23.11.2014 Views

Table of Laplace Transforms

Table of Laplace Transforms

Table of Laplace Transforms

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Table</strong> <strong>of</strong> <strong>Laplace</strong> <strong>Transforms</strong><br />

-<br />

f t<br />

f t<br />

-<br />

( ) = L F( s)<br />

F( s) = L ( )<br />

( ) = L F( s)<br />

F( s) = L f ( t)<br />

f t<br />

1 { }<br />

{ }<br />

1. 1<br />

1<br />

s<br />

2.<br />

at<br />

e<br />

3.<br />

n<br />

t , n= 1,2,3, K<br />

n!<br />

n 1<br />

s + 4. p<br />

t , p > -1<br />

5. t 3<br />

2s 2<br />

a<br />

7. sin ( at )<br />

2 2<br />

s + a<br />

2as<br />

9. tsin<br />

( at )<br />

2 2<br />

s + a<br />

11. sin( at) - atcos( at)<br />

13. cos( at) - atsin<br />

( at)<br />

p<br />

( ) 2<br />

2a<br />

3<br />

2 2<br />

2<br />

( s + a )<br />

2 2<br />

s( s -a<br />

)<br />

2 2<br />

2<br />

( s + a )<br />

ssin<br />

15. sin ( at+ b)<br />

( b) + acos( b)<br />

2 2<br />

s + a<br />

a<br />

sinh at<br />

2 2<br />

s - a<br />

b<br />

at<br />

e sin bt<br />

s- a + b<br />

17. ( )<br />

19. ( )<br />

at<br />

21. e sinh ( bt)<br />

23. n at<br />

t e , n= 1,2,3, K<br />

25. u ( t c ) = u ( t - c )<br />

Heaviside Function<br />

( ) 2 2<br />

b<br />

( ) 2 2<br />

s-a -b<br />

n!<br />

n<br />

( s-<br />

a ) + 1<br />

-cs<br />

e<br />

s<br />

-cs F s<br />

6.<br />

t<br />

n-<br />

8. ( )<br />

1 { }<br />

1<br />

2<br />

, n= 1,2,3, K<br />

1<br />

s-<br />

a<br />

G p + 1<br />

( )<br />

p 1<br />

s +<br />

{ }<br />

( n )<br />

135 ⋅ ⋅ L 2 -1<br />

1<br />

2 n n +<br />

s 2<br />

s<br />

cos at<br />

2 2<br />

s + a<br />

2 2<br />

s - a<br />

tcos<br />

at<br />

2 2<br />

s + a<br />

10. ( )<br />

12. sin( at) + atcos( at)<br />

14. cos( at) + atsin<br />

( at)<br />

( )<br />

2as<br />

2<br />

2<br />

2 2<br />

2<br />

( s + a )<br />

2 2<br />

( + 3a<br />

)<br />

2 2<br />

2<br />

( s + a )<br />

s s<br />

scos<br />

16. cos( at+ b)<br />

( b) - asin<br />

( b)<br />

2 2<br />

s + a<br />

s<br />

cosh at<br />

2 2<br />

s - a<br />

s-<br />

a<br />

at<br />

e cos bt<br />

s- a + b<br />

18. ( )<br />

20. ( )<br />

at<br />

22. e cosh ( bt)<br />

24. f ( ct )<br />

d<br />

26.<br />

( t-<br />

c)<br />

Dirac Delta Function<br />

( ) 2 2<br />

s-<br />

a<br />

( ) 2 2<br />

s-a -b<br />

1 Ês<br />

ˆ<br />

F Á ˜<br />

c Ëc¯<br />

-cs<br />

27. uc<br />

( t) f ( t- c)<br />

e ( ) 28. uc<br />

( t) g( t )<br />

e L g( t+<br />

c)<br />

29. ct n<br />

(<br />

e f ( t)<br />

F( s- c)<br />

30. t f ( t), n= 1,2,3, K ( 1)<br />

n n<br />

- F )<br />

( s)<br />

•<br />

t<br />

F<br />

Ú F( u)<br />

du 32. Ú f ( v)<br />

dv<br />

( s)<br />

1<br />

31. f () t<br />

t<br />

s<br />

t<br />

33. Ú f ( t-t) g( t)<br />

dt<br />

F( s) G( s ) 34. f ( t T) f ( t)<br />

0<br />

0<br />

-cs<br />

e<br />

{ }<br />

s<br />

+ =<br />

T<br />

-st<br />

Ú e f () t dt<br />

0<br />

-sT<br />

1-<br />

e<br />

t<br />

sF 2 s -sf 0 - f¢ 0<br />

35. f¢ ( t)<br />

sF( s) - f ( 0)<br />

36. f¢¢ ( )<br />

( ) ( ) ( )<br />

( n<br />

37. ) n n-1 n- 2<br />

( n 2<br />

f ( t )<br />

( ) ( ) ( )<br />

) ( n 1<br />

sF s -s f 0 -s f¢<br />

0 L -sf - ( 0)<br />

- f<br />

- )<br />

( 0)<br />

p


<strong>Table</strong> Notes<br />

1. This list is not a complete listing <strong>of</strong> <strong>Laplace</strong> transforms and only contains some <strong>of</strong><br />

the more commonly used <strong>Laplace</strong> transforms and formulas.<br />

2. Recall the definition <strong>of</strong> hyperbolic functions.<br />

e + e e -e<br />

cosh() t = sinh () t =<br />

2 2<br />

t -t t -t<br />

3. Be careful when using “normal” trig function vs. hyperbolic functions. The only<br />

difference in the formulas is the “+ a 2 ” for the “normal” trig functions becomes a<br />

“- a 2 ” for the hyperbolic functions!<br />

4. Formula #4 uses the Gamma function which is defined as<br />

If n is a positive integer then,<br />

x t 1<br />

() • - -<br />

G t = Ú e x dx<br />

0<br />

( n )<br />

G + 1 = n!<br />

The Gamma function is an extension <strong>of</strong> the normal factorial function. Here are a<br />

couple <strong>of</strong> quick facts for the Gamma function<br />

( p 1) p ( p)<br />

G + = G<br />

Ê1ˆ<br />

G Á ˜=<br />

Ë2¯<br />

( p n)<br />

( p)<br />

G +<br />

p( p+ 1)( p+ 2) L ( p+ n- 1)<br />

= G<br />

p

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!