Chitralekha Sengupta.pmd - An International Quarterly Journal of ...

Chitralekha Sengupta.pmd - An International Quarterly Journal of ... Chitralekha Sengupta.pmd - An International Quarterly Journal of ...

theecoscan.in
from theecoscan.in More from this publisher
22.11.2014 Views

ISSN: 0974 - 0376 NSave Nature to Survive : Special issue, Vol. III: 281 - 287; 2013 AN INTERNATIONAL QUARTERLY JOURNAL OF ENVIRONMENTAL SCIENCES www.theecoscan.in THE HEIGHT: DIAMETER RATIO DEPENDENT ECECIS OF NATIVE PLANT SEEDLINGS: IMPLICATION IN RESTORATION OF OVERBURDEN DUMPS Chitralekha Sengupta and Anshumali KEYWORDS Mine spoil Overburden dumps Organic manure VAM Tropical deciduous forests Height Diameter ratio Ecesis. Prof. P. C. Mishra Felicitation Volume Paper presented in National Seminar on Ecology, Environment & Development 25 - 27 January, 2013 organised by Deptt. of Environmental Sciences, Sambalpur University, Sambalpur Guest Editors: S. K. Sahu, S. K. Pattanayak and M. R. Mahananda 281

ISSN: 0974 - 0376<br />

NSave Nature to Survive<br />

: Special issue, Vol. III: 281 - 287; 2013<br />

AN INTERNATIONAL QUARTERLY JOURNAL OF ENVIRONMENTAL SCIENCES<br />

www.theecoscan.in<br />

THE HEIGHT: DIAMETER RATIO DEPENDENT ECECIS OF<br />

NATIVE PLANT SEEDLINGS: IMPLICATION IN RESTORATION OF<br />

OVERBURDEN DUMPS<br />

<strong>Chitralekha</strong> <strong>Sengupta</strong> and <strong>An</strong>shumali<br />

KEYWORDS<br />

Mine spoil<br />

Overburden dumps<br />

Organic manure<br />

VAM<br />

Tropical deciduous forests<br />

Height<br />

Diameter ratio<br />

Ecesis.<br />

Pr<strong>of</strong>. P. C. Mishra Felicitation Volume<br />

Paper presented in<br />

National Seminar on Ecology, Environment &<br />

Development<br />

25 - 27 January, 2013<br />

organised by<br />

Deptt. <strong>of</strong> Environmental Sciences,<br />

Sambalpur University, Sambalpur<br />

Guest Editors: S. K. Sahu, S. K. Pattanayak and M. R. Mahananda<br />

281


NSave Nature to Survive<br />

QUARTERLY<br />

CHITRALEKHA SENGUPTA* AND ANSHUMALI<br />

<strong>Chitralekha</strong> <strong>Sengupta</strong>,Senior Research Fellow ,Central Pollution Control Board, Zonal Office,<br />

Southend Conclave, 1582 Rajdanga Main Road, Kolkata – 700 107<br />

1<br />

Department <strong>of</strong> Environmental Science and Engineering<br />

Indian School <strong>of</strong> Mines, Dhanbad, Jharkhand, INDIA – 826 004<br />

E-mail: chitra82ster@gmail.com.<br />

ABSTRACT<br />

The ecological performance <strong>of</strong> native tree<br />

seedlings was examined by plot experiments<br />

to understand the reclamation mechanism <strong>of</strong><br />

overburden dump in Bastacola area <strong>of</strong> Jharia<br />

Coalfield. Plant species selected for plot<br />

experiments were Neem (Azardirachta<br />

indica), Ashok (Saraca indica), Bamboo<br />

(Dendrocalamus strictus), Peepal (Ficus<br />

religiosa) and Amla (Emblica <strong>of</strong>ficinalis). The<br />

seedlings were subjected to three types <strong>of</strong><br />

treatments namely OBV (VAM), OBS<br />

(agricultural soil+VAM), OBM (cow dung<br />

manure+VAM) and OBC (the control plot).<br />

The physico-chemical characteristics <strong>of</strong> each<br />

plot was evaluated along with the plant root,<br />

shoot height and circumference growth in each<br />

plot. The OBM showed high growth <strong>of</strong> plant<br />

seedlings due to the organic manure addition<br />

while OBC was not significant for plant<br />

growth due to lack <strong>of</strong> nutrient despite the<br />

occurrence <strong>of</strong> high orthodox organic matter<br />

in form <strong>of</strong> coal dust. The treatments helped in<br />

shoot and root growth <strong>of</strong> D. strictus and F.<br />

religiosa, respectively while the annual<br />

increment in height and circumference was<br />

maximum in D. strictus and F. religiosa,<br />

respectively. The low H: D ratio revealed high<br />

versatility <strong>of</strong> F. religiosa i.e. preferred plant<br />

species for the restoration <strong>of</strong> the overburden<br />

dump on flat and sloping surfaces in the study<br />

area.<br />

INTRODUCTION<br />

Today, India has 18, 289h <strong>of</strong> degraded land due to coal mining (Agarwal and<br />

Shahi, 2004). Hillocks <strong>of</strong> disturbed soil pr<strong>of</strong>ile, called overburden dumps are<br />

usual in mining areas. These are major causes <strong>of</strong> air and water pollution. They<br />

also subside/collapse due to lose rocks assemblage. These problems can be<br />

curbed with plantation, however, lack <strong>of</strong> nutrients, high bulk density and low<br />

water holding capacity and high degree <strong>of</strong> homogeneity in parent rock materials<br />

lead to poor chances <strong>of</strong> plant species survival. Therefore, natural restoration <strong>of</strong><br />

mine spoil is a slow process (Singh, 2006). To support the plants growth, spoil<br />

amendment is required for their ecesis on bare over burden dumps. The treatment<br />

<strong>of</strong> mine spoils along with beneficial soil microorganisms like arbuscular<br />

mycorrhizal fungi (AMF) also facilitate the plant growth by effective exploitation<br />

<strong>of</strong> essential nutrients and water from soil due to the extensive network <strong>of</strong> AMF<br />

mycelium (Joner and Jacobsen, 1995; Juwarkar and Jambhulkar, 2008; Sinha et<br />

al., 2009). The use <strong>of</strong> native and indigenous plant species have been a key factor<br />

in revegetation programs with a view to maintain essential processes and life<br />

support system, preservation <strong>of</strong> genetic diversity and to ensure sustainable<br />

utilization <strong>of</strong> species and ecosystem (Banerjee et al., 1996; Jha and Singh 1993;<br />

Soni and Sharma, 1994) as they undergo minimum environmental stress,<br />

successfully establish themselves on the degraded soil (Singh et al., 2002) and<br />

improve understory properties.<br />

In the tropical deciduous forests, slopes are generally dominated by dicot plants<br />

with simple leaves while flat surface or hill tops are dominated by dicot with<br />

compound leaves or monocot plants. The idea behind this natural growth pattern<br />

has been exploited in our study to the find out the most suitable plant species for<br />

successful ecesis on the overburden dump <strong>of</strong> Bastacola, Jharia.<br />

MATERIALS AND METHODS<br />

*Corresponding author<br />

Study area<br />

The study site is located in Bastacola, Jharia coalfield <strong>of</strong> Jharkhand [23º39’30"<br />

and 24º48’ 20’’ N latitude and between 86º11’ 30" and 86º27’ E longitude] (Fig.<br />

1). It has an average elevation <strong>of</strong> 77m; the climate is tropical monsoon with<br />

annual average rainfall is 1169 mm. The mean monthly maximum and minimum<br />

temperature during study period (April 2008-July 2009) were, 19.8-45ºC in<br />

summer, 8.5-33.5ºC in winter and 24-37.8ºC in monsoon season. The relative<br />

humidity varied from 15 – 98 %.<br />

The geological formation belongs to the Gondwana System (Barakar formation),<br />

the lower division <strong>of</strong> which comprises the most important coal measures <strong>of</strong> India<br />

(Chandra, 1992). This is important formation containing coal seams and covers<br />

an area <strong>of</strong> about 210 sq km (Fig. 1). The Barakar Formation consists <strong>of</strong> coarsegrained<br />

sand-stones, conglomerates, shales, carbonaceous shales, silt-stones,<br />

282


IMPLICATION IN RESTORATION OF OVERBURDEN DUMPS<br />

Table 1: Summary <strong>of</strong> control and treatment plots<br />

Plot No Abbreviation Remarks<br />

Over Burden Control OBC Mine spoil, seedlings <strong>of</strong> five plant species, no amendments<br />

Over Burden + VAM OBV Mine spoil, seedlings <strong>of</strong> five plant species, treatment with vesicular arbuscular<br />

mycorrhizae (VAM)<br />

Over Burden +VAM+ Agricultural Soil OBS Mine spoil, seedlings <strong>of</strong> five plant species, treatment with vesicular arbuscular<br />

mycorrhizae (VAM) and agricultural soil to mine spoil ratio was 1:4<br />

Over Burden + VAM + Manure OBM Mine spoil, seedlings <strong>of</strong> five plant species, treatment with vesicular arbuscular<br />

mycorrhizae (VAM) and manure to mine spoil ratio was 1:4<br />

Table 2: Physico chemical parameters <strong>of</strong> the coal mine spoil, agricultural soil and cow dung manure which were used as soil amendments<br />

April, 2008<br />

Parameters Mine Spoil (Avg±Sd) Agriculture soil (Avg±Sd) Cow dung manure (Avg±Sd)<br />

pH 5.67±1.36 5.84±0.11 7.44±0.05<br />

EC(mmhos/cm) 0.07±0.34 0.08±0.01 3.07±0.01<br />

BD(g/cc) 1.45±0.02 1.29±0.04 37.54±0.22<br />

MC(%) 2.07±1.30 3.21±0.32 6.02±0.24<br />

WHC(%) 16.28±7.25 40.03±0.64 0.75±0.01<br />

OC(%) 1.66±0.92 2.78±0.78 19.60±0.07<br />

OM(%) 2.87±1.60 4.78±1.34 33.94±0.93<br />

N( μg/g) 16.67±9.20 66±4.97 171.12±0.98<br />

P(μg/g) 1.80±0.47 12.48±1.75 20.32±0.23<br />

Mg(μg/g) 8.22±4.91 78.43±4.60 93.62±1.12<br />

Ca(μg/g) 191.95±33.34 1114.18±36.86 2179.20±2.05<br />

Na(μg/g) 32.15±2.66 66.00±4.97 1019.80±1.30<br />

K(μg/g) 49.63±11.03 187.75±55.54 8830.20±1.64<br />

CEC(meq/100g) 6.89±1.76 22.87±4.17 21.80±0.07<br />

%Sand (>63μm) 73±11.20 43.81±11.20 -<br />

%Silt (


CHITRALEKHA SENGUPTA AND ANSHUMALI<br />

Table 3: Physico-chemical parameters <strong>of</strong> the control and treatment plots<br />

OBC(Avg±Sd)<br />

OBV(Avg±Sd)<br />

Parameters M, 2008 (4 mo) W, 2009(8 mo) S, 2009(12 mo) M, 2008(4 mo) W, 2009(8 mo) S, 2009(12 mo)<br />

pH 6.21±0.39 6.19±0.31 6.78±0.15 6.02±0.07 6.36±0.32 6.53±0.32<br />

EC(mmhos/cm) 0.17±0.05 0.31±0.19 0.18±0.05 0.51±0.09 0.39±0.10 0.14±0.04<br />

BD(g/cc) 1.45±0.02 1.45±0.00 1.45±0.00 1.45±0.01 1.42±0.004 1.44±0.02<br />

MC (%) 1.59±0.12 1.46±0.11 1.60±0.10 1.89±0.08 1.89±0.07 1.83±0.09<br />

WHC (%) 18.20±0.43 18.87±0.56 21.49±0.25 18.61±0.47 19.16±0.11 22.59±0.32<br />

OC (%) 0.97±0.10 1.34±0.32 1.49±0.44 1.03±0.12 1.25±0.13 1.14±0.11<br />

OM (%) 1.68±0.17 2.31±0.56 2.59±0.76 1.79±0.20 2.16±0.22 1.970.±18<br />

Avai-N(μg/g) 23.23±1.50 28.74±1.50 25.32±2.66 23.29±2.34 33.33±4.80 23.76±3.11<br />

Avai-P(μg/g) 1.95±0.80 5.18±0.81 4.78±0.43 2.38±0.62 4.77±0.79 3.66±0.82<br />

Exch-Mg(μg/g) 18.48±1.05 25.77±15.0 23.1±5.08 30.64±0.62 39.88±5.59 26.54±2.37<br />

Exch-Ca (μg/g) 265.18±13.22 446.68±145 612.26±120 253.26±24.91 344.28±54.02 506.23±10.55<br />

Exch-Na(μg/g) 39.20±3.35 38.4±4.50 28.76±9.3 55.80±16.42 46.96±0.95 47.180.98<br />

Exch-K(μg/g) 57.20±15.61 117.6±38.2 184.4±35.4 85.40±11.87 242.6±15.93 272.4±19.71<br />

CEC(meq/100g) 5.28±0.61 8.25±0.80 9.88±0.73 8.99±0.48 7.71±0.54 5.86±0.75<br />

OBS(Avg±Sd)<br />

OBM(Avg±Sd)<br />

Parameters M, 2008 (4 mo) W, 2009 (8 mo) S, 2009 (12 mo) M, 2008 (4 mo) W, 2009 (8 mo) S, 2009 (12 mo)<br />

pH 6.55±0.73 6.310.05 6.44±0.08 6.69±0.20 6.870.07 6.91±0.20<br />

EC(mmhos/cm) 0.70±0.10 0.63±0.15 0.48±0.08 1.46±0.42 3.07±0.51 1.16±0.06<br />

BD(g/cc) 1.33±0.06 1.33±0.03 1.32±0.006 1.30±0.07 1.01±0.002 1.00±0.002<br />

MC (%) 1.75±0.09 2.17±0.13 2.08±0.16 2.00±0.08 3.07±0.06 2.96±0.06<br />

WHC (%) 25.63±0.345 26.83±0.13 27.41±0.38 29.67±0.22 30.15±0.26 31.99±0.76<br />

OC (%) 2.16±0.10 2.20±0.04 2.06±0.12 3.89±0.13 4.00±0.16 2.99±0.21<br />

OM (%) 3.74±0.17 3.81±0.069 3.56±0.22 6.74±0.23 6.92±0.28 5.17±0.38<br />

Avai-N(μg/g) 34.98±0.93 46.73±2.62 42.34±0.34 60.10±1.37 74.85±6.2 43.46±6.95<br />

Avai-P(μg/g) 8.23±0.79 8.782±0.86 6.85±2.93 15.64±0.54 12.57±1.11 9.13±2.77<br />

Exch-Mg (μg/g) 54.47±4.41 58.36±5.15 49.48±5.82 81.72±2.77 89.49±8.13 77.56±4.77<br />

Exch-Ca (μg/g) 274.48±27.15 722.6±97.28 598.58±31.61 667.64±335.85 445.4±14.11 966.84±79.14<br />

Exch-Na (μg/g) 47±4.06 139.2±8.11 137.6±6.02 45.20±9.18 255.2±14.85 122.8±4.21<br />

Exch-K(μg/g) 68.4±25.65 624.8±69.43 638.8±24.97 111.8022.41 1510.2±156.85 1180.6±22.60<br />

CEC (meq/100g) 10.42±1.1 13.33±1.18 13.97±0.72 20.45±1.28 25.64±1.99 25.77±1.1<br />

time (t 2<br />

) in months. To compare experimental plantation <strong>of</strong><br />

various treatment and control plots, annual increment (I) in<br />

height and circumference was calculated per species using<br />

the following formula (Pedraza and Williams-Linera, 2003).<br />

I = (h 1<br />

–h 2<br />

) / t<br />

Where h 1<br />

and h 2<br />

are heights or circumferences at times 1 and<br />

2 and t is the total time in years.<br />

One Way ANOVA was performed using SPSS 10. Comparison<br />

among means was carried out using Duncan Multiple Range<br />

Test (DMRT) at a significance level <strong>of</strong> p


IMPLICATION IN RESTORATION OF OVERBURDEN DUMPS<br />

Plant root and shoot dry wt. (g)<br />

Initial shoot dry wt.<br />

Final shoot dry wt.<br />

Initial root dry wt.<br />

Final root dry wt.<br />

1 OBC<br />

2 OBV<br />

3 OBS<br />

4 OBM<br />

Plant height (cm)<br />

Initial ht.<br />

Final ht.<br />

1 OBC<br />

2 OBV<br />

3 OBS<br />

4 OBM<br />

A.indica D.strictus E. <strong>of</strong>ficinalis F. religiosa S. indica<br />

Figure 2a: Initial (2 months) and final (12 months) root and shoot<br />

biomass (dry weight, g control and treatment plots<br />

development. This gradual increase in favourable physico -<br />

chemical properties and nutrient availability in<br />

OBC E. Officinalis > S. indica (Table<br />

5). The H: D ratio revealed that all seedlings showed maximum<br />

responses to treatments in terms <strong>of</strong> height growth (i.e. increased<br />

H: D ratio) except F. religiosa where amendments resulted in<br />

more resource allocation in fine root and circumference<br />

development (i.e. decreased H: D ratio) (Table 6). Consequently,<br />

the relationship between annual increment in height and<br />

circumference is highly positive in F. Religiosa while<br />

disproportionately large increase in height with respect to<br />

circumference may be responsible for poor R 2 value in D.<br />

strictus (Fig. 3). Singh et al. (2000) found similar response to<br />

nutrient enrichment for non-leguminous species planted on<br />

mine spoils. Generally, the trees that allocate comparatively<br />

less resources to stem per unit <strong>of</strong> height growth are assumed<br />

Table 5: Percentage increase in root biomass, shoot biomass, circumference and height <strong>of</strong> the plants from Jun’08 to Jul’09, <strong>of</strong> the plant species<br />

under the control and treatment conditions along with Duncan’s Test depicting the effect <strong>of</strong> treatment on the shoot biomass (SB), root<br />

biomass (RB), height (H) and circumference (C) <strong>of</strong> the plant species<br />

Plant species Control and Treatment Plots % Increase in Parameters<br />

OBC OBV OBS OBM Root Biomass (June’08- July’09)<br />

A. indica 18.96 c 42.57 b 58.68 ab 72.70 a<br />

E. <strong>of</strong>ficinalis 27.84 d 49.11 c 97.34 b 125.43 a<br />

D. strictus 12.77 b 25.49 b 55.94 a 65.57 a<br />

F. religiosa 46.25 c 61.10 c 91.55 b 133.59 a<br />

S. asoka 8.80 c 13.44 b 21.57 ab 32.91 a<br />

A. indica 11.57 d 41.56 c 82.25 b 109.25 a Shoot Biomass<br />

E. <strong>of</strong>ficinalis 7.42 c 45.51 b 71.22 b 107.44 a<br />

D. strictus 56.12 d 70.77 c 89.94 b 127.89 a<br />

F. religiosa 12.95 c 35.95 b 58.53 a 77.43 a<br />

S. asoka 5.74 b 10.27 b 15.04 b 31.17 a<br />

A. indica 10.45 c 13.43 c 85.08 b 116.59 a Circumference<br />

E. <strong>of</strong>ficinalis 10.85 b 15.14 b 27.08 a 28.94 a<br />

D. strictus 13.99 b 27.76 b 30.63 ab 44.68 a<br />

F. religiosa 13.43 c 17.95 c 36.08 b 76.49 a<br />

S. asoka 0 a 1.96 a 7.69 a 7.51 a<br />

A. indica 39.88 c 55.77 b 64.02 b 83.01 a Height<br />

E. <strong>of</strong>ficinalis 20.79 c 31.37 c 56.38 b 104.69 a<br />

D. strictus 44.54 d 68.34 c 98.77 b 221.93 a<br />

F. religiosa 26.97 c 43.81 cb 60.64 b 83.29 a<br />

S. asoka 3.15 a 3.49 a 5.68 a 6.12 a<br />

285


CHITRALEKHA SENGUPTA AND ANSHUMALI<br />

<strong>An</strong>nual increment in circumference<br />

(cm)<br />

y = 0.046x<br />

R 2 = 0.494<br />

A. indica<br />

OBC<br />

OBV<br />

y = 0.007x<br />

R 2 = 0.359<br />

OBS<br />

OBM<br />

E..<strong>of</strong>ficinalis<br />

<strong>An</strong>nual increment in height (cm)<br />

<strong>An</strong>nual increment in height (cm)<br />

<strong>An</strong>nual increment in circumference<br />

(cm)<br />

y = 0.007x<br />

R 2 = 0.012<br />

D. strictus<br />

y = 0.048x<br />

R 2 = 0.629<br />

F. religiosa<br />

<strong>An</strong>nual increment in height (cm)<br />

<strong>An</strong>nual increment in height (cm)<br />

<strong>An</strong>nual increment in circumference (cm)<br />

y = 0.027x<br />

R 2 = 0.153<br />

S. indica<br />

Figure 3: Relationship between annual increment in circumference<br />

and height <strong>of</strong> five plant species<br />

to grow taller than those that allocate more (King, 1981; Lawton,<br />

1984; Singh et al., 2000). Further, the low annual increment<br />

in height i.e. decreased RGRH and significant annual increment<br />

in circumference i.e. increased RGRC (Table 6), support<br />

versatile nature <strong>of</strong> F. religiosa in terms <strong>of</strong> better spoil binder,<br />

lesser chances <strong>of</strong> getting uprooted in stress conditions, control<br />

spoil erosion and water body siltation and promote slope<br />

stabilization.<br />

CONCLUSIONS<br />

<strong>An</strong>nual increment in height (cm)<br />

The amendments <strong>of</strong> coal mine spoils improved spoil<br />

characteristics as indicated by positive response <strong>of</strong> plant<br />

seedlings to OBV and OBM treatment in terms <strong>of</strong> root and<br />

shoot growth. The D. strictus with quick and vigorous shoot<br />

growth observed to be suitable for plantation on flat surfaces<br />

<strong>of</strong> the dump. Since D. strictus showed good growth even in<br />

nutrient deficient control plot so its versatility is undoubtedly<br />

wide, however, due to high H:D ratio, its plantation along the<br />

slopes should be discouraged as it has greater chances <strong>of</strong><br />

getting uprooted. The F.religiosa showed positive relationship<br />

between annual increment in height and circumference, hence,<br />

it can be used in the restoration <strong>of</strong> the overburden dump even<br />

on slopes and flat surface. Similarly, E. <strong>of</strong>ficinalis and A. indica<br />

would best serve for the restoration <strong>of</strong> the overburden dump<br />

on flat surfaces. However, S. indica needs proper hardening<br />

before its plantation in coal mine spoils. Such short term studies<br />

can help in choosing suitable native plant species for<br />

successful ecesis during secondary succession <strong>of</strong> mined out<br />

areas.<br />

ACKNOWLEDGEMENTS<br />

The authors are grateful to MHRD, GOI, for providing financial<br />

assistance to conduct the research work. We are thankful to<br />

BCCL for providing the study area and District Forest<br />

Department, Dhanbad, for imparting valuable information<br />

about plant seedlings. The authors also express sincere thanks<br />

to the Department <strong>of</strong> Environmental Science and Engineering,<br />

ISM, Dhanbad, for providing financial support and laboratory<br />

286


IMPLICATION IN RESTORATION OF OVERBURDEN DUMPS<br />

Table 6. H:D ratio, relative growth rate (RGR) in height (RGRH, cm/month), circumference (RGRC, cm/month), annual increment in height<br />

(cm) and circumference (cm), between June’08 and July ’09 in control plot and experimental plots.<br />

Plant species OBC OBV OBS OBM Parameter<br />

A. indica 77.15±13.40 78.32±6.71 63.30±2.45 60.51±3.38 H:D ratio<br />

E. <strong>of</strong>ficinalis 157.78±12.83 149.48±6.03 187.12±25.94 230.31±13.11<br />

D. strictus 108.48±7.57 117.92±7.65 166.03±32.98 231.34±18.24<br />

F. religiosa 51.23±9.84 54.65±4.86 54.92±4.68 47.63±1.10<br />

S. indica 98.19±10.70 97.57±12.30 107.56±4.28 117.61±12.04<br />

A. indica 0.026±0.008 0.034±0.004 0.038±0.006 0.047±0.005 RGRH (cm/month)<br />

E. <strong>of</strong>ficinalis 0.0145±0.0029 0.021±0.00 0.034±0.008 0.056±0.002<br />

D. strictus 0.029±0.002 0.032±0.001 0.052±0.001 0.09±0.002<br />

F. religiosa 0.018±0.01 0.028±0.005 0.037±0.002 0.047±0.007<br />

S. indica 0.002±0.00 0.002±0.00 0.004±0.007 0.004±0.00<br />

A. indica 0.008±0.003 0.01±0.00 0.0469±0.0098 0.056±0.001 RGRC(cm/month)<br />

E. <strong>of</strong>ficinalis 0.008±0.003 0.01±0.002 0.0183 ±0.0056 0.011±0.003<br />

D. strictus 0.01±0.002 0.019±0.007 0.0205±0.0016 0.029±0.008<br />

F.religiosa 0.01±0.002 0.012±0.005 0.0235 ±0.0068 0.043±0.003<br />

S. indica 0 0 0.0070 ±0.0082 0.006±0.006<br />

A. indica 18.11±5.03 25.67±2.32 29.72±3.90 38.32 ± 2.97 <strong>An</strong>nual increment inheight (cm)<br />

E. <strong>of</strong>ficinalis 13.88 ± 3.30 21.38±0.84 37.68±8.34 72.78±1.94<br />

D. strictus 21.60± 1.25 26.25 ± 1.24 50.67±2.10 112.39 ± 0.40<br />

F.religiosa 6.24±3.40 9.94±1.24 13.76±1.71 18.60±2.22<br />

S. indica 1.48±0.40 1.67±0.42 2.72 ± 0.43 2.92±0.58<br />

A. indica 0.24±0.10 0.33±0.05 1.72±0.32 2.37±0.23 <strong>An</strong>nual increment in<br />

circumference (cm)<br />

E. <strong>of</strong>ficinalis 0.15±0.05 0.24±0.05 0.37±0.09 0.43±0.05<br />

D. strictus 0.24±0.05 0.43±0.10 0.46±0.09 0.67 ± 0.19<br />

F.religiosa 0.21±0.05 0.27±0.09 0.55±0.19 1.17±0.05<br />

S. indica 0 0.03±0.005 0.09±0.016 0.09 ± 0.003<br />

facilities to conduct this research work.<br />

REFERENCES<br />

Agarwal, A. K. and Shahi, S. 2004. Management <strong>of</strong> post mining land<br />

and ISO: 14000 for Indian Mines, NSEEME, ISM, Dhnabad on 19-20<br />

March, 2004.<br />

Allen, M. F., Smith, W. K., Moore Jr, T. S. and Christensen, M. 1981.<br />

Comparative water relations and photosynthesis <strong>of</strong> mycorrhizal<br />

Bouteloua gracilis H.B.K. lag ex Steud. New Phytologist. 88: 683-693.<br />

Banerjee, S. K., Williums, A. J., Biswas, S. C., Manjhi, R. B. and<br />

Mishra, T. K. 1996. Dynamics <strong>of</strong> natural ecorestoration in coal mine<br />

overburden <strong>of</strong> dry deciduous zone <strong>of</strong> M.P. India. Ecology, Environment<br />

and Conservation. 2: 97-104.<br />

Chandra, D. 1992. Jharia Coalfield. Geological Society <strong>of</strong> India,<br />

Bangalore.<br />

Chulan, H. A. and Martin, K. 1992. The vesicular-arbuscular (VA)<br />

mycorrhizal and its effects on growth <strong>of</strong> vegetatively propagated<br />

Theobroma cacao L. Plant and Soil. 144: 227-233.<br />

Hunt, R. 1978. Plant growth analysis. Studies in Biology no. 96.<br />

Edward Arnold (Publishers). London.<br />

Jackson, M. L. 1973. Soil Chemical <strong>An</strong>alysis. Prentice Hall <strong>of</strong> India<br />

private Limited, New Delhi.<br />

Jha, A. K. and Singh, J. S. 1993. Rehabilitation <strong>of</strong> mine spoils. pp.<br />

210-254. In: J.S. Singh (ed.) Restoration <strong>of</strong> Degraded Land: Concepts<br />

and Strategies. Rastogi Publications, Meerut, India.<br />

Joner, E. J. and Jakobsen, I. 1995. Growth and extracellular<br />

phosphatase activity <strong>of</strong> arbuscular mycorrhizal hyphae as influenced<br />

by soil organic matter. Soil Biology and Biochem. 27: 1153-1159.<br />

Juwarkar, A. A. and Jambhulkar, H. P. 2008. Phytoremediation <strong>of</strong><br />

coal mine spoil dump through integrated biotechnological approach.<br />

Bioresource Technology Doi: 10.1016/j. Biortech. 2007.09.060.<br />

King, D. A. 1981. Tree dimensions: maximizing the rate <strong>of</strong> height<br />

growth in dense stands. Oecologia. 51: 351-356.<br />

Lawton, R.O. 1984. Ecological constraints on wood density in a<br />

tropical montane rain forest. American J. Botany 71: 261-267.<br />

Li X-L, E. G. and Marschner, H. 1991. Extension <strong>of</strong> Phosphorus<br />

depletion zone in VA-mycorrhizal white clover in calcareous soil.<br />

Plant and Soil 136: 41-48.<br />

Pedraza, R. A. and Williams-Linera, G. 2003. Evaluation <strong>of</strong> native<br />

tree species for the rehabilitation <strong>of</strong> deforested areas in a Mexican<br />

cloud forest. New Forests. 26: 83-99.<br />

Singh, A. 2006. Growth and leaf nutrient status <strong>of</strong> companion species<br />

as influenced by neighbouring species in mixed plantations raised on<br />

mine spoil. Tropical Ecology 47(2): 259-269.<br />

Singh, A., A., Jha, K. and Singh, J. S. 2000. Effect <strong>of</strong> nutrient enrichment<br />

on native tropical trees planted on Singrauli Coalfields, India.<br />

Restoration Ecology. 8: 80-86.<br />

Singh, A. N., Raghubanshi, A. S. and Singh, J. S. 2002. Plantations as<br />

a tool for mine spoil restoration. Current Science 82: 1436-1441.<br />

Sinha, S., Masto, R. E., Ram, L. C. Selvi, V. A., Srivastava, N. K.,<br />

Tripathi, R. C. and George, J. 2009. Rhizosphere soil microbial<br />

index <strong>of</strong> tree species in a coal mining ecosystem. Soil Biology and<br />

Biochemistry. 41: 1824-1832.<br />

Soni, P. and Sharma, V. P. 1994. Floristic composition in an age<br />

series <strong>of</strong> restored limestone mine. <strong>Journal</strong> <strong>of</strong> Tropical Forestry 10:<br />

182-188.<br />

Zajicek, J. M., Hetrick, B. A. D. and Albrecht, M. L. 1987. Influence<br />

<strong>of</strong> drought stress and mycorrhizae on growth <strong>of</strong> two native forbs. J.<br />

American Society <strong>of</strong> Horticulture Science. 112(3): 454-459.<br />

287


288

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!