22.11.2014 Views

Download PDF - Pan Stanford Publishing

Download PDF - Pan Stanford Publishing

Download PDF - Pan Stanford Publishing

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Published by<br />

<strong>Pan</strong> <strong>Stanford</strong> <strong>Publishing</strong> Pte. Ltd.<br />

Penthouse Level, Suntec Tower 3<br />

8 Temasek Boulevard<br />

Singapore 038988<br />

Email: editorial@panstanford.com<br />

Web: www.panstanford.com<br />

British Library Cataloguing-in-Publication Data<br />

A catalogue record for this book is available from the British Library.<br />

Advances in Carbon Nanomaterials: Science and Applications<br />

Copyright c○ 2012 <strong>Pan</strong> <strong>Stanford</strong> <strong>Publishing</strong> Pte. Ltd.<br />

All rights reserved. This book, or parts thereof, may not be reproduced in any<br />

form or by any means, electronic or mechanical, including photocopying,<br />

recording or any information storage and retrieval system now known or to<br />

be invented, without written permission from the publisher.<br />

For photocopying of material in this volume, please pay a copying<br />

fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive,<br />

Danvers, MA 01923, USA. In this case permission to photocopy is not<br />

required from the publisher.<br />

ISBN 978-981-426-78-78 (Hardcover)<br />

ISBN 978-981-426-78-85 (eBook)<br />

PrintedintheUSA


Contents<br />

Preface<br />

xiii<br />

1 Encyclopedia of Carbon Nanoforms 1<br />

Irene Suarez-Martinez, Nicole Grobert,<br />

and Christopher P. Ewels<br />

1.1 Introduction 1<br />

1.2 Graphene 5<br />

1.2.1 The Structure of Graphene 5<br />

1.2.2 Synthesis Methods for Graphene 6<br />

1.2.3 Terminology 6<br />

1.2.4 Graphene-Related Forms: Graphene Nanowalls<br />

and Graphene Nanoribbons 7<br />

1.2.5 Applications of Graphene 8<br />

1.3 Carbon Nanotubes 9<br />

1.3.1 The Structure of Carbon Nanotubes 10<br />

1.3.2 Synthesis Methods for Carbon Nanotubes 14<br />

1.3.3 Applications of Carbon Nanotubes 14<br />

1.4 Carbon Nanoscrolls 16<br />

1.4.1 The Structure of CNSs 17<br />

1.4.2 Synthesis Method for CNSs 18<br />

1.4.3 Applications of CNSs 20<br />

1.5 Carbon Nanocones 20<br />

1.5.1 The Structure of Carbon Nanocones 21<br />

1.5.2 Terminology 22<br />

1.5.3 Synthesis of Carbon Nanocones 24<br />

1.6 Applications of Carbon Nanocones 24<br />

1.7 “Bamboo” Nanotubes 25<br />

1.7.1 Synthesis of Bamboo Nanotubes 25<br />

1.7.2 Applications of Bamboo Nanotubes 26


vi<br />

Contents<br />

1.8 “Herringbone” Nanotubes 27<br />

1.8.1 The Structure of Herringbone Nanotubes<br />

and Nanofibers 27<br />

1.8.2 Herringbone Synthesis 29<br />

1.8.3 Herringbone Applications 29<br />

1.9 Helical Nanotubes 30<br />

1.9.1 Synthesis of Helical Nanotubes 31<br />

1.9.2 Topology of Helical Nanotubes 32<br />

1.9.3 Applications of Helical Nanotubes 33<br />

1.10 “Necklace” Tubes/Nanobells 33<br />

1.11 Fullerenes 35<br />

1.11.1 Fullerene Synthesis 37<br />

1.11.2 Fullerene Chemistry 38<br />

1.11.3 Fullerene Applications 38<br />

1.11.4 Ultra-Hard Fullerites 39<br />

1.12 Onions 39<br />

1.13 Nanotori and Circular Nanotube Bundles 43<br />

1.14 Hybrid Nanoforms 45<br />

1.14.1 Hybrid Forms Based on Filling<br />

(Peapods etc.) 46<br />

1.15 Hybrid Forms Based on Surface Interaction 48<br />

1.16 Other Molecular Forms 49<br />

1.17 Non-Hexagon-Based SP 2 Carbon Nanoforms 50<br />

1.17.1 Schwarzites: Heptagon (and<br />

Above)-Hexagon Networks 50<br />

1.17.2 Haeckelites: Pentagon–(Hexagon)–<br />

Heptagon Networks 51<br />

1.18 Conclusions 52<br />

2 Surfaces and Thin Films of Fullerenes 67<br />

Roberto Macovez and Petra Rudolf<br />

2.1 Introduction 68<br />

2.2 Preparation of Fullerene Thin Films 70<br />

2.3 Monolayer Systems 72<br />

2.4 Properties of Multilayer and Thick C 60 Films 76<br />

2.4.1 Electronic States 76<br />

2.4.2 Molecular Orientations and Surface<br />

Morphology 81


Contents<br />

vii<br />

2.5 Thin Films and Surfaces of Fullerides 85<br />

2.5.1 Alkali Fullerides 85<br />

2.5.2 Thin Films of AE and RE Fullerides 92<br />

2.6 Thin Films of Endohedral Fullerenes 96<br />

2.7 Conclusions and Outlook 103<br />

3 High-Resolution Transmission Electron Microscopy<br />

Imaging of Carbon Nanostructures 117<br />

Kazu Suenaga, Yuta Sato, Zheng Liu, Masanori Koshino,<br />

and Chuanhong Jin<br />

3.1 Introduction 118<br />

3.2 Experimental 118<br />

3.3 Visualization of Atomic Defects in Carbon Nanotubes 119<br />

3.4 Imaging of Fullerenes and Their Derivatives 123<br />

3.5 In Situ Observation of Nano-Carbon Growth 127<br />

3.6 Summary 129<br />

4 Electronic and Optical Properties of Carbon Nanotubes 131<br />

Christian Kramberger and Thomas Pichler<br />

4.1 The Electronic Ground State 131<br />

4.1.1 From Graphene to Carbon Nanotubes 134<br />

4.1.2 Types and Families 138<br />

4.1.3 Tight Binding versus First Principles 144<br />

4.2 Electronic Excitations 147<br />

4.2.1 Excitonic Inter-Band Excitations 148<br />

4.2.2 Valence and Core Holes 151<br />

4.2.3 Collective Plasma Excitations 152<br />

4.3 Spectroscopic Methods 154<br />

4.3.1 Optical Absorption Spectroscopy 155<br />

4.3.2 Electron Energy Loss Spectroscopy 156<br />

4.3.3 Luminescence Spectroscopy 157<br />

4.3.4 Raman Spectroscopy 158<br />

4.3.5 Photoemission Spectroscopy 159<br />

4.3.6 X-Ray Absorption Spectroscopy 159<br />

4.4 Spectroscopy on Nanotubes 160<br />

4.4.1 Van Hove Singularities 161<br />

4.4.2 Electronic Response 166<br />

4.4.3 Opto-Mechanical Response 172


viii<br />

Contents<br />

4.4.4 Alignment 175<br />

4.4.5 Metallic and Semiconducting Abundances 178<br />

4.4.6 Diameter Distribution 179<br />

4.4.7 Crystallinity 179<br />

4.4.8 Purity 180<br />

4.5 Summary 181<br />

5 Fullerene-Based Electronics 189<br />

James M. Ball, Paul H. Wöbkenberg,<br />

and Thomas D. Anthopoulos<br />

5.1 Introduction 189<br />

5.2 Properties of Fullerenes 192<br />

5.2.1 Electronic Properties 193<br />

5.2.2 Thin-Film Processing 195<br />

5.2.3 Why These Properties Are Desirable for<br />

Electronics and Optoelectronics 197<br />

5.3 Thin-Film Transistors, Integrated Circuits, and OPV 198<br />

5.3.1 Thin-Film Transistors 198<br />

5.3.2 Integrated Circuits 202<br />

5.3.3 Organic Photovoltaics 205<br />

5.3.4 Charge Transport in Organic Semiconductors 208<br />

5.4 Electron Transport in Fullerene Thin-Film Transistors 211<br />

5.4.1 Electron Injection 211<br />

5.4.2 Electron Transport in C 60 ,C 70 ,andC 84 Devices 212<br />

5.4.3 Electron Transport in Solution Processed C 60 -,<br />

C 70 -, and C 84 - PCBM Devices 215<br />

5.4.4 Electron Transport in Devices with Alternative<br />

Fullerene Derivatives 216<br />

5.5 Ambipolar Transport in Fullerene Thin-Film<br />

Transistors 218<br />

5.5.1 Ambipolar Transport in Fullerene<br />

Transistors 219<br />

5.6 Fullerene-Based Microelectronics 219<br />

5.6.1 Unipolar Logic Circuits 220<br />

5.6.2 Complementary Logic Circuits 220<br />

5.6.3 Complementary-Like Logic Circuits 221<br />

5.7 Fullerene-Based Optoelectronics 222<br />

5.7.1 Fullerene-Based BHJ OPV 223


Contents<br />

ix<br />

5.7.2 Fullerene-Based Phototransistors and<br />

Electro-Optic Circuits 227<br />

5.8 Summary and Perspectives 230<br />

6 Carbon Nanohorns Chemical Functionalization 239<br />

Georgia Pagona and Nikos Tagmatarchis<br />

6.1 Introduction 240<br />

6.2 Chemical Functionalization of CNHS 243<br />

6.2.1 Covalent Functionalization 243<br />

6.2.1.1 1,3-dipolar cycloaddition of in situ<br />

generated azomethine ylides 243<br />

6.2.1.2 Aryl addition via in situ generated aryl<br />

diazonium salts 246<br />

6.2.1.3 Bingel cyclopropanation reaction 247<br />

6.2.1.4 Anionic polymerization 249<br />

6.2.1.5 Bulk free radical polymerization 250<br />

6.2.1.6 NaNH 2 addition and amination<br />

reactions 250<br />

6.2.1.7 Oxidation 252<br />

6.2.2 Non-Covalent Functionalization 257<br />

6.3 Conclusions and Outlook 262<br />

7 Endohedral Metallofullerene Functionalization 269<br />

Yutaka Maeda, Takeshi Akasaka, and Shigeru Nagase<br />

7.1 Introduction 270<br />

7.2 Reduction and Oxidation 270<br />

7.3 Disilylation 272<br />

7.4 Reaction with Nitrogen Compounds 275<br />

7.5 Prato Reaction 276<br />

7.6 Cycloaddition of Diene and Benzyne 279<br />

7.7 Addition of Carbene 281<br />

7.8 Nucleophilic Addition 284<br />

7.9 Radical Addition 287<br />

7.10 Conclusion 290<br />

8 Quantum Computing with Endohedral Fullerenes 299<br />

Kyriakos Porfyrakis and Simon C. Benjamin<br />

8.1 Introduction 299


x<br />

Contents<br />

8.2 Classical Information 300<br />

8.3 Information Inside a Classical Computer 301<br />

8.4 Introducing the Quantum Bit, or Qubit 303<br />

8.5 Understanding the Qubit: The Bloch Sphere 304<br />

8.6 More Than One Qubit: Entanglement 307<br />

8.7 Basic Components of a Processor 308<br />

8.7.1 Elements of a Classical Processor 308<br />

8.7.2 A Notation for Qubits 309<br />

8.7.3 Single-Qubit Gates 310<br />

8.7.4 Two-Qubit Gates 313<br />

8.8 Quantum Parallelism 315<br />

8.8.1 Grover’s Search Algorithm 318<br />

8.8.2 Decoherence and QEC 321<br />

8.9 Synthesis of Endohedral Fullerenes 323<br />

8.9.1 Endohedral Metallofullerenes 323<br />

8.9.2 Synthesis of Endohedral Nitrogen Fullerenes 324<br />

8.10 Purification of Endohedral Fullerenes 327<br />

8.11 Quantum Properties of Endohedral Fullerenes 329<br />

8.12 N@C 60 as a Spin Qubit 330<br />

8.13 Scaling-Up of Endohedral Fullerene Nanostructures 332<br />

8.13.1 Endohedral Fullerene Dimers 332<br />

8.13.2 One-Dimensional and Two-Dimensional<br />

Arrays and Beyond 335<br />

8.14 Summary 337<br />

9 Cell Biology of Carbon Nanotubes 343<br />

Chang Guo, Khuloud Al-Jamal, Hanene Ali-Boucetta,<br />

and Kostas Kostarelos<br />

9.1 Experimental Techniques Used to Study the<br />

Interaction Between Carbon Nanotubes and Cells<br />

In Vitro 344<br />

9.1.1 Optical Microscopy 344<br />

9.1.2 Fluorescence Microscopy Techniques 344<br />

9.1.3 Flow Cytometry 350<br />

9.1.4 Electron Microscopy 350<br />

9.1.5 Micro-Raman Spectroscopy 356<br />

9.1.6 Intrinsic Photoluminescence (Via SPT) 356<br />

9.2 Mechanisms Involved in the Cellular Uptake of CNTs 357


Contents<br />

xi<br />

9.2.1 Trafficking Pathways in the Cellular Uptake<br />

of CNT 360<br />

9.2.1.1 Types of CNT endocytosis leading<br />

to internalization 361<br />

9.2.1.2 Can CNTs pierce through cell<br />

membranes as “nano-needles”? 362<br />

9.2.1.3 Fate of CNTs after internalization 363<br />

9.2.2 Parameters Involved in the Cellular Uptake<br />

of CNTs 363<br />

9.2.2.1 Surface modification of CNT:<br />

non-covalent coating versus<br />

chemical conjugation 363<br />

9.2.2.2 CNT diameter and length 364<br />

9.2.2.3 Concentration of CNT 364<br />

9.2.2.4 Cell type 365<br />

9.2.2.5 Duration of CNT interaction with<br />

cells 365<br />

9.3 Conclusion 366<br />

Index 369


Preface<br />

A promising class of nanostructured carbon-based materials, varied<br />

from spherical empty fullerenes and endohedral fullerenes encapsulating<br />

metal atoms to elongated carbon nanotubes and aggregated<br />

nanohorns, has led to an explosion of research associated with<br />

nanotechnology. Advances in Carbon Nanomaterials is a book that<br />

offers a wide range of diverse information. Rather than focusing on<br />

the latest developments in nanotechnology, the authors and editor<br />

of the book, through an appealing collection of nine chapters, offer a<br />

remarkably fresh and authoritative look at diverse areas and topics<br />

of nanocarbon materials to scientists, researchers and students.<br />

In Advances in Carbon Nanomaterials, contributions by experts in<br />

diverse fields of chemistry, physics, materials science and medicine<br />

provide a comprehensive survey of the current state of knowledge<br />

of this constantly expanding subject. The book starts out with<br />

Chapter 1 in the form of an encyclopedia of carbon nanoforms,<br />

dealing with nomenclature and modelling of carbon nanomaterials,<br />

with special emphasis on the topology and morphology of those<br />

carbon nanostructures. Chapter 2 examines surfaces and thin films<br />

of fullerenes, while focusing on morphology, electronic structure,<br />

conduction and optical properties as well as phase transitions.<br />

Chapter 3 gives an insight into the structure of carbon nanotubes<br />

and the characterization of peapod materials with the aid of<br />

high-resolution transmission electron microscopy. Subsequently in<br />

Chapter 4, the novel electro-optical properties of carbon nanotubes<br />

are analysed through a wealth of spectroscopic evidence. Then,<br />

in Chapter 5, important advances in the field of fullerene-based<br />

electronics, together with an outline of the major electronic<br />

properties of fullerenes are presented. Moving into chemistry,<br />

Chapters 6 and 7 deal with the chemical functionalization of carbon


xiv<br />

Preface<br />

nanohorns and endohedral metallofullerenes respectively Finally,<br />

applications in quantum computing and medicine conclude this<br />

fascinating overview of the field. Chapter 8 is dedicated to quantum<br />

computing with endohedral fullerenes, while Chapter 9 deals with<br />

the cell biology of carbon nanotubes<br />

Finally, special acknowledgements go to all authors who contributed<br />

to this book.<br />

Nikos Tagmatarchis<br />

Theoretical and Physical Chemistry Institute<br />

National Hellenic Research Foundation<br />

Athens, Hellas

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!