22.11.2014 Views

Phenomenological studies of top-pair production at NLO

Phenomenological studies of top-pair production at NLO

Phenomenological studies of top-pair production at NLO

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Phenomenological</strong> <strong>studies</strong> <strong>of</strong><br />

<strong>top</strong>-<strong>pair</strong> <strong>production</strong> <strong>at</strong> <strong>NLO</strong><br />

Malgorz<strong>at</strong>a Worek<br />

Wuppertal University<br />

XXXV Intern<strong>at</strong>ional Conference <strong>of</strong> Theoretical Physics, Ustron’11<br />

12-18 September 20011, Ustron, Poland 1


Outline<br />

General motiv<strong>at</strong>ion for <strong>NLO</strong> QCD calcul<strong>at</strong>ions<br />

HELAC-<strong>NLO</strong> in a nutshell<br />

ttbb, ttjj, Htt, WWbb<br />

Applic<strong>at</strong>ions: WWbb & ttjj @ TeV<strong>at</strong>ron and LHC<br />

Summary & Outlook<br />

2


HELAC-<strong>NLO</strong> Group<br />

G. Bevilacqua (RWTH Aachen)<br />

M. Czakon (RWTH Aachen)<br />

M.V. Garzelli (Debrecen Uni.)<br />

A. van Hameren (INP Krakow)<br />

I. Malamos (Nijmegen Uni.)<br />

C. G. Papadopoulos (INP Athens)<br />

R. Pittau (Granada Uni.)<br />

M. Worek (Wuppertal Uni.)<br />

<br />

<br />

<br />

<br />

<br />

<br />

Contributors:<br />

A. Kanaki<br />

A. Cafarella<br />

P. Draggiotis (Valencia Uni.)<br />

G. Ossola (New York Uni.)<br />

3


Introduction<br />

8-10 partons in the final st<strong>at</strong>e @ LO, well separ<strong>at</strong>ed to avoid divergences<br />

Standard Model and beyond tools @ tree level (just few examples)<br />

ALPGEN, AMEGIC++/SHERPA, CARLOMAT, COMIX/SHERPA,<br />

COMPHEP, HELAC-PHEGAS, MADGRAPH/MADEVENT,<br />

O'MEGA/WHIZARD, ...<br />

General purpose Monte Carlo programs (parton shower, hadroniz<strong>at</strong>ion,<br />

multiple interactions, hadrons decays, etc.)<br />

HERWIG, HERWIG++, PYTHIA 6.4, PYTHIA 8.1, SHERPA, ...<br />

High sensitivity to unphysical input scales<br />

Higher order calcul<strong>at</strong>ions are needed to improve accuracy <strong>of</strong> prediction<br />

4


Motiv<strong>at</strong>ion for <strong>NLO</strong><br />

Stabilizing the scale in the QCD input parameters:<br />

Strong coupling constant and PDFs<br />

More reliable theoretical error rel<strong>at</strong>ed to the scale dependence<br />

Normaliz<strong>at</strong>ion and shape <strong>of</strong> distributions first known <strong>at</strong> <strong>NLO</strong><br />

Many scale processes: V+ jets, ttH, tt + jets, bb + jets, njets ...<br />

How do we know which scale to choose ?<br />

Improved description <strong>of</strong> jets<br />

Jets: LO <strong>NLO</strong> Parton Hadron<br />

Shower<br />

Level<br />

5


Structure <strong>of</strong> <strong>NLO</strong><br />

Calcul<strong>at</strong>ions<br />

<br />

σ <strong>NLO</strong> =<br />

<br />

=<br />

m<br />

m<br />

<br />

dσ B +<br />

<br />

dσ B +<br />

m+1<br />

m+1<br />

<br />

dσ R −<br />

m+1<br />

<br />

dσ A +<br />

<br />

dσ R − dσ D <br />

+<br />

m<br />

m+1<br />

<br />

dσ A +<br />

m<br />

dσ V<br />

<br />

dσ V + dσ I + dσ KP<br />

C<strong>at</strong>ani-Seymour subtraction scheme<br />

At <strong>NLO</strong>: dσ R with m+1 partons and dσ V with m partons in the final<br />

Separ<strong>at</strong>ely divergent although their sum is finite<br />

dσ A is a proper approxim<strong>at</strong>ion <strong>of</strong> dσ R<br />

i. same singular behavior point-by-point<br />

ii. integrable over extra parton degrees <strong>of</strong> freedom<br />

Individual contributions finite. MC integr<strong>at</strong>ion can be performed !


Structure <strong>of</strong> <strong>NLO</strong><br />

Calcul<strong>at</strong>ions<br />

<br />

σ <strong>NLO</strong> =<br />

<br />

=<br />

m<br />

m<br />

<br />

dσ B +<br />

<br />

dσ B +<br />

m+1<br />

m+1<br />

<br />

dσ R −<br />

m+1<br />

<br />

dσ A +<br />

<br />

dσ R − dσ D <br />

+<br />

m<br />

m+1<br />

<br />

dσ A +<br />

m<br />

dσ V<br />

<br />

dσ V + dσ I + dσ KP<br />

Three main building blocks are needed<br />

Evalu<strong>at</strong>ion <strong>of</strong> one-loop amplitude - HELAC-1LOOP<br />

Determin<strong>at</strong>ion <strong>of</strong> coefficients via reduction method<br />

Reduction <strong>at</strong> integrand level - OPP method - CUTTOOLS<br />

Evalu<strong>at</strong>ion <strong>of</strong> scalar functions - ONELOOP<br />

Ossola, Papadopoulos, Pittau ‘07, ’08<br />

Draggiotis, Garzelli, Papadopoulos, Pittau ’09<br />

Garzelli, Malamos, Pittau ’09<br />

van Hameren, Papadopoulos, Pittau ’09<br />

van Hameren, ’10<br />

7


Structure <strong>of</strong> <strong>NLO</strong><br />

Calcul<strong>at</strong>ions<br />

<br />

σ <strong>NLO</strong> =<br />

<br />

=<br />

m<br />

m<br />

<br />

dσ B +<br />

<br />

dσ B +<br />

m+1<br />

m+1<br />

<br />

dσ R −<br />

m+1<br />

<br />

dσ A +<br />

<br />

dσ R − dσ D <br />

+<br />

m<br />

m+1<br />

<br />

dσ A +<br />

m<br />

dσ V<br />

<br />

dσ V + dσ I + dσ KP<br />

HELAC-DIPOLES - complete, public and autom<strong>at</strong>ic C<strong>at</strong>ani-Seymour dipoles<br />

Extended for arbitrary polariz<strong>at</strong>ions<br />

Monte Carlo over polariz<strong>at</strong>ion st<strong>at</strong>es <strong>of</strong> external particles<br />

Monte Carlo over color<br />

Phase space restriction on the dipoles phase space<br />

Less dipole subtraction terms per event<br />

Increased numerical stability<br />

Reduced missed binning problem<br />

Czakon, Papadopoulos, Worek '09<br />

8


One-loop amplitude<br />

and r<strong>at</strong>ional part<br />

Reduction <strong>of</strong> tensor integrals<br />

OPP coefficients and r<strong>at</strong>ional part<br />

HELAC-1LOOP<br />

CUTTOOLS<br />

pp → t¯tjj<br />

HELAC-<strong>NLO</strong><br />

HELAC-<br />

DIPOLES<br />

ONELOOP<br />

C<strong>at</strong>ani-Seymour dipole subtraction<br />

for massless and massive cases<br />

Scalar integrals<br />

9


Top Quark<br />

Produced in hadron-hadron collisions through strong interactions<br />

Decays without forming hadrons through the single mode tW b<br />

Distinguished by its large mass, close to EW symmetry breaking scale<br />

Unique property raises questions:<br />

Is the <strong>top</strong> quark mass gener<strong>at</strong>ed by the Higgs mechanism ?<br />

Does it play more fundamental role ?<br />

Are there new particles lighter than the <strong>top</strong> quark ?<br />

Does the <strong>top</strong> quark decay into them ?<br />

Could non-SM physics manifest itself in non-standard couplings <strong>of</strong> <strong>top</strong><br />

quark which show up as anomalies in <strong>top</strong> quark <strong>production</strong> and decays?<br />

Top quark physics tries to answer all these questions<br />

Properties <strong>of</strong> the <strong>top</strong> quark have already been examined <strong>at</strong> the Tev<strong>at</strong>ron<br />

LHC is a <strong>top</strong> factory, producing about 8 million tt <strong>pair</strong>s per<br />

experiment per year <strong>at</strong> low luminosity (10 fb 1 /year)<br />

10


Top Pair Production<br />

Complete <strong>of</strong>f-shell effects @ <strong>NLO</strong><br />

Double-, single- and non-resonant<br />

<strong>top</strong> contributions <strong>of</strong> the order O( s3 4 )<br />

Complex-mass scheme for unstable <strong>top</strong><br />

W gauge bosons are tre<strong>at</strong>ed <strong>of</strong>f-shell<br />

pp(p¯p) → e + ν e µ − ν µ b¯b + X<br />

Sum over helicities and color via MC<br />

LO + V obtained by reweighting <strong>of</strong> tree<br />

level unweighted events<br />

Dipole channels for subtracted real part<br />

Check <strong>of</strong> Ward identity for virtual part<br />

Cancell<strong>at</strong>ion <strong>of</strong> divergences<br />

max independence test for real part<br />

Bevilacqua, Czakon, van Hameren, Papadopoulos, Worek ’11<br />

11


Top Pair Production<br />

TeV<strong>at</strong>ron<br />

LO & <strong>NLO</strong> scale dependence<br />

σ LO = 34.922 +40%<br />

−26% fb<br />

σ <strong>NLO</strong> = 35.727 −4%<br />

−8% fb<br />

K = 1.023<br />

LHC<br />

σ LO = 550.538 +37%<br />

−25% fb<br />

σ <strong>NLO</strong> = 808.665 +4%<br />

−9% fb<br />

K = 1.47<br />

Bevilacqua, Czakon, van Hameren, Papadopoulos, Worek ’11<br />

12


Top Pair Production<br />

TeV<strong>at</strong>ron<br />

Differential cross section<br />

Fixed scale m t<br />

Not rescale LO shapes<br />

Distortions 15% - 80%<br />

For angular distributions<br />

corrections 5% - 10%<br />

Bevilacqua, Czakon, van Hameren, Papadopoulos, Worek ’11<br />

13


Top Pair Production<br />

LHC<br />

Differential cross section<br />

Fixed scale m t<br />

Corrections 50% - 60 %<br />

Rel<strong>at</strong>ively constant<br />

H T distorted up to 80%<br />

Bevilacqua, Czakon, van Hameren, Papadopoulos, Worek ’11<br />

14


TeV<strong>at</strong>ron<br />

Top Pair Production<br />

A t FB =0.051<br />

A b FB =0.033<br />

A +<br />

FB =0.034<br />

<strong>top</strong> quarks are emitted in the<br />

direction <strong>of</strong> incoming protons<br />

<br />

A t y>0<br />

FB =<br />

N t(y) − y0 N t(y)+ y


Top Pair + 2 Jets<br />

Important background for Higgs searches @ Tev<strong>at</strong>ron and @ LHC<br />

H WW ∗ produced via weak boson fusion<br />

For m H ~ 130 GeV, i.e. when BR(H WW ∗ ) is large enough<br />

Higgs boson mass peak cannot be directly reconstructed<br />

Background processes can not be measured from the side bands<br />

H bb produced via associ<strong>at</strong>ed <strong>production</strong> with a tt <strong>pair</strong><br />

Process useful only in the low mass range m H < 135 GeV<br />

Unique access to the <strong>top</strong> and bottom Yukawa couplings<br />

Reconstruction <strong>of</strong> the H bb mass peak difficult<br />

The bb <strong>pair</strong> can be chosen incorrectly<br />

b-tagging efficiency, two b-jets can arise from mistagged light jets<br />

Very precise knowledge <strong>of</strong> QCD backgrounds<br />

ttjj, ttbb, WWjj is necessary !<br />

16


Top Pair + 2 Jets<br />

Partonic subprocesses<br />

Number <strong>of</strong> Feynman diagrams<br />

Number <strong>of</strong> dipoles<br />

As a measure <strong>of</strong> complexity<br />

dσ R − dσ D<br />

dσ V<br />

Bevilacqua, Czakon, Papadopoulos, Worek ’10 ‘11<br />

17


Top Pair + 2 Jets<br />

TeV<strong>at</strong>ron<br />

σ LO =0.3584 +94%<br />

−45% pb<br />

σ <strong>NLO</strong> =0.2709 +0.5%<br />

−21% pb<br />

94% 21%<br />

K = 0.76 -24%<br />

Total cross sections<br />

with different jets<br />

separ<strong>at</strong>ion cuts R jj<br />

and the jet resolution<br />

parameters R<br />

K = 0.86 -14%<br />

Bevilacqua, Czakon, Papadopoulos, Worek ’10 ‘11<br />

18


TeV<strong>at</strong>ron<br />

Top Pair + 2 Jets<br />

Corrections to p T and m tt<br />

are substantial<br />

Do not simply rescale the<br />

LO shapes<br />

Induce distortions 40%<br />

For H T even 50% 60%<br />

deform<strong>at</strong>ions<br />

Bevilacqua, Czakon, Papadopoulos, Worek ’10 ‘11<br />

19


TeV<strong>at</strong>ron<br />

Top Pair + 2 Jets<br />

Angular distributions<br />

Neg<strong>at</strong>ive and moder<strong>at</strong>e<br />

corrections<br />

15% 30%<br />

Rel<strong>at</strong>ively constant<br />

Bevilacqua, Czakon, Papadopoulos, Worek ’10 ‘11<br />

20


Top Pair + 2 Jets<br />

A t FB,LO = −0.103 +0.003<br />

−0.004<br />

A t FB,<strong>NLO</strong> = −0.046 +0.005<br />

−0.006<br />

anti-<strong>top</strong> quarks are emitted in the<br />

direction <strong>of</strong> incoming protons<br />

(forward direction by definition)<br />

with a consistent expansion in s<br />

A t FB,<strong>NLO</strong> = −0.058 +0.014<br />

−0.042<br />

unexpanded r<strong>at</strong>io <strong>of</strong> the <strong>NLO</strong> cross sections<br />

Bevilacqua, Czakon, Papadopoulos, Worek ’10 ‘11<br />

21


Top Pair + 2 Jets<br />

LHC<br />

σ LO = 13.398 +87%<br />

−43% pb<br />

σ <strong>NLO</strong> =9.82 −15%<br />

−15% pb<br />

87% 15%<br />

K = 0.73 -27%<br />

Total cross sections<br />

with different jets<br />

separ<strong>at</strong>ion cuts R jj<br />

and the jet resolution<br />

parameters R<br />

K = 0.86 -14%<br />

Bevilacqua, Czakon, Papadopoulos, Worek ’10 ‘11<br />

22


LHC<br />

Top Pair + 2 Jets<br />

m tt 20% 30% corrections<br />

p T up to 60% distortions<br />

H T even 80% deform<strong>at</strong>ions<br />

Corrections are substantial<br />

and do not simply rescale<br />

LO shapes<br />

Bevilacqua, Czakon, Papadopoulos, Worek ‘10 ’11<br />

23


LHC<br />

Top Pair + 2 Jets<br />

<strong>NLO</strong> QCD corrections<br />

are neg<strong>at</strong>ive and<br />

rel<strong>at</strong>ively constant<br />

Angular distributions<br />

20% 30% corrections<br />

Bevilacqua, Czakon, Papadopoulos, Worek ’1o ‘11<br />

24


Summary & Outlook<br />

Already calcul<strong>at</strong>ed by HELAC-<strong>NLO</strong>: ttbb, ttjj, Htt, WWbb<br />

ttbb, WWbb completed by two groups<br />

Permille level agreement in both cases!<br />

Much wider study for ttjj: vari<strong>at</strong>ion <strong>of</strong> the center <strong>of</strong> mass energy, jet<br />

algorithms, cone size in jet algorithm, transverse momentum cuts<br />

HELAC-<strong>NLO</strong><br />

Complete tool <strong>at</strong> <strong>NLO</strong> built around HELAC‐PHEGAS:<br />

HELAC‐1LOOP, CUTTOOLS, ONELOOP, HELAC‐DIPOLES<br />

Other processes from <strong>NLO</strong> Wishlist under <strong>at</strong>tack<br />

Constant improvements in speed and functionality<br />

Interfaced to PYTHIA and HERWIG showers via POWHEG-BOX: ttj, ttH<br />

Decays <strong>of</strong> massive particles, showering and hadroniz<strong>at</strong>ion<br />

Final results <strong>at</strong> the hadron level<br />

http://helac-phegas.web.cern.ch/helac-phegas/<br />

25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!