25.11.2014 Views

Reliability Issues for Printed Circuit Boards in Lead-Free ... - SMTA

Reliability Issues for Printed Circuit Boards in Lead-Free ... - SMTA

Reliability Issues for Printed Circuit Boards in Lead-Free ... - SMTA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Reliability</strong> <strong>Issues</strong> <strong>for</strong><br />

<strong>Pr<strong>in</strong>ted</strong> <strong>Circuit</strong> <strong>Boards</strong><br />

<strong>in</strong> <strong>Lead</strong>-<strong>Free</strong> Solder<strong>in</strong>g<br />

Werner Engelmaier<br />

Engelmaier Associates, L.C.<br />

7 Jasm<strong>in</strong>e Run<br />

Ormond Beach, FL 32174<br />

386-437-8747<br />

engelmaier@aol.com<br />

www.engelmaier.com<br />

1


PCB RELIABILITY ISSUES<br />

The electronic <strong>in</strong>dustry is <strong>for</strong>ced to abandon<br />

SnPb solders.<br />

Dur<strong>in</strong>g solder<strong>in</strong>g, the PCBs reach the highest<br />

temperatures <strong>in</strong> the entire assembly—<br />

225 to 245°C <strong>for</strong> SnPb solders,<br />

260 to 280°C <strong>for</strong> SAC solders.<br />

The damage done to PCBs by the much higher<br />

lead-free solder<strong>in</strong>g temperatures, reduces long-<br />

term reliability and puts the very survival of<br />

PCBs through the assembly process <strong>in</strong> question.<br />

2


LIFE UNDER THE EU-RoHS<br />

‘Serendipity’ no longer works under RoHS.<br />

The survival of the PCBs, together with their<br />

long-term reliability, needs to be assured upfront<br />

and proactively.<br />

The <strong>in</strong>dustry has experienced PCB failures dur<strong>in</strong>g<br />

LF-solder<strong>in</strong>g with base materials advertised as<br />

“<strong>Lead</strong>-<strong>Free</strong> Process Capable.”<br />

3


<strong>Reliability</strong> Threats<br />

Electronic System<br />

Design <strong>for</strong> <strong>Reliability</strong><br />

&<br />

Quality Manufacture<br />

Components<br />

Interconnects<br />

4


<strong>Reliability</strong> Threats<br />

Electronic System<br />

Components<br />

Design <strong>for</strong> <strong>Reliability</strong><br />

&<br />

Quality Manufacture<br />

PCB Interconnects<br />

Barrel<br />

Fracture<br />

Shoulder<br />

Fracture<br />

Inner-Layer<br />

Separation<br />

Delamiation<br />

5


<strong>Reliability</strong> Threats<br />

<strong>Circuit</strong> Board Interconnect and<br />

Structural Problems<br />

• Plated-Through Holes [PTH]<br />

• Plated-Through Vias [PTV]<br />

• Base Material Delam<strong>in</strong>ations<br />

Solder Attachment Failures<br />

Package Structural Problems<br />

6


<strong>Reliability</strong> Threats to PCBs<br />

PTH/PTV Barrel Fracture<br />

PTH/PTV Barrel/Inner-Layer<br />

Separation [ILS]<br />

PCB Delam<strong>in</strong>ation<br />

Problems with Micro-Vias<br />

Problems with Traces<br />

Inadequate Insulation Resistance<br />

7


Added <strong>Reliability</strong> Concerns under RoHS<br />

Due to ~35°C C Higher Solder<strong>in</strong>g<br />

Temperatures<br />

The concerns are smaller <strong>for</strong> simple<br />

PCBs, but <strong>in</strong>crease with <strong>in</strong>creas<strong>in</strong>g<br />

PCB complexity and thickness.<br />

8


Important T’s s <strong>for</strong> SnPb vs. . SAC<br />

Solder<strong>in</strong>g T—SAC T<br />

= 266°C<br />

Large<br />

CTE(z)<br />

Solder<strong>in</strong>g T—SnPb T<br />

= 228°C<br />

Solidus SAC = 217°C<br />

Solidus SnPb = 183°C<br />

T T = 67°C<br />

T T = 78°C<br />

T T = 116°C<br />

T T = 33°C<br />

Tg = 150°C<br />

9


HOW TO SURVIVE ASSEMBLY<br />

The Design-<strong>for</strong>-<strong>Reliability</strong> needs to beg<strong>in</strong> with the<br />

specifications <strong>for</strong> the PCBs submitted to your<br />

PCB vendors <strong>for</strong> the bidd<strong>in</strong>g process.<br />

When problems have arisen with PCBs, it almost<br />

<strong>in</strong>variably is because the PCBs were not adequately<br />

specified.<br />

I have addressed these issues <strong>in</strong> a White Paper and<br />

example FAB Notes specify<strong>in</strong>g a PCB to survive the<br />

RoHS-solder<strong>in</strong>g processes and function reliably<br />

afterwards.<br />

10


PTH/PTV Interconnect Structure<br />

z<br />

y<br />

x<br />

11


Temperature Gradients<br />

Dur<strong>in</strong>g Reflow Solder<strong>in</strong>g<br />

196°C 224°C 233°C 202°C<br />

<strong>for</strong> Sn/Pb LF-solders<br />

260°C 222°C<br />

205°C 235°C<br />

248°C 217°C<br />

12


Pb-<strong>Free</strong> Solder<strong>in</strong>g Processes<br />

Hot-Air Solder Level<strong>in</strong>g (HASL)—270°C<br />

Infrared (IR) Reflow —265°C<br />

Forced Convection Reflow —260°C<br />

Wave Solder<strong>in</strong>g —265°C<br />

Hand Solder<strong>in</strong>g —260 to 300°C<br />

13


ROOT CAUSES FOR<br />

RELIABILITY THREATS<br />

The threats to the reliability of PCBs <strong>in</strong>clude:<br />

• thermal expansion/contraction mismatches<br />

between res<strong>in</strong> and copper, caus<strong>in</strong>g barrel<br />

fractures and <strong>in</strong>ner-layer separations<br />

—Glass Transition Temperature T g ,<br />

—Thermal Expansion TE<br />

• Thermal degradation of the res<strong>in</strong> system<br />

—Decomposition Temperature T d ,<br />

—Time-to-Delam<strong>in</strong>ation<br />

T260/T288/T300<br />

• Large <strong>in</strong>ternal water vapor pressures<br />

—Moisture Bake-Out Required<br />

16


Thermal Excursions (Operation)<br />

Industry Standard IPC-SM-785<br />

USE Tm<strong>in</strong> Tmax T Cycles Years Acc.Fails<br />

CONSUMER 0°C +60°C 35°C 365 1-3 ~1%<br />

COMPUTERS +15°C +60°C 20°C 1460 ~5 ~0.1%<br />

TELECOMM 40°C +85°C 35°C 365 7-20 ~0.01% o.k.<br />

AUTOMOTIVE-<br />

UNDER HOOD 55°C +125°C 100°C 1300 ~5 ~0.1%<br />

COMMERCIAL<br />

AIRCRAFT<br />

55°C +95°C 20°C 365 ~20 ~0.001%<br />

INDUSTRIAL &<br />

AUTOMOTIVE- 55°C +95°C 60°C 365 ~10 ~0.1%<br />

PASSENGER<br />

MILITARY<br />

GROUND&SHIP<br />

55°C +95°C 60°C 365 ~5 ~0.1%<br />

SPACE 40°C +85°C 35°C 8800 5-20 ~0.001%<br />

MILITARY<br />

AVIONICS<br />

55°C +95°C 80°C 365 ~10 ~0.01%<br />

possible<br />

wearout<br />

17


Thermal Excursions Mandated<br />

<strong>for</strong> 20-Year Life of<br />

F/A-22 Raptor Stealth Fighter Jet<br />

Load<strong>in</strong>g Cycles Tm<strong>in</strong> Tmax T<br />

ESS 10 40°C +70°C 110°C<br />

ATP 10 +25°C +70°C 45°C<br />

Storage 550 +15°C +37°C 22°C<br />

Flight 1 1 40°C +85°C 125°C<br />

M M M M M<br />

Flight 27 929 +20°C +85°C 65°C<br />

M M M M M<br />

Flight 36 1 +45°C +85°C 40°C<br />

Tarmac 1 1 50°C 47°C 3°C<br />

M M M M M<br />

Tarmac 14 260 +20°C +33°C 13°C<br />

M M M M M<br />

Tarmac 20 1 +45°C +58°C 13°C<br />

TOTAL: 59 10,500 -- -- --<br />

18


T g ’s, CTE’s & Thermal Expansion<br />

It is the comb<strong>in</strong>ed effect of the glass transition temperature and<br />

the above Tg coefficient of thermal expansion that determ<strong>in</strong>e the<br />

thermal expansion at solder<strong>in</strong>g temperatures.<br />

Thermal Expansion [%]<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

TE(50=>260°C)<br />

TE(50=>260°C)<br />

TE(50=>260°C)<br />

1.0<br />

0.5<br />

T gTg<br />

0.0<br />

T<br />

260<br />

g<br />

0 50 100 150 200 250 300<br />

19<br />

Temperature [°C][


Thermal Stability/High <strong>Reliability</strong><br />

‘Standard’ FR-4<br />

has improved<br />

s<strong>in</strong>ce the 1980’s.<br />

With the advent<br />

of the solder<strong>in</strong>g<br />

processes<br />

necessary <strong>for</strong><br />

lead-free solder<strong>in</strong>g,<br />

further significant<br />

improvement will<br />

be needed.<br />

Decomposition Temperature, Td T [°C]<br />

350<br />

340<br />

330<br />

320<br />

310<br />

‘80s<br />

FR-4<br />

Hi<br />

Td<br />

‘05<br />

FR-4<br />

LF<br />

Hi<br />

Tg/Td<br />

Hi<br />

Tg<br />

300<br />

100 125 150 175 200<br />

Glass Transition Temperature, T g [°C]<br />

20


Time to Delam<strong>in</strong>ation<br />

Thermal stability as measured by Thermo-Mechanical Analysis<br />

(TMA) on lam<strong>in</strong>ate.<br />

Time to Delam<strong>in</strong>ation [m<strong>in</strong>]<br />

50<br />

45<br />

40<br />

35<br />

25<br />

30<br />

20<br />

15<br />

10<br />

<br />

<br />

T260<br />

<br />

<br />

Material T g T d<br />

FR-4 140°C 320°C<br />

High T d 140°C 350°C<br />

High T g /T d 175°C 350°C<br />

T288T300T300<br />

<br />

<br />

<br />

05<br />

<br />

225 250 275 300 325 350<br />

21<br />

Temperature [°C][<br />

<br />

<br />

Source: Cookson Electronics/Polyclad, USA<br />

T320


Decomposition Temperature, T d<br />

Td is def<strong>in</strong>ed as the temperature at which 2% [Td(2%)] and<br />

5% [Td(5%)] weight loss occurs at a heat<strong>in</strong>g rate of 10°C/m<strong>in</strong>.<br />

Even a 2% weight loss <strong>in</strong>dicates significant degradation of the res<strong>in</strong>.<br />

This weight loss signals an irreversible deterioration of the material.<br />

Source: Cookson Electronics/Polyclad, USA<br />

100<br />

Weight [%]<br />

95<br />

98<br />

200<br />

Sn/Pb Solder<strong>in</strong>g Range<br />

LF Solder<strong>in</strong>g Range<br />

250<br />

300<br />

Temperature [°C][<br />

Standard Standard FR-4 FR-4<br />

350<br />

High High Tg/T<br />

/Td<br />

400<br />

22


Thermal Degradation/Decomposition<br />

Massive delam<strong>in</strong>ation of conventional high-Tg FR-4 4-layer PCB after<br />

lead-free assembly with 260°C peak reflow temperature;<br />

shown <strong>in</strong> 2 views: left to emphasize the delam<strong>in</strong>ation, right to show<br />

the structure details.<br />

Source: Cookson Electronics/Polyclad, USA<br />

23


Proposed<br />

Solder<strong>in</strong>g Temperature Impact Index<br />

The problem with the current IPC slash sheets is that they are to<br />

complex to be of practical use <strong>for</strong> the PCB designers. The STII is<br />

designed to give the designer an immediate feed-back whether<br />

or not to further consider this slash sheet product<br />

Tg + Td<br />

STII = [% thermal expansion 50 to 260°C]10<br />

2<br />

Examples: Tg =140°C, Td(5%) = 320°C, 4.3% TE 50260°C<br />

STII = 187<br />

Tg =175°C, Td(5%) = 350°C, 4.0% TE 50260°C<br />

STII = 223<br />

Possible range of STII ~150 to 250; specify STII 215<br />

(<strong>for</strong> th<strong>in</strong> PCBs STII 205 is likely sufficient).<br />

24


IPC-4101<br />

IPC-4101 (December 1997)<br />

—30 Slash Sheets<br />

IPC-4101A (December 2001)—Amendment 1 (June 2002)<br />

IPC-4101B (March 2006)<br />

—55 Slash Sheets<br />

<strong>in</strong>cludes six (6) “specification sheets describ<strong>in</strong>g FR-4 base<br />

materials compatible with lead-free assembly”:<br />

—IPC-4101 B/ 99: High Tg FR-4, <strong>in</strong>organic fillers<br />

—IPC-4101 B/101: Low Tg FR-4, <strong>in</strong>organic fillers<br />

—IPC-4101 B/121: Low Tg FR-4, no fillers<br />

—IPC-4101 B/124: High Tg FR-4, no fillers<br />

—IPC-4101 B/126: Very High Tg FR-4, <strong>in</strong>organic fillers<br />

—IPC-4101 B/129: Very High Tg FR-4, no fillers<br />

25


IPC-4101/A/B<br />

STATED INTENTION:<br />

The stated <strong>in</strong>tention <strong>for</strong> IPC-4101B “is to provide the<br />

typical composition, application, per<strong>for</strong>mance<br />

characteristics and market <strong>for</strong> each base material.”<br />

Specific Keyword searches, e.g. “<strong>Lead</strong>-<strong>Free</strong> FR-4,” lead to<br />

appropriate slash sheets.<br />

These ‘Keywords’ are not requirements, “they are simply<br />

<strong>in</strong><strong>for</strong>mation” and are <strong>in</strong>tended “For Search Only.”<br />

PROBLEM:<br />

The ‘Keywords,’ while “For Search Only,” do imply<br />

certa<strong>in</strong> per<strong>for</strong>mance capabilities.<br />

Lets look at an example <br />

26


IPC-4101/A/B<br />

For the six (6) “<strong>Lead</strong>-<strong>Free</strong> Compatible” slash sheets :<br />

Slash<br />

Keyword<br />

Tg<br />

Td<br />

TE(50260<br />

260°C)<br />

Sheet LF<br />

Hi Td<br />

Lo zCTE<br />

[°C]<br />

[°C]<br />

[%]<br />

/ 99<br />

/101<br />

/121<br />

/124<br />

/126<br />

/129<br />

LF<br />

Limited<br />

<br />

NO<br />

<br />

NO<br />

<br />

Limited<br />

<br />

<br />

<br />

<br />

NO<br />

<br />

NO<br />

<br />

<br />

<br />

<br />

Limited<br />

<br />

NO<br />

<br />

NO<br />

<br />

Limited<br />

<br />

<br />

<br />

<br />

150<br />

110<br />

110<br />

150<br />

170<br />

170<br />

160<br />

325<br />

310<br />

310<br />

325<br />

340<br />

340<br />

335<br />

3.5<br />

4.0<br />

4.0<br />

3.5<br />

3.0<br />

3.0<br />

3.2<br />

STII<br />

202<br />

170<br />

170<br />

202<br />

225<br />

225<br />

215<br />

The current slash sheets need to either have the requirements<br />

tightened up or the ‘Keywords’ changed to reflect their capabilities.<br />

27


Impact of Copper Plat<strong>in</strong>g<br />

Thickness on PTH/PTV <strong>Reliability</strong><br />

Thicker copper plat<strong>in</strong>g <strong>in</strong> PTH/PTV barrels clearly result <strong>in</strong> more<br />

reliable PTH/PTV <strong>in</strong>terconnect structures.<br />

Note: The copper<br />

plat<strong>in</strong>g thickness<br />

requirement <strong>in</strong><br />

PTH/PTV barrels has<br />

been reduced from<br />

1.0 mils to 0.8 mils to<br />

accommodate slower<br />

plat<strong>in</strong>g speeds <strong>in</strong><br />

high-aspect ratio<br />

PTH/PTVs.<br />

Fluidized Sand -T-Shock 25°C260°C,<br />

hole : 13.5 mils<br />

Source: IPC-TR-579<br />

28


Impact of Hole Diameter and PCB<br />

Thickness on PTH/PTV <strong>Reliability</strong><br />

The reliability of PTH/PTV <strong>in</strong>terconnect structures decreases with<br />

decreas<strong>in</strong>g drilled hole diameter and <strong>in</strong>creas<strong>in</strong>g PWB thickness.<br />

Note: The test<strong>in</strong>g <strong>for</strong><br />

the round rob<strong>in</strong><br />

program reported on<br />

<strong>in</strong> IPC-TR-579 was<br />

arbitrarily, and<br />

un<strong>for</strong>tunately,<br />

term<strong>in</strong>ated after 400<br />

cycles.<br />

<br />

<br />

<br />

T-Cycle;<br />

-65°C+125°C<br />

mils<br />

<br />

PCB THICKNESS<br />

Source: IPC-TR-579<br />

29


Number of Cycles<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

Impact of Hole Diameter on<br />

PTH/PTV <strong>Reliability</strong><br />

FR-4 PCB, h=90 mils, T g =175°C<br />

HATS: -40145<br />

145°C, 0.25 m<strong>in</strong>. dwells<br />

ATC: -40145<br />

145°C, 10 m<strong>in</strong>. dwells<br />

Source: Tim Estes, Conductor Analysis, Vicka White, Honeywell, USA<br />

100<br />

0<br />

10 12 13.5 16<br />

10<br />

12 13.5 16<br />

Drilled Hole Diameter [mils]<br />

30


<strong>Reliability</strong> Assurance Test<br />

Comparison: ATC, HATS & IST Results<br />

100<br />

Courtesy of Rick Snyder, Delphi Inc., USA<br />

Failures,<br />

[%]<br />

80<br />

60<br />

40<br />

Fab A<br />

Fab B<br />

20<br />

Fab C<br />

to<br />

1250<br />

0<br />

0 100 200 300 400 500 600 700 800 900 1000<br />

Cycles<br />

Fabs: FR-4, T g =170°C, 31 mil-thick PCB, 8 & 10 mil-diameter holes<br />

TS: -40°C+145°C/60 m<strong>in</strong>ute cycle<br />

HATS: -40°C+145°C/14 m<strong>in</strong>ute cycle<br />

IST: RT+170°C/10 m<strong>in</strong>ute cycle<br />

31


Loss of Life<br />

Due to Solder<strong>in</strong>g Processes (1)<br />

% Failed<br />

90<br />

75<br />

50<br />

25<br />

10<br />

5<br />

2<br />

1<br />

10 2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

30%<br />

<br />

<br />

<br />

<br />

200 500 10 3 2,000 5,000<br />

<br />

Cycles-to-Failure<br />

FR-4 PCB-PTVs,<br />

=13.5 mils [0.34 mm],<br />

h =100 mils [2.54 mm],<br />

Grid: 50 mils [1.3 mm]<br />

10 layers, non-functional pads,<br />

ATC: -55125<br />

125°C<br />

Assembly simulation:<br />

5 x reflow @ 215°C,<br />

= 4.1<br />

No assembly simulation,<br />

= 3.7<br />

10 4<br />

32


% Failed<br />

90<br />

75<br />

50<br />

25<br />

10<br />

5<br />

2<br />

1<br />

10 2<br />

<br />

33%<br />

50% <br />

<br />

<br />

<br />

<br />

Loss of Life<br />

Due to Solder<strong>in</strong>g Processes (2)<br />

<br />

<br />

<br />

<br />

200 500 10 3 2,000 5,000<br />

Cycles-to-Failure<br />

Courtesy of Paul Reid, PWB Solutions, Canada<br />

FR-4 PCB-PTVs,<br />

=13.5 mils [0.34 mm],<br />

h =102 mils [2.60 mm],<br />

Grid: 50 mils [1.3 mm]<br />

10 layers, non-functional pads,<br />

ATC: +25150<br />

150°C<br />

Assembly simulation:<br />

3 x reflow @ 230°C,<br />

= 2.3<br />

No assembly simulation,<br />

= 5.1<br />

10 4<br />

33


Engelmaier Fatigue Life Prediction<br />

N f<br />

–0.6 D 0.75 f<br />

+ 0.9 S u<br />

E<br />

<br />

exp D <br />

f<br />

<br />

0.36<br />

( )<br />

Plastic Stra<strong>in</strong><br />

Elastic Stra<strong>in</strong><br />

Low-Cycle<br />

High-Cycle<br />

Fatigue<br />

Fatigue<br />

Nf =mean cyclestofailure<br />

D f =fatigue ductilityfrom IPCTM2.4.2.1<br />

Effective Cyclic<br />

Stra<strong>in</strong><br />

Range<br />

S u =ultimate tensilestrength<br />

E =modulusof elasticity<br />

This equation is based on empirical relationships between fatigue behavior<br />

and tensile properties; it needs to be solved by iteration.<br />

It is the basis <strong>for</strong> IPC-TM-2.4.2.1, ‘Flexural Fatigue and Ductility, Foil’ and ASTM-<br />

E796 ‘Standard Method <strong>for</strong> Ductility Test<strong>in</strong>g of Metallic Foil’<br />

<br />

<br />

<br />

0.1785 log 105<br />

N f = max eff<br />

( )<br />

34


Plated-Through Via<br />

Barrel Crack<br />

Barrel cracks occur near center of<br />

PWB— highest load— at prepreg layer<br />

— higher res<strong>in</strong> content.<br />

Res<strong>in</strong> recession gives a clear<br />

<strong>in</strong>dication of the <strong>for</strong>ces at work caus<strong>in</strong>g<br />

the plastic de<strong>for</strong>mation of the copper<br />

barrel.<br />

35


Inner-Layer (Post) Separation<br />

Inner-layer adhesive failure<br />

occurs on heat<strong>in</strong>g when res<strong>in</strong><br />

expands compress<strong>in</strong>g barrel<br />

and <strong>in</strong>ner-layers cannot move<br />

enough; on cool<strong>in</strong>g the<br />

reced<strong>in</strong>g res<strong>in</strong> produces the<br />

separation seen.<br />

36


F<strong>in</strong>ite Element Model: Stress Results<br />

These are the stress results <strong>for</strong> the copper barrel and <strong>in</strong>nerlayers of the<br />

pr<strong>in</strong>ted wir<strong>in</strong>g board.<br />

Note: The largest<br />

stresses occur at<br />

the ‘shoulder’ of the<br />

PTV barrel and the<br />

surface pad and at<br />

the center of the<br />

barrel.<br />

z<br />

y<br />

x<br />

Courtesy: Sh<strong>in</strong>e Rom<strong>in</strong>ger, U.S.Navy-Crane, IN, USA<br />

37


High Cu Dissolution <strong>in</strong> SAC Waves<br />

• What we know about Sn·Ag·Cu (SAC) and Sn·Ag·Cu·Xy<br />

solders:<br />

Dissolve Cu and other base metals faster (about 2x) than Sn/Pb<br />

can be a real problem at the mouth of plated-through holes<br />

and vias<br />

Double wave-s<strong>in</strong>gle pass<br />

35 μm [1.4 mils]<br />

28 μm [1.1 mils]<br />

Reflow<br />

35 μm [1.4 mils]<br />

22 μm [0.9 mils]<br />

Source: Biglari, et al, IDEALS, Europe<br />

Source: Th. Ahrens, Fraunhofer Institut, Germany<br />

38


Vapor Pressure<br />

Load Drivers<br />

Another important load driver is absorbed<br />

moisture with<strong>in</strong> the PCB<br />

• PCB res<strong>in</strong>s absorb moisture; this moisture can be<br />

removed prior to solder<strong>in</strong>g processes by a moisture<br />

removal bak<strong>in</strong>g step.<br />

• The higher solder<strong>in</strong>g temperatures <strong>for</strong> LF-solders<br />

require more thorough moisture removal—the vapor<br />

pressure roughly doubles from 220°C to 260°C.<br />

Any rema<strong>in</strong><strong>in</strong>g moisture will vaporize and create high<br />

vapor pressure levels with<strong>in</strong> the PCB.<br />

These vapor pressures can rupture the PCB matrix and<br />

separate PCB layers.<br />

39


Water Vapor Pressure Induced<br />

PCB Layer<br />

Separation<br />

Note: Top photo is<br />

from SMT reflow<br />

process; bottom<br />

picture is from rework<br />

procedure.<br />

Courtesy of D. Mattix, Qualcomm Inc., USA<br />

40


Micro-Via Resistance Change<br />

After Assembly Simulation<br />

Change <strong>in</strong> resistance of 86<br />

daisy-cha<strong>in</strong> nets consist<strong>in</strong>g<br />

of 146 μ-vias each after 6<br />

reflow oven passes with<br />

215°C C peak reflow<br />

temperature.<br />

Change <strong>in</strong> Via Net Resistance [%]<br />

20.0<br />

18.0<br />

16.0<br />

14.0<br />

12.0<br />

10.0<br />

8.0<br />

6.0<br />

4.0<br />

2.0<br />

0.0<br />

12 Po<strong>in</strong>ts<br />

Courtesy of Ron Rhodes, Conductor Analysis Technologies, Inc., USA<br />

- 2.0<br />

5 7 9 11<br />

Hole Diameter [mils]<br />

41


Micro-Via Resistance Change<br />

After T-Cycl<strong>in</strong>g<br />

Change <strong>in</strong> resistance of<br />

110 daisy-cha<strong>in</strong> nets<br />

consist<strong>in</strong>g of 146 μ-vias<br />

each after 500 cycles of<br />

-55+95°C.<br />

Note: : 6 reflow cycles are<br />

significantly more<br />

damag<strong>in</strong>g than 500<br />

cycles with T=150°C<br />

Change <strong>in</strong> Via Net Resistance [%]<br />

20.0<br />

18.0<br />

16.0<br />

14.0<br />

12.0<br />

10.0<br />

8.0<br />

6.0<br />

4.0<br />

2.0<br />

0.0<br />

- 2.0<br />

4 Po<strong>in</strong>ts<br />

5 7 9 11<br />

Hole Diameter [mils]<br />

Courtesy of Ron Rhodes, Conductor Analysis Technologies, Inc., USA<br />

42


SOLID<br />

TECHNICAL<br />

UNDERSTANDING<br />

43


Thank You!<br />

Are there any questions?<br />

44


Workshops by Werner Engelmaier:<br />

•Interconnect Failures and Design <strong>for</strong> <strong>Reliability</strong> <strong>for</strong> Plated-<br />

Through Holes/Vias<br />

•How to Specify PCBs to Reliably Survive the RoHS-Mandated<br />

<strong>Lead</strong>-<strong>Free</strong> Solder<strong>in</strong>g Processes<br />

•Solder Jo<strong>in</strong>t <strong>Reliability</strong>—<br />

•Part 1: Fundamentals <strong>in</strong> Solder Jo<strong>in</strong>t <strong>Reliability</strong><br />

•Part 2: Failure Mode and Root Cause Analyses (Fatigue,<br />

Brittle Fracture, ENIG)<br />

•Part 3: Acceleration Models, Accelerated <strong>Reliability</strong> Tests<br />

and Screen<strong>in</strong>g Procedures<br />

•Part 4: <strong>Reliability</strong> <strong>Issues</strong> <strong>for</strong> <strong>Lead</strong>-<strong>Free</strong> Solder<strong>in</strong>g<br />

•<strong>Reliability</strong> Concerns <strong>in</strong> Electronic Packag<strong>in</strong>g<br />

45

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!