25.11.2014 Views

Ross (jr6585) – Hw14 – Ross – (89251) 1 This print ... - WebPhysics

Ross (jr6585) – Hw14 – Ross – (89251) 1 This print ... - WebPhysics

Ross (jr6585) – Hw14 – Ross – (89251) 1 This print ... - WebPhysics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>This</strong> <strong>print</strong>-out should have 8 questions.<br />

Multiple-choice questions may continue on<br />

the next column or page – find all choices<br />

before answering.<br />

001 (part 1 of 4) 10.0 points<br />

The figure below shows a straight cylindrical<br />

coaxial cable of radii a, b, and c in which<br />

equal, uniformly distributed, but antiparallel<br />

currents i exist in the two conductors.<br />

a<br />

i out ⊙<br />

b<br />

c<br />

i in ⊗<br />

O<br />

F<br />

E<br />

D<br />

C<br />

<strong>Ross</strong> (<strong>jr6585</strong>) – <strong>Hw14</strong> – <strong>Ross</strong> – (<strong>89251</strong>) 1<br />

r 1<br />

r 2<br />

r 3<br />

r 4<br />

Which expression gives the magnitude of<br />

the magnetic field in the region r 1 < c (at F)?<br />

1. B(r 1 ) = µ 0 i (r 2 1 − b2 )<br />

2 π r 1 (a 2 − b 2 )<br />

2. B(r 1 ) = µ 0 i r 1<br />

2 π c 2<br />

3. B(r 1 ) = µ 0 i (a 2 + r 2 1 − 2 b2 )<br />

2 π r 1 (a 2 − b 2 )<br />

4. B(r 1 ) = µ 0 i r 1<br />

2 π b 2<br />

5. B(r 1 ) = 0<br />

6. B(r 1 ) = µ 0 i<br />

π r 1<br />

7. B(r 1 ) = µ 0 i (a 2 − r 2 1 )<br />

2 π r 1 (a 2 − b 2 )<br />

8. B(r 1 ) = µ 0 i r 1<br />

2 π a 2<br />

9. B(r 1 ) = µ 0 i (a 2 − b 2 )<br />

2 π r 1 (r 2 1 − b2 )<br />

10. B(r 1 ) = µ 0 i<br />

2 π r 1<br />

002 (part 2 of 4) 10.0 points<br />

Which expression gives the magnitude of the<br />

magnetic field in the region c < r 2 < b (at<br />

E)?<br />

1. B(r 2 ) = µ 0 i<br />

2 π r 2<br />

2. B(r 2 ) = µ 0 i (r 2 2 − b2 )<br />

2 π r 2 (a 2 − b 2 )<br />

3. B(r 2 ) = µ 0 i r 2<br />

2 π a 2<br />

4. B(r 2 ) = µ 0 i (a 2 − b 2 )<br />

2 π r 2 (r 2 2 − b2 )<br />

5. B(r 2 ) = µ 0 i r 2<br />

2 π b 2<br />

6. B(r 2 ) = 0<br />

7. B(r 2 ) = µ 0 i r 2<br />

2 π c 2<br />

8. B(r 2 ) = µ 0 i (a 2 − r 2 2 )<br />

2 π r 2 (a 2 − b 2 )<br />

9. B(r 2 ) = µ 0 i<br />

π r 2<br />

10. B(r 2 ) = µ 0 i (a 2 + r 2 2 − 2 b2 )<br />

2 π r 2 (a 2 − b 2 )<br />

003 (part 3 of 4) 10.0 points<br />

Which expression gives the magnitude of the<br />

magnetic field in the region b < r 3 < a (at<br />

D)?<br />

1. B(r 3 ) = µ 0 i r 3<br />

2 π a 2<br />

2. B(r 3 ) = µ 0 i r 3<br />

2 π c 2<br />

3. B(r 3 ) = µ 0 i (a 2 − r 2 3 )<br />

2 π r 3 (a 2 − b 2 )<br />

4. B(r 3 ) = µ 0 i (a 2 + r 2 3 − 2 b2 )<br />

2 π r 3 (a 2 − b 2 )<br />

5. B(r 3 ) = µ 0 i<br />

2 π r 3<br />

6. B(r 3 ) = µ 0 i r 3<br />

2 π b 2


7. B(r 3 ) = µ 0 i<br />

π r 3<br />

8. B(r 3 ) = 0<br />

9. B(r 3 ) = µ 0 i (r 2 3 − b2 )<br />

2 π r 3 (a 2 − b 2 )<br />

10. B(r 3 ) = µ 0 i (a 2 − b 2 )<br />

2 π r 3 (r 2 3 − b2 )<br />

004 (part 4 of 4) 10.0 points<br />

Which expression gives the magnitude of the<br />

magnetic field in the region r 4 > a (at C)?<br />

<strong>Ross</strong> (<strong>jr6585</strong>) – <strong>Hw14</strong> – <strong>Ross</strong> – (<strong>89251</strong>) 2<br />

z<br />

y<br />

Find the magnitude of each current. Answer<br />

in units of A.<br />

a<br />

θ<br />

x<br />

1. B(r 4 ) = 0<br />

2. B(r 4 ) = µ 0 i<br />

π r 4<br />

3. B(r 4 ) = µ 0 i (a 2 − r4 2)<br />

2 π r 4 (a 2 − b 2 )<br />

4. B(r 4 ) = µ 0 i (a 2 − b 2 )<br />

2 , π r 4 (r4 2 − b2 )<br />

5. B(r 4 ) = µ 0 i (a 2 + r4 2 − 2 b2 )<br />

2 π r 4 (a 2 − b 2 )<br />

6. B(r 4 ) = µ 0 i<br />

2 π r 4<br />

7. B(r 4 ) = µ 0 i r 4<br />

2 π c 2<br />

8. B(r 4 ) = µ 0 i r 4<br />

2 π a 2<br />

9. B(r 4 ) = µ 0 i (r 2 4 − b2 )<br />

2 π r 4 (a 2 − b 2 )<br />

10. B(r 4 ) = µ 0 i r 4<br />

2 π b 2<br />

005 10.0 points<br />

Two long, parallel wires, each having a mass<br />

per unit length of 46.2 g/m, are supported in a<br />

horizontal plane by strings 3.21 cm long, as in<br />

the figure. Each wire carries the same current<br />

I, causing the wires to repel each other so<br />

that the angle between the supporting strings<br />

is 22.53 ◦ .<br />

The acceleration due to gravity is 9.8 m/s 2<br />

and the permeability of free space is 1.25664×<br />

10 −6 T · m/A.<br />

006 10.0 points<br />

A long cylindrical shell has a uniform current<br />

density. The total current flowing through<br />

the shell is 16 mA.<br />

The permeability of free space is<br />

1.25664 × 10 −6 T · m/A.<br />

6 cm<br />

3 cm<br />

The current<br />

is 16 mA .<br />

14 km<br />

•<br />

Find the magnitude of the magnetic field at<br />

a point r 1 = 4.4 cm from the cylindrical axis.<br />

Answer in units of nT.<br />

007 10.0 points<br />

A conductor consists of an infinite number<br />

of adjacent wires, each infinitely long and<br />

carrying a current I (whose direction is out-ofthe-page),<br />

thus forming a conducting plane.<br />

A<br />

C<br />

If there are n wires per unit length, what is


<strong>Ross</strong> (<strong>jr6585</strong>) – <strong>Hw14</strong> – <strong>Ross</strong> – (<strong>89251</strong>) 3<br />

the magnitude of ⃗ B?<br />

1. B = µ 0 I<br />

2. B = 2 µ 0 n I<br />

3. B = µ 0 n I<br />

4. B = µ 0 I<br />

2<br />

5. B = 4 µ 0 I<br />

6. B = 4 µ 0 n I<br />

7. B = µ 0 n I<br />

4<br />

8. B = µ 0 I<br />

4<br />

9. B = 2 µ 0 I<br />

10. B = µ 0 n I<br />

2<br />

008 10.0 points<br />

What current is required in the windings of a<br />

long solenoid that has 1245 turns uniformly<br />

distributed over a length of 0.388 m in order<br />

to produce inside the solenoid a magnetic field<br />

of magnitude 9.52×10 −5 T? The permeablity<br />

of free space is 1.25664×10 −6 T m/A. Answer<br />

in units of mA.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!