22.11.2014 Views

Acceleration Analysis

Acceleration Analysis

Acceleration Analysis

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Acceleration</strong> <strong>Analysis</strong><br />

Chapter 7


Definition<br />

• Rate of change of velocity with respect to<br />

time<br />

– Angular<br />

– Linear<br />

– Position Vector<br />

<br />

A <br />

d<br />

dt<br />

dV<br />

dt<br />

R<br />

PA<br />

<br />

pe<br />

j<br />

– Velocity<br />

V<br />

pa<br />

R<br />

dt<br />

PA<br />

<br />

pje<br />

j<br />

d<br />

<br />

dt<br />

pe<br />

j


Definition<br />

<br />

<br />

dt<br />

je<br />

p<br />

d<br />

dt<br />

d<br />

j<br />

PA<br />

PA<br />

<br />

<br />

<br />

<br />

A<br />

A<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

sin<br />

cos<br />

cos<br />

sin<br />

2<br />

j<br />

p<br />

j<br />

p<br />

PA<br />

<br />

<br />

<br />

<br />

<br />

A<br />

"Absolute"<br />

PA A P<br />

A<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

dt<br />

d<br />

je<br />

dt<br />

d<br />

e<br />

jp<br />

j<br />

j<br />

PA<br />

<br />

<br />

<br />

<br />

<br />

A<br />

<br />

<br />

<br />

<br />

j<br />

j<br />

PA<br />

e<br />

p<br />

je<br />

p<br />

2<br />

<br />

<br />

A<br />

PA<br />

n<br />

PA<br />

t<br />

PA<br />

A<br />

A<br />

A


Definition<br />

– <strong>Acceleration</strong> (difference)<br />

A A A<br />

P<br />

A<br />

PA<br />

<br />

t n<br />

<br />

t n<br />

<br />

t n<br />

A A A A A A <br />

P<br />

P<br />

A<br />

A<br />

PA<br />

PA<br />

– Relative <strong>Acceleration</strong><br />

A<br />

PA<br />

<br />

A<br />

P<br />

<br />

A<br />

A<br />

"on thesame body "


Graphical <strong>Analysis</strong><br />

• Graphical <strong>Acceleration</strong> <strong>Analysis</strong><br />

A<br />

A<br />

A<br />

P<br />

t<br />

n<br />

<br />

<br />

<br />

A<br />

A t<br />

A n<br />

A<br />

– Solve for<br />

<br />

A<br />

r<br />

PA<br />

2<br />

r<br />

angular acceleration ; 3<br />

, 4<br />

linear acceleration; A , B,<br />

C


Graphical <strong>Analysis</strong><br />

• Example 7-1<br />

– Given θ 2 , θ 3 , θ 4 , ω 2 ,ω 3 , ω 4 ,α 2<br />

find α 3 , α 4 , A A , A B and A C<br />

– Velocity analysis already<br />

performed<br />

– 1. Start at the end of the<br />

linkage about which you have<br />

the most information.<br />

Calculate the magnitude of<br />

the acceleration of point A,<br />

A n AO 2 A 2<br />

2<br />

A t A<br />

AO 2<br />

2


Graphical <strong>Analysis</strong><br />

• Example 7-1<br />

– 2. Draw the acceleration A A<br />

– 3. Move next to a point which<br />

you have some information,<br />

point B. Draw the<br />

construction line pp through<br />

B perpendicular to BO 4<br />

– 4. Write the acceleration<br />

difference equation for point<br />

B vs. A<br />

A<br />

B<br />

<br />

A<br />

A<br />

<br />

A<br />

BA<br />

<br />

t n<br />

<br />

t n<br />

<br />

t n<br />

A A A A A A <br />

B<br />

2 B<br />

4<br />

B<br />

A<br />

A<br />

BA<br />

BA<br />

A<br />

n<br />

<br />

A n B<br />

<br />

BO 4


Graphical <strong>Analysis</strong><br />

– 5. Draw construction line qq<br />

through point B and<br />

perpendicular to BA to<br />

represent the direction of A BA<br />

A n BA <br />

BA<br />

2 3<br />

– 6. The vector equation can be<br />

solve graphically by drawing<br />

the following vector diagram<br />

A<br />

A<br />

t n t n t n<br />

A<br />

A <br />

A<br />

A <br />

A<br />

A <br />

t<br />

A<br />

B<br />

B<br />

<br />

n<br />

A<br />

A<br />

B<br />

A<br />

A<br />

A<br />

n<br />

BA<br />

BA<br />

A<br />

n<br />

A<br />

t<br />

A A <br />

A &<br />

t BA<br />

AB<br />

?<br />

B<br />

BA<br />

BA


Graphical <strong>Analysis</strong><br />

– 7. The angular velocities of link<br />

3 and 4 can be calculated,<br />

<br />

4<br />

<br />

A t B<br />

BO<br />

4<br />

3<br />

<br />

A t BA<br />

BA<br />

– 8. Solve for V C<br />

A A A<br />

C<br />

A<br />

c 3<br />

A t CA 2<br />

A n CA c 3<br />

CA


Graphical <strong>Analysis</strong>


Analytical <strong>Analysis</strong>


Analytical Solution<br />

• Fourbar Pin-Joint Linkage<br />

– Vector Loop<br />

<br />

R<br />

<br />

<br />

<br />

2<br />

R3<br />

R4<br />

R1<br />

<br />

0<br />

– Position<br />

ae<br />

j<br />

2 j3<br />

j4<br />

j1<br />

be<br />

ce<br />

de <br />

0<br />

– Velocity<br />

– <strong>Acceleration</strong><br />

ja<br />

j2<br />

j3<br />

j4<br />

2e<br />

jb3e<br />

jc4e<br />

<br />

0<br />

<br />

j<br />

<br />

2 2 j2<br />

j3<br />

2 j3<br />

j4<br />

2 j4<br />

a<br />

je a<br />

e b<br />

je b<br />

e c<br />

je c<br />

e 0<br />

2 2<br />

3<br />

3<br />

4<br />

4


Analytical Solution<br />

• Fourbar Pin-Joint Linkage<br />

A<br />

A<br />

<br />

A<br />

BA<br />

<br />

A<br />

B<br />

0<br />

A<br />

A<br />

A<br />

A<br />

BA<br />

B<br />

<br />

<br />

<br />

t n<br />

<br />

j<br />

<br />

2 2 j2<br />

A<br />

A<br />

A<br />

A<br />

a<br />

2<br />

je a2e<br />

t n<br />

<br />

j<br />

<br />

3 2 j3<br />

ABA<br />

ABA<br />

b3<br />

je b3<br />

e<br />

t n<br />

<br />

j<br />

<br />

4 2 j4<br />

A A c<br />

je c<br />

e 0<br />

B<br />

B<br />

4<br />

Euler identity<br />

real part<br />

imaginary part<br />

4


• Fourbar Pin-Joint Linkage<br />

Analytical Solution<br />

4<br />

2<br />

4<br />

3<br />

2<br />

3<br />

2<br />

2<br />

2<br />

2<br />

2<br />

3<br />

4<br />

cos<br />

cos<br />

cos<br />

sin<br />

sin<br />

sin<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

c<br />

b<br />

a<br />

a<br />

C<br />

b<br />

B<br />

c<br />

A<br />

<br />

<br />

<br />

<br />

<br />

<br />

BD<br />

AE<br />

AF<br />

CD<br />

<br />

<br />

<br />

3<br />

BD<br />

AE<br />

BF<br />

CE<br />

<br />

<br />

<br />

4<br />

4<br />

2<br />

4<br />

3<br />

2<br />

3<br />

2<br />

2<br />

2<br />

2<br />

2<br />

3<br />

4<br />

sin<br />

sin<br />

sin<br />

cos<br />

cos<br />

cos<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

c<br />

b<br />

a<br />

a<br />

F<br />

b<br />

E<br />

c<br />

D


Analytical Solution<br />

• Fourbar Pin-Joint Linkage<br />

A<br />

A<br />

<br />

A<br />

BA<br />

<br />

A<br />

B<br />

0<br />

A<br />

A<br />

A<br />

A<br />

BA<br />

B<br />

a<br />

c<br />

2<br />

b<br />

4<br />

2<br />

<br />

sin<br />

2<br />

j cos<br />

2<br />

<br />

a2<br />

cos<br />

2<br />

j sin<br />

2<br />

<br />

2<br />

3<br />

sin3<br />

j cos<br />

3<br />

b3<br />

cos<br />

3<br />

j sin3<br />

<br />

2<br />

<br />

sin<br />

j cos<br />

<br />

c<br />

cos<br />

j sin<br />

<br />

4<br />

4<br />

4<br />

4<br />

4


Analytical Solution<br />

<br />

R<br />

– Slider-Crank<br />

<br />

<br />

<br />

2<br />

R3<br />

R4<br />

R1<br />

<br />

0<br />

ae<br />

j<br />

2 j3<br />

j4<br />

j1<br />

be<br />

ce<br />

de <br />

0<br />

ja<br />

j2<br />

j3<br />

2e<br />

jb3e<br />

d <br />

<br />

0<br />

<br />

j<br />

<br />

2 2 j2<br />

j3<br />

2 j3<br />

a<br />

je a<br />

e b<br />

je b<br />

e d<br />

0<br />

2 2<br />

3<br />

3


Analytical Solution<br />

A<br />

A<br />

A<br />

A<br />

B<br />

– Slider-Crank<br />

BA<br />

A<br />

<br />

<br />

<br />

A<br />

<br />

t n<br />

<br />

j<br />

<br />

2 2 j2<br />

A<br />

A<br />

A<br />

A<br />

a<br />

2<br />

je a2e<br />

<br />

t n<br />

<br />

j<br />

j<br />

A A b je b e <br />

3 2 3<br />

<br />

A<br />

t<br />

B<br />

A<br />

A<br />

A<br />

B<br />

BA<br />

d<br />

BA<br />

A<br />

<br />

BA<br />

<br />

B<br />

BA<br />

A BA<br />

A<br />

A<br />

<br />

A<br />

0<br />

BA<br />

3<br />

3


Analytical Solution<br />

– Slider-Crank<br />

3<br />

2<br />

3<br />

3<br />

3<br />

2<br />

2<br />

2<br />

2<br />

2<br />

3<br />

3<br />

2<br />

3<br />

2<br />

2<br />

2<br />

2<br />

2<br />

3<br />

cos<br />

sin<br />

cos<br />

sin<br />

cos<br />

sin<br />

sin<br />

cos<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

b<br />

b<br />

a<br />

a<br />

d<br />

b<br />

b<br />

a<br />

a<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Euler identity<br />

part<br />

real<br />

imaginary part


Analytical Solution<br />

• Coriolis <strong>Acceleration</strong><br />

– Is an additional component<br />

of acceleration present when<br />

a sliding joint is on a rotating<br />

link<br />

– Thy position vector is both<br />

rotating and changing length<br />

as the system moves<br />

R<br />

P<br />

<br />

pe<br />

j 2


Analytical Solution<br />

• Coriolis <strong>Acceleration</strong><br />

– The velocity expression is<br />

V<br />

P<br />

<br />

V<br />

P<br />

p<br />

e<br />

<br />

V<br />

– The acceleration,<br />

2<br />

j<br />

2<br />

<br />

V<br />

p<br />

e<br />

Ptrans Pslip<br />

j<br />

2<br />

A<br />

P<br />

<br />

p<br />

j2<br />

2 2 j2<br />

2<br />

je p2<br />

j e 2<br />

j2<br />

<br />

p<br />

je<br />

2<br />

p<br />

e<br />

j<br />

2<br />

A<br />

P<br />

A<br />

Ptangetial<br />

A<br />

Pnormal<br />

A<br />

Pcoriolis<br />

A<br />

Pslip


Analytical Solution<br />

• Coriolis <strong>Acceleration</strong><br />

– The acceleration,<br />

A<br />

P<br />

<br />

p<br />

j2<br />

2 2 j2<br />

2<br />

je p2<br />

j e 2<br />

j2<br />

<br />

p<br />

je<br />

2<br />

p<br />

e<br />

j<br />

2<br />

A<br />

P<br />

A<br />

Ptangetial<br />

A<br />

Pnormal<br />

A<br />

Pcoriolis<br />

A<br />

Pslip


<strong>Acceleration</strong> of Any Point<br />

• Once the angular acceleration of all the links are<br />

found it is easy to define and calculate the<br />

acceleration of any point on any link for any input<br />

position of the linkage


<strong>Acceleration</strong> of Any Point<br />

• To find the acceleration of points S<br />

<br />

2 2<br />

<br />

scos<br />

<br />

<br />

<br />

j <br />

<br />

R S 0<br />

R S<br />

sin<br />

A S<br />

se j<br />

2 2 2<br />

2<br />

2<br />

V S<br />

<br />

2<br />

jse j<br />

<br />

s<br />

sin<br />

s<br />

2<br />

2<br />

<br />

<br />

2 <br />

sin <br />

2 <br />

s<br />

<br />

j <br />

cos<br />

2 2 2 2<br />

cos<br />

<br />

2<br />

<br />

2<br />

<br />

j cos<br />

2<br />

<br />

2<br />

<br />

<br />

<br />

<br />

j sin<br />

<br />

<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2


<strong>Acceleration</strong> of Any Point<br />

R U<br />

• To find the acceleration of points U<br />

<br />

4 4<br />

<br />

ucos<br />

<br />

<br />

<br />

j <br />

<br />

ue j<br />

4 4 4<br />

4<br />

4<br />

0<br />

sin<br />

V U<br />

<br />

jse j<br />

<br />

4 <br />

sin <br />

4 <br />

u<br />

<br />

j <br />

4 4 4 4<br />

cos<br />

4<br />

4<br />

A U<br />

u<br />

4<br />

<br />

u<br />

sin<br />

2<br />

4<br />

<br />

cos<br />

<br />

4<br />

4<br />

<br />

j cos<br />

4<br />

4<br />

<br />

<br />

<br />

<br />

j sin<br />

<br />

<br />

4<br />

4<br />

4<br />

4


<strong>Acceleration</strong> of Any Point<br />

R<br />

R<br />

• To find the acceleration of point P<br />

PA<br />

P<br />

A<br />

A<br />

V<br />

V<br />

P<br />

PA<br />

pe<br />

R<br />

PA<br />

P<br />

<br />

<br />

A<br />

j<br />

<br />

3 <br />

pcos<br />

<br />

j <br />

3 <br />

<br />

R<br />

jpe<br />

<br />

A<br />

V<br />

A<br />

A<br />

p<br />

3<br />

p<br />

PA<br />

j<br />

3 3<br />

sin<br />

<br />

3 <br />

p <br />

sin <br />

j <br />

3 <br />

<br />

V<br />

A<br />

<br />

2<br />

3<br />

PA<br />

PA<br />

sin<br />

cos<br />

3 3<br />

3 3<br />

cos<br />

<br />

3<br />

3<br />

j cos<br />

3<br />

3<br />

<br />

<br />

<br />

j sin<br />

<br />

<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3


Important topics to review<br />

• Jerk –page 367-369<br />

• Human Tolerance to <strong>Acceleration</strong> – page 364-366<br />

• Fourbar Inverted Slider-Crank – page 354-360<br />

• <strong>Acceleration</strong> <strong>Analysis</strong> of the Geared Fivebar- page<br />

361 -362

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!