(T)<br />

is<br />

cted for the gas composed of only hydrogen and helium,<br />

eir mass ratio X H:XHe<br />

0.75:0.25 under the collisional<br />

2 3<br />

ion equilibrium. For n1<br />

10 cm , equation (1) gives<br />

5<br />

K. Thus, <br />

the ionization of hydrogen does not affect<br />

amics.<br />

mass<br />

<br />

of hydrogen Msw<br />

thus obtained with L(T) <br />

ial(T) in equation (1) is approximated by the formula<br />

(<br />

4<br />

Msw 5.1 # 10 M, )<br />

E 0<br />

51<br />

10 ergs<br />

)<br />

0.97<br />

(<br />

9/7<br />

c<br />

0.062<br />

s<br />

# n 1 . (2)<br />

1<br />

10 km s<br />

sw is insensitive to n1. The sound speed c s was assumed<br />

1 4<br />

0 km s (or T ∼ 10 K). This mass depends on E 0 and<br />

different way than that of Cioffi et al. (1988) because<br />

different cooling function used here. The cooling funcith<br />

the primordial abundances is approximately<br />

2010112<br />

propor-<br />

TABLE 1<br />

Input Parameters in SN Models and Ca<br />

Corresponding S<br />

Name<br />

WW95<br />

M ms E 0<br />

( M , ) (#10 51 ergs) [Mg/H]<br />

Z12A . . .... 12 1.28 4.1<br />

Z13A . . .... 13 1.29 3.6<br />

Z15A . . .... 15 1.27 3.2<br />

Z22A . . .... 22 1.26 2.8<br />

Z25B . ..... 25 1.83 2.9<br />

Z30B . ..... 30 2.06 2.5<br />

Z35C . ..... 35 2.49 2.6<br />

Z40C . ..... 40 3.01 2.6<br />

n, f, and VSNR<br />

denote the number den<br />

stars, the IMF normalized to unity bet<br />

mass limits, and the maximum volu<br />

SNR, respectively. This condition re<br />

efficiency for the first-generation sta 17


10<br />

<br />

1<br />

0.1<br />

0.01<br />

Nomoto model<br />

Woosley model<br />

0.001<br />

10 20 30 40 50 60 70 80<br />

<br />

2010112<br />

18


TS, Tsujimoto 1998<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2010112<br />

19


L138<br />

SHIGEYAMA<br />

Fe<br />

Fig. 2.—Top<br />

TS,<br />

panel:<br />

Tsujimoto<br />

the crosses are the observed<br />

1998<br />

[C/Mg] for stars plotted<br />

against [Mg/H] (McWilliam et al. 1995). The open and filled circles show the<br />

same quantities in the first-generation SNRs calculated from theoretical SN<br />

models (WW95 [open circles]; T95 [filled circles]). The arrow indicates the<br />

change in the abundance pattern of the model so as to reproduce the SN 1987A<br />

observations (Thielemann et al. 1990 and references therein). Middle panel:<br />

2010112<br />

20


2010112<br />

21


: <br />

<br />

20(2)<br />

(Tsujimoto, TS,<br />

Yoshii 2000)<br />

2010112<br />

22


1987A<br />

<br />

20 M⦿<br />

Ba <br />

<br />

2010112<br />

23


1987A<br />

<br />

<br />

<br />

20 M⦿<br />

Ba <br />

<br />

2010112<br />

23


1987A<br />

<br />

<br />

<br />

20 M⦿<br />

Ba <br />

<br />

2010112<br />

23


1987A<br />

<br />

20 M⦿<br />

Ba <br />

<br />

2010112<br />

23


1987A<br />

<br />

20 M⦿<br />

<br />

Ba <br />

<br />

2010112<br />

(Å)<br />

23


1987A<br />

<br />

20 M⦿<br />

<br />

Ba <br />

<br />

2010112<br />

(Å)<br />

23


1987A<br />

<br />

20 M⦿<br />

<br />

Ba <br />

<br />

2010112<br />

(Å)<br />

23


1987A<br />

<br />

20 M⦿<br />

<br />

Ba <br />

<br />

2010112<br />

(Å)<br />

23


1987A<br />

<br />

20 M⦿<br />

<br />

Ba <br />

<br />

2010112<br />

(Å)<br />

23


1987A<br />

<br />

20 M⦿<br />

Ba <br />

<br />

2010112<br />

23


Be/H∝Fe/H<br />

Beprimary<br />

Be<br />

<br />

H, HeC, O<br />

Be/H∝(Fe/H)^2<br />

C, O<br />

SAGA<br />

2010112<br />

24


Thermonuclear SNe<br />

<br />

Fe, Si, S<br />

Core collapse SNe<br />

<br />

(Li, Be, B), O, Ne, Mg, Si, S, Ti, Ca,, (r-process elements)<br />

2010112<br />

25


Thermonuclear SNe<br />

<br />

Fe, Si, S<br />

Core collapse SNe<br />

<br />

(Li, Be, B), O, Ne, Mg, Si, S, Ti, Ca,, (r-process elements)<br />

<br />

2010112<br />

25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!