23.11.2014 Views

Seamless prediction

Seamless prediction

Seamless prediction

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Seamless</strong><br />

<strong>prediction</strong><br />

Prediction from days to<br />

decades<br />

Wilco Hazeleger


<strong>Seamless</strong> <strong>prediction</strong>


<strong>Seamless</strong> <strong>prediction</strong>


<strong>Seamless</strong> <strong>prediction</strong><br />

The science case:<br />

Same physical principles for weather and climate (but different<br />

processes acting on different scales)<br />

Prediction problem with different role initial and boundary conditions<br />

Seasonal to decadal <strong>prediction</strong> as focus<br />

The modelling case:<br />

Convergence of NWP-Climate model development<br />

<strong>Seamless</strong> earth system <strong>prediction</strong><br />

The application case:<br />

Calibration (weights) of climate <strong>prediction</strong>s & projections<br />

<strong>Seamless</strong> connection to impact studies


3 pillars of 21st century scientific method<br />

Theory (since antiquity)<br />

Combined with experiment<br />

(since Galilei & Newton)<br />

….and with simulation<br />

(since 1940s, Teller, von Neumann, Fermi,..)


Sources and limits of<br />

predictability


Natural variability, chaotic atmosphere<br />

Lorentz limit ~15 days<br />

Selten et al, Sterl et al 2008


Natural and `forced variability


Predicting natural variability: more than noise?<br />

• 0-hypothesis: ocean integrates white noise (weather)<br />

(Hasselmann 1976)<br />

dX ( t)<br />

dt<br />

= −α X ( t)<br />

+ζ ( t)<br />

• With α damping coefficent and ζ(t) random variable (AR1 process à red noise)<br />

• When variability stands out of red noise, e.g. oscillations due<br />

to internal dynamics, dynamical <strong>prediction</strong>s may be possible<br />

• But… even red noise is a source of predictability (e.g. damped<br />

persistence)


Spectra of global mean temperature: peaks?


Monthly: Soil moisture, Sea Surface temperatures,<br />

Atmospheric composition<br />

l Dry soils in spring can lead to high summer temperatures


Seasonal to interannual: El Niño<br />

Sea surface temperature anomaly during El Niño


Seasonal to interannual: Coupled ocean-atmosphere<br />

variability


El Nino – Southern Oscillation (ENSO)<br />

" Predictable 3-9 month ahead (depending on the season)<br />

" World-wide impact<br />

Precipitation SON<br />

Temperature DJF


Decadal: Atlantic Multidecadal Oscillation<br />

Knight et al. 2005


Decadel: Pacific decadal variability


Multi-decadal: anthropogenically forced change


Modelling climate changes: uncertainties<br />

Natural<br />

fluctuations<br />

GHG emission<br />

uncertainty<br />

Model uncertainty<br />

Hawkins and Sutton, 2009


Predictability beyond the Lorentz-limiet<br />

l<br />

The atmospheric circulation is chaotic and unpredictable beyond<br />

~15 days, the averaged weather is in some areas and in some<br />

seasons predictable beyond the Lorentz limit<br />

l<br />

l<br />

(damped) persistence beyond 15 days<br />

Showly fluctuating patterns of variability (often involving slow<br />

ocean responses): ENSO, Indian Ocean Zonal Mode, Pacific<br />

Decadal Oscillation, Atlantic Multidecadal Oscillation,…,…<br />

l<br />

Initial conditions of the earth system provide memory: ocean,<br />

ice, soil, atmospheric composition<br />

l<br />

Anthropogenic forcing (trends) predictable


The ideal case: potential<br />

predictability


What to expect from <strong>prediction</strong>s?<br />

• Diagnostic potential predictability: ratio of variances in a long<br />

control simulation<br />

DPP<br />

=<br />

σ<br />

σ<br />

m<br />

2<br />

σ<br />

2 − 1<br />

v<br />

2<br />

• With σ v<br />

2<br />

variance of m-year means<br />

(e.g. Boer et al, Pohlmann et al)


Diagnostic potential predictability in EC-Earth<br />

10 yr


What to expect from <strong>prediction</strong>s?<br />

• Prognostic potential predictability: ensemble spread in relation<br />

to total variance<br />

PPP = 1−<br />

1<br />

N(<br />

M<br />

−1)<br />

i=<br />

1<br />

2<br />

• With X ij is the i th member of j th ensemble, N is number<br />

ensembles, M number of ensemble members<br />

N<br />

∑<br />

j=<br />

1<br />

M<br />

∑<br />

σ<br />

[ X<br />

ij<br />

( t)<br />

− X<br />

j<br />

( t)]<br />

2<br />

Griffies and Bryan 1997, Collins et al, Pohlmann et al


Atlantic MOC (30N)<br />

MOC (Sv)<br />

Collins et al 2006


Prognostic Potential predictability in EC-Earth (T2m, yr<br />

1-10)<br />

T. Koenigk, SMHI, pers. comm.


Prognostic potential predictability in EC-Earth (T2m, yr<br />

1-10; without trend)<br />

T. Koenigk, SMHI, pers. comm.


Making <strong>prediction</strong>s


Prediction systems<br />

l<br />

Statistical<br />

l<br />

l<br />

l<br />

l<br />

analyse 100 years of data for relationships<br />

Easy to fool yourself (and others)<br />

Much used in tropics: Monsoons India, Indonesia, West Africa,<br />

hurricanes, seasonal <strong>prediction</strong> US<br />

Often misused: summer and winter <strong>prediction</strong>s for Europe


Statistical: Precipipation in Curaçao<br />

l<br />

Rain related to ENSO<br />

4 months in advance


Prediction systems<br />

l Dynamical<br />

Use numerical weather <strong>prediction</strong> model, run it longer. Use climate<br />

model, run it shorter<br />

" Essential: good initial state of ocean, snow, soil, aerosols,<br />

greenhouse gasses<br />

" ECMWF, EC-Earth, Met Office, Météo France, NCEP, ...


Prediction experiment<br />

Initialize atmosphere-ocean-sea ice-land models<br />

from observed/analyzed ocean and sea ice state<br />

Perturb initialized models to generate ensembles<br />

Verify the results against own analyses and<br />

independent observations


Complex Global Circulation Model<br />

Based on laws of physics (F= m x a<br />

and thermodynamics)<br />

Forcing specified (Q= e.g. radiation)<br />

Small scales not resolved<br />

Big science: 2 million lines of code<br />

and 10 variables on 10^9 gridpoints


Initialization, in particular the ocean:<br />

Limited subsurface ocean observations<br />

1960 1980<br />

2007


Initialisation ocean: ocean analyses<br />

A. Koehl, pers. comm.


Perturbing the ensemble<br />

" Perturbations which grow most rapidly in slow component (e.g. in<br />

ocean, for instance Kleeman et al. for ENSO, Hawkins and Sutton<br />

for 3D ocean, bred vectors B. Kirtman etc.)<br />

" Consistent with the observational uncertainties<br />

" Can be useful for identifying regions where additional observations<br />

would be most valuable to improve <strong>prediction</strong>s


Perturbing ocean<br />

• E.g. linear Inverse Modelling (Penland & Sardeshmukh 1995, Hawkins &<br />

Sutton 2009)<br />

dx<br />

dt<br />

x(<br />

t<br />

P<br />

T<br />

= Bx + ζ x represents<br />

+ τ ) =<br />

Px<br />

0<br />

= λx<br />

P x(<br />

t)<br />

τ<br />

0<br />

leading EOFs<br />

Eigenvectors are<br />

optimal growing<br />

perturbations<br />

In practice, pragmatic approaches (perturbing<br />

atmosphere, different ocean states, perturbing ocean<br />

diffusivity)<br />

Hawkins & Sutton 2009


Measures of skill


Measures of skill


Some simple deterministic measures of skill<br />

N<br />

• Mean error (additive<br />

1<br />

bias)<br />

ME = ∑(<br />

Fi<br />

− O<br />

N<br />

i=<br />

1<br />

i<br />

)<br />

• Root mean square error<br />

RMSE<br />

=<br />

1<br />

N<br />

N<br />

∑<br />

i=<br />

1<br />

(<br />

−<br />

F i Oi<br />

)<br />

2<br />

• Anomaly correlation<br />

• (F=forecast,<br />

=observation,<br />

C=climatology)<br />

AC<br />

( F −C)(<br />

O −C)<br />

= ∑<br />

2<br />

( F −C)<br />

( O −C)<br />

2


Skill weather <strong>prediction</strong>: 500hPa height


Skill dynamical seasonal <strong>prediction</strong>s: temperature<br />

Dec-Feb temperature, predicted from 1st of November<br />

Note: bias correction always needed


Skill dynamical seasonal <strong>prediction</strong>s: precipitation


Probabilistic scores<br />

Reliability diagram: How well do the predicted probabilities of an<br />

event correspond to their observed frequencies?<br />

The range of forecast probabilities is divided into K bins (for example, 0-5%, 5-15%, 15-25%, etc.).<br />

The sample size in each bin is often included as a histogram or values beside the data points.


Skill single and multi-model ensemble<br />

From EU Demeter project (Doblas Reyes)


Probabilistic score<br />

Relative Operation Characteristic: What is the ability of the forecast<br />

to discriminate between events and non-events?<br />

Plot hit rate (POD) vs false alarm rate (POFD), using a set of increasing probability thresholds<br />

(for example, 0.05, 0.15, 0.25, etc.) to make the yes/no decision.<br />

The area under the ROC curve is frequently used as a score.


Temperature<br />

Precipitation


ROC score, 3 month lead time<br />

Temperature<br />

Sea level pressure


Probabilistic scores<br />

Rank histogram: How well does the ensemble spread of the forecast<br />

represent the true variability (uncertainty) of the observations?<br />

1. At every observation (or analysis) point rank the N ensemble members from lowest to highest.<br />

2. Identify which bin the observation falls into at each point<br />

3. Tally over many observations to create a histogram of rank.<br />

Flat - ensemble spread about right to represent forecast uncertainty<br />

U-shaped - ensemble spread too small, many observations falling outside the extremes of the<br />

ensemble<br />

Dome-shaped - ensemble spread too large, most observations falling near the center of the ensemble<br />

Asymmetric - ensemble contains bias


Always use a 0-hypothesis<br />

• Verify against<br />

simplest statistical<br />

X ( t + τ )<br />

model (AR1,<br />

damped persistence, A(<br />

τ ) = 0<br />

or climatology) A(<br />

τ ) = 1<br />

=<br />

A(<br />

τ ) X ( t)<br />

(climatology)<br />

(persistence)


Skill dynamische verwachtingen<br />

l<br />

l<br />

l<br />

l<br />

Temperatuur: trend + persistentie + ENSO<br />

Neerslag: ENSO + beetje meer, beter dan puur statistische<br />

modellen<br />

Kan regionaal verbeterd worden met downscaling technieken (bv<br />

SVD tussen waargenomen en verwachte velden om spatiële biases<br />

te corrigeren)<br />

Zal beter worden naarmate meer relevante processen goed<br />

gecalibreerd maagenomen worden.


The model and bias


Based on ECMWF weather<br />

and seasonal <strong>prediction</strong><br />

system<br />

Regular merging with<br />

operational ECMWF<br />

NWP system<br />

Resolution standard runs:<br />

Atmosphere: T159 L62<br />

(AMIP runs up to T799)<br />

Hazeleger et al BAMS, October, 2010<br />

Ocean: 1 degree L42 (with<br />

equatorial refinement<br />

and tripolar grid)


Low (T159) and high resolution (T799)


EC-Earth: temperature and bias


EC-Earth: precipitation and bias


EC-Earth: El Nino


EC-Earth: the North Atlantic Oscillation<br />

Observations<br />

EC-Earth


EC-Earth: the Atlantic Ocean overturning


EC-Earth: global mean temperature<br />

EC-Earth<br />

Observations


‘Weather’ <strong>prediction</strong>s


Seasonal <strong>prediction</strong>s


Seasonal <strong>prediction</strong>s: mean bias<br />

May<br />

Nov<br />

Bias of first month near-surface air temperature re-forecasts wrt ERA40/Int over 1976-2005.


Seasonal <strong>prediction</strong>s: ENSO (2-4 month lead time)<br />

EC-Earth<br />

Ratio sd: 1.34<br />

Corr: 0.82<br />

RPSSd: 0.48<br />

ECMWF System 3<br />

Ratio sd: 0.84<br />

Corr: 0.86<br />

RPSSd: 0.68<br />

Niño3.4 time series for ERA40/Int (red dots), ensemble range (green box-and-whisker)<br />

and ensemble mean (blue dots) 2-4 month (JJA) re-forecasts over 1981-2005.<br />

Doblas-Reyes, IC3-group


Correlation skill<br />

1-month<br />

lead time<br />

JJA<br />

DJF<br />

7-month<br />

lead time<br />

Ensemble-mean correlation of EC-Earth near-surface air temperature re-forecasts<br />

wrt ERA40/Int over 1976-2005. Dots for values statistically significant with 95% conf.


Seasonal forecast ENSO


Seasonal forecast July-Sept 2011 temperature<br />

Left: <strong>prediction</strong>; anomalies probability above mean<br />

Right: ROC skill (hit rate vs false alarm rate)


Seasonal <strong>prediction</strong>s: tropical cyclones


Decadal <strong>prediction</strong>s


Decadal <strong>prediction</strong>s in EC-Earth: global mean SST<br />

Wouters et al, in prep


Decadal <strong>prediction</strong>s in EC-Earth, drift corrected<br />

Wouters et al, in prep


Verification multi-model EU-ENSEMBLES decadal<br />

<strong>prediction</strong>s<br />

van Oldenborgh, Doblas-Reyes, Wouters and Hazeleger, subm


Skill multiannual <strong>prediction</strong>s<br />

anomaly correlations ensemble mean – observations<br />

lead time 2-5 years and 6-9 years averaged


Verification multi-model decadal <strong>prediction</strong>s<br />

van Oldenborgh, Doblas-Reyes, Wouters and Hazeleger, subm


Skill initialized <strong>prediction</strong>s at multiannual lead times<br />

• Trend, as defined by regression on global mean CO 2 concentrations,<br />

removed<br />

• Seasonal predictability comparable to ECMWF S3


Skill initialized <strong>prediction</strong>s at multiannual lead times<br />

R=0.77 R=0.80 R=0.19


Skill initialized <strong>prediction</strong>s at multiannual lead times<br />

• Trend, as defined by regression on global mean CO 2 concentrations,<br />

removed<br />

• Seasonal predictability comparable to ECMWF S3


Predicting Atlantic Multidecadal Oscillation<br />

R=0.67 R=0.84 R=0.57


Skill of very simple statistical model


Final remarks<br />

Predictability beyond the Lorenz limit: (damped) persistence &<br />

(damped) oscillations<br />

Memory provided by slow components of the earth system: soil<br />

moisture, snow, ocean temperatures<br />

à Challenge in initialization of dynamical models (atmosphere as in<br />

weather <strong>prediction</strong>, but memory quickly lost. Ocean, snow, ice, land<br />

surface relevant for longer time scales)<br />

Statistical models perform well in tropics, dynamical models can<br />

outperform: predictability at multiannual time scales found (AMO,<br />

PDO)<br />

Always verify! If possible probabilistically


http://www.cawcr.gov.au/projects/verification

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!