22.11.2014 Views

Supernova Nucleosynthesis and Physics of Neutrino Oscillation

Supernova Nucleosynthesis and Physics of Neutrino Oscillation

Supernova Nucleosynthesis and Physics of Neutrino Oscillation

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Carpathian Summer School <strong>of</strong> <strong>Physics</strong> 2012<br />

Exotic Nuclei & Nuclear/Particle Astrophysics IV: from Nuclei to Stars<br />

Sinaia, Romania, June 24 - July 7 in 2012<br />

<strong>Supernova</strong> <strong>Nucleosynthesis</strong><br />

<strong>and</strong> <strong>Physics</strong> <strong>of</strong> <strong>Neutrino</strong> <strong>Oscillation</strong><br />

θ 13 is well known now.<br />

“Mass Hierarchy” is still far to reach!<br />

Taka KAJINO<br />

National Astronomical Observatory<br />

Department <strong>of</strong> Astronomy, University <strong>of</strong> Tokyo


ニュートリノの <strong>Neutrino</strong> Masses 質 量 1<br />

他 の 素 粒 子 の 質 量<br />

~<br />

10,000,000,000<br />

Quark & Lepton Masses<br />

Quark & Lepton<br />

Masses<br />

E = mc 2<br />

Why 10 -10 ?<br />

10 -10<br />

This could be a signature <strong>of</strong> new physics at 10 10<br />

times higher energy scale than the ordinary scale.<br />

i + i e + + e - 2g (T)<br />

Key <strong>Physics</strong> suggested by FINITE mass neutrinos:<br />

?<br />

<br />

ν Masses<br />

Generation<br />

<br />

Unification <strong>of</strong> elementary forces beyond the<br />

st<strong>and</strong>ard model ?<br />

CP violation <strong>and</strong> Lepto- & Baryo-genesis ?<br />

Why left-h<strong>and</strong>ed neutrinos, Majorana or Dirac ?<br />

Explosion Mechanism <strong>of</strong> <strong>Supernova</strong>e ?


Challenge <strong>of</strong> the Century<br />

Universal expansion is most likely accelerating <strong>and</strong> flat !<br />

W B + W CDM + W L = 1<br />

● What is the CDM, W CDM = 0.23, <strong>and</strong> Dark Energy, W L = 0.73 ?<br />

CMB including -mass: Yamazaki, Kajino, Mathews & Ichiki, Phys. Rep. (2012), in press.<br />

● Is BARYON, W B = 0.04, well understood ?<br />

BBN with Axions + SUSY to solve Dark Matter Problem & Li Problem:<br />

Kusakabe, Balantekin, Kajino & Pehlivan, (2012) arXiv:1202.560.<br />

SUSY-DM ⇒ “beyond the St<strong>and</strong>ard Model” ⇒ m = 0 is the unique signal !<br />

Total mass, Hierarchy, details <strong>of</strong> mixing nature ?<br />

Purpose<br />

.<br />

“<strong>Supernova</strong> -Process <strong>Nucleosynthesis</strong>”<br />

to determine the MASS HIERARCHY <strong>of</strong> Active Neurinos.


<strong>Physics</strong> <strong>of</strong> <strong>Neutrino</strong> <strong>Oscillation</strong><br />

Dirac Equation(Dirac-Pauli representation)<br />

Eigen-State <strong>of</strong> Free <strong>Neutrino</strong>s with (E, p) (for m = 0)<br />

L-neutrino (h=-1)<br />

Dirac spinor<br />

R-neutrino (h=+1)<br />

<strong>Neutrino</strong> flavor oscillation for weak interactions (due to vacuum, MSW,<br />

or self-interaction effects) does not change the spinor structure.<br />

Therefore, only the propagation <strong>of</strong> energy eigen-state is important!


<strong>Neutrino</strong> Flavor <strong>Oscillation</strong><br />

, 1962)<br />

n e = Electron Number Density<br />

〇 m 2 -difference<br />

〇 Mixing angle<br />

〇 CP Phase : d


Exercise 1: Vacuum <strong>Oscillation</strong> (Example <strong>of</strong> 2 flavors)<br />

<strong>Oscillation</strong> Probability<br />

Osc. Probability depends on q.<br />

Osc. length l<br />

(cm)


Reactor <strong>Neutrino</strong>s<br />

(Kashiwazaki)<br />

KamLAND at D=0 km<br />

(Kamioka)<br />

Distance D from Reactors (m)


Atmospheric <strong>Neutrino</strong>s<br />

No <strong>Oscillation</strong><br />

Expected from 23-mixing<br />

SK Observation<br />

Down coming ’s<br />

Up going ’s


“KNOWN” <strong>of</strong> <strong>Neutrino</strong> <strong>Oscillation</strong>s<br />

KAMIOKANDE, SK, KamL<strong>and</strong> (reactor ν), SNO determined ⊿m 12<br />

2<br />

<strong>and</strong> θ 12 uniquely,<br />

<strong>and</strong> also SK (atmospheric ν) determined ⊿m 23<br />

2<br />

<strong>and</strong> θ 23 uniquely.<br />

23-mixing<br />

sin 2 2q 23 = 1.0<br />

|Δm 2 23| = 2.4×10 -3 eV 2<br />

12-mixing<br />

sin 2 2q 12 = 0.816 (q 12 +q C =p/2)<br />

Δm 2 12 = 7.9×10 -5 eV 2<br />

Cabibbo angle<br />

“UNKNOWN”<br />

● sin 2 2q 13 = 0.1<br />

T2K, MINOS, RENO, Daya Bay, Double Chooz<br />

● ⊿m<br />

2<br />

13 = ±2.4x10 -3 eV 2<br />

● δ=CP-phase<br />

● Absolute Mass 0bb, cosmology<br />

E()=E(): Yokomakura et al., PL B544, 286.


Exercise 2: Matter (MSW)<strong>Oscillation</strong> (Example <strong>of</strong> 2 flavors)<br />

Wolfenstein (1978), Mikheyev & Smirnov (1986)<br />

<strong>Oscillation</strong> Probability


effective mass<br />

effective mass<br />

MSW Matter Effect & Mass Hierarchy<br />

Normal<br />

r ~ 10 3 g/cm 3<br />

Inverted<br />

3<br />

H-resonance<br />

<br />

3<br />

~ e<br />

2<br />

<br />

3<br />

<br />

3<br />

L-resonance<br />

2<br />

<br />

2<br />

~ e<br />

2<br />

2<br />

1<br />

2<br />

1<br />

1<br />

2<br />

1<br />

1<br />

L-resonance<br />

2<br />

3<br />

3<br />

1<br />

H-resonance<br />

1<br />

3<br />

1<br />

ne<br />

vacuum SN core vacuum SN core<br />

<br />

3<br />

~ e<br />

ne


PURPOSE is to<br />

solve the Mystery <strong>of</strong> <strong>Neutrino</strong> Mass Hierarchy.<br />

-process <strong>Nucleosynthesis</strong> in Core-Collapse <strong>Supernova</strong>e<br />

(1) Average <strong>Neutrino</strong> Temperatures/Energies<br />

(2) -Mass Hierarchy ⊿m 13<br />

2<br />

(for known θ 13 )<br />

Normal<br />

Inverted


Number Abundance (Si = 10 6 )<br />

Solar System Abundance<br />

Big-Bang <strong>Nucleosynthesis</strong> 1,2 H, 3,4 He, 6,7 Li, etc.<br />

Stellar Fusion 12 C… 56 Fe- 58 Ni, etc.<br />

Core-Collapse SNe & AGB: 56 Fe < A<br />

Iron peak<br />

(r-nuclei)<br />

(s-nuclei)<br />

<strong>Supernova</strong><br />

-<strong>Nucleosynthesis</strong><br />

Li-Be-B<br />

r-nuclei<br />

p-nuclei<br />

92<br />

Mo, 96 Ru<br />

p-nuclei<br />

92<br />

Nb 98 Tc<br />

138<br />

La<br />

180<br />

Ta<br />

232<br />

Th (14.05Gy)<br />

238<br />

U (4.47 Gy)<br />

Cosmic Ray Spallation<br />

Li-Be-B, F, Na, etc.<br />

Mass Number A


Sneden, Cowan, Gallino, ARAA 46 (2008) 241.<br />

HST-obs., Roederer et al., ApJ 747 (2012) L8.<br />

log Fe/H<br />

Fe/H<br />

t<br />

∝<br />

10 10 y<br />

Te<br />

=<br />

-3.1<br />

-3.0<br />

-2.1<br />

-2.9<br />

-2.2<br />

Solar system<br />

-3.0<br />

Sr-Y-Zr Ba Eu Au Pb Th U<br />

Metal-poor<br />

stars<br />

UNIVERSALITY !


Z (atomic number)<br />

Initial Condition <strong>of</strong> the R-Process:<br />

g,-Disintegration <strong>of</strong> “Fe”<br />

RIKEN-RIBF<br />

2010<br />

Fe-Co-Ni are<br />

g,-disintegrated!<br />

Rapid Nautron-Capture Process<br />

on neutron-rich nuclei in SNe<br />

n


Proton Number Z<br />

<strong>Supernova</strong><br />

<strong>Nucleosynthesis</strong><br />

Simulation<br />

T. Kajino & S. Chiba<br />

-Pair Heated Collapsar Model<br />

K. Nakamura, et al. ApJ (2012).<br />

235<br />

U<br />

208<br />

Pb<br />

184<br />

56<br />

Fe<br />

126<br />

82<br />

20 28<br />

50<br />

Neutron Number N


R-process <strong>Nucleosynthesis</strong><br />

K. Nakamura, S. Sato, S. Harikae, T. Kajino <strong>and</strong> G.J. Mathews (2012), submitted to ApJ.<br />

T e = 3.2 MeV < T e = 4 MeV<br />

Neutron-rich condition for successful r-process:<br />

0.2 < Y e < 0.48<br />

Sr-Y-Zr<br />

I-Xe<br />

Ir-Pt<br />

Theoretical model<br />

Dy-Er<br />

Pb<br />

Observed<br />

Solar r-abundance


Identified Important Reaction Flow Paths<br />

Utsunomiya et al.<br />

PRC63 (2001), 018801<br />

35% (1s)<br />

(3)<br />

(1)<br />

Hashimoto et al., PL B674 (2009) 276.<br />

LaCognata et al., PL B664 (2008), 157.<br />

Factor 2 ~ 4 different ! (1s)<br />

(2)<br />

Brune et al., PRC (1995)<br />

35% (1s)


7<br />

Li(n,g) 8 Li(a,n) 11 B<br />

LaCognata et al., ApJ 706 (2009) L251.<br />

• 8 Li(a,n) 11 B<br />

Discrepancy<br />

Inclusive Data >> Exclusive Sum<br />

LaCognata et al., Phys. Lett. B664 (2008), 157.<br />

Boyd et al. Phys. Rev. Lett. 68 (1992), 1283.<br />

Gu et al., Phys. Lett. B343 (1995), 31.<br />

Ishiyama et al., Phys. Lett. B640 (2006), 82.<br />

Hashimoto et al., Phys. Lett. B674 (2009), 276.<br />

8<br />

Li+a<br />

Inclusive data<br />

11<br />

B*<br />

11<br />

B gr + n<br />

Exclusive Sum


log (Abundance)<br />

NON-LINEAR Effect <strong>of</strong> “a-process-r-process”<br />

(1) a(an, g) 9 Be<br />

(2) (3) a(t, g) 7 Li(n, g) 8 Li(a, n) 11 B<br />

x 2 artificial change<br />

rates x 1<br />

~ 100<br />

rates x 2<br />

< 1000<br />

Mass Number A


Tantalum( 180,181 Ta)<br />

181<br />

Ta g (stable), 180 Ta g (unstable, 1/2 = 8h), 180 Ta m (isomer, 1/2 > 10 15 y)<br />

The rarest isotope in the Universe!<br />

Origin <strong>of</strong> 180 Ta was unknown.<br />

“SN -process”, overproduces 180 Ta !<br />

p process<br />

Burbidge 2 -Fowler-Hoyle,<br />

Rev. Mod. Phys. 29<br />

(1957), 547-650.<br />

“Element Genesis”<br />

Neutral current<br />

in <strong>Supernova</strong>e<br />

r process<br />

(1990)<br />

J. Burbidge<br />

M. Burbidge<br />

W. Fowler<br />

F. Hoyle


Excitatoin Energy<br />

180<br />

Ta-genesis needs Quantum Phys. + SN Hydro-dyn.<br />

Solar- 180 Ta is all “ISOMER” with T 1/2 > 10 15 y!<br />

- Long lived 180 Ta m is excited in hot SN-photon bath.<br />

- Intermediate states are depopulated to the ground state,<br />

which decays in 8 hours.<br />

We solved dynamical “explosive SN-nucleosynthesis” coupled with<br />

“quantum transitions” simultaneously. (Hayakawa, et al. 2010, PR C81,<br />

052801®; PR C82, 058801)<br />

Photons<br />

Plan<br />

Distribution<br />

Planckian<br />

Distribution<br />

Intermediate states<br />

Intermediate States<br />

Intermediate<br />

states<br />

Photon Flux<br />

K=1 K = 1<br />

1 + 180<br />

Ta0<br />

180<br />

Ta g<br />

Ground St.<br />

K=9 K = 9<br />

T 1/2<br />

=8.15 h<br />

9 - 75.3<br />

T 1/2 > 10 15 y<br />

T 1/2<br />

> 10 15 y<br />

Isomer<br />

180<br />

Ta m : solar abundance


-Process <strong>and</strong> Structure <strong>of</strong> 180 Ta<br />

Saitoh et al. (NBI group), NPA 1999, +<br />

Dracoulis et al. (ANU group), PRC 1998, +<br />

J = Total Quantum<br />

Number<br />

Linking transitions<br />

between K = 1 <strong>and</strong> 9 b<strong>and</strong>s<br />

are extremely weak.<br />

K=9<br />

K Quantum<br />

gr. state 1 + isomer 9 - Excitation Energy [MeV]<br />

Number<br />

K=1<br />

D. Belic et al., PR C65 (2002), 035801.<br />

g i /g 0 G i G 0 /G tot


7<br />

7<br />

6<br />

6<br />

5<br />

5<br />

4<br />

4<br />

3<br />

3<br />

2<br />

2<br />

1<br />

1<br />

Result from<br />

-<strong>Nucleosynthesis</strong><br />

138La 138La 138La<br />

180Ta 180Ta<br />

180Ta<br />

180Ta isomer<br />

180Ta<br />

Heger et al. PLB606, 258 (2005)<br />

(Overproduction)<br />

(Our new result)<br />

T. Hayakawa, T. Kajino, S. Chiba, <strong>and</strong><br />

G.J. Mathews, Phys. Rev. C81 (2010), 052801®<br />

About 40% 180 Ta m<br />

survives in supernova<br />

explosion.<br />

Then, both 138 La <strong>and</strong><br />

180<br />

Ta abundances<br />

can be consistently<br />

reproduced by the<br />

CC-int. <strong>of</strong> e <strong>and</strong> e <strong>of</strong><br />

T e = 3.2 MeV,<br />

T e = 4 MeV.<br />

0<br />

0<br />

solar<br />

system<br />

gamma<br />

gamma<br />

only<br />

only<br />

nc 6MeV cc 4MeV cc 6MeV cc 8MeV<br />

nc<br />

6MeV<br />

cc<br />

4MeV<br />

cc<br />

6MeV<br />

cc<br />

8MeV<br />

Consistent with<br />

the r-process !


Various roles <strong>of</strong> ’s in SN-nucleosynthesis<br />

8<br />

p-process<br />

92<br />

Mo, 96 Ru<br />

8<br />

MSW high-density resonance<br />

at r ~ 10 3 g/cm 3<br />

<br />

e<br />

NS<br />

Si<br />

Layer<br />

R-process:<br />

Heavy Nuclei<br />

Explo. Si-burn.<br />

Fe-Co-Ni,<br />

60<br />

Co, 55 Mn, 51 V …<br />

-process<br />

180<br />

Ta, 138 La, 92 Nb, 98 Tc …<br />

-process:<br />

6,7<br />

Li, 9 Be, 10,11 B …


Galactic Chemical Evolution <strong>of</strong> 9 Be & 10,11 B<br />

Livermore Model<br />

T , = 8 MeV<br />

Woosley -Weaver 1995, ApJS 101, 181.<br />

s ∝ E <br />

2<br />

T , = 6 MeV<br />

Consistent with SN1987A<br />

Overproduction problem is resolved!<br />

Yoshida, Kajino & Hartmann 2005,<br />

PRL 94 (2005), 231101.<br />

16<br />

17<br />

OLD stars<br />

SUN<br />

9<br />

Be:<br />

-Galactic Cosmic Rays<br />

10+11<br />

B + 11 B:<br />

-Galactic Cosmic Rays<br />

-<strong>Supernova</strong> -process<br />

Yoshii, Kajino, Ryan, 1997, ApJ 486, 605.<br />

Ryan, Kajino, Suzuki, 2001, ApJ549, 55.


SN1987A constraint<br />

on E ,tot & Grav. Energy<br />

SN-Boron calculations <strong>and</strong><br />

constraints on SN- <br />

Woosley & Weaver<br />

ApJS 101 (1995), 181.<br />

T = 8 MeV<br />

GCE constraints on 11 B<br />

& meteoritic 11 B/ 10 B<br />

T = 6 MeV<br />

Yoshida, Kajino & Hartman,<br />

Phys. Rev. Lett. 94 (2005),<br />

231101.<br />

Consistent with<br />

recent numerical<br />

simulation by<br />

Thomas-Janka<br />

et al. (MPA group)<br />

2004-2011.


( ) / <br />

-temperatures are known!<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

<strong>Supernova</strong> -Process to estimate T , <strong>and</strong> T <br />

R-process, 180 Ta/ 138 La<br />

Astron. GCE <strong>of</strong> 11 B & 11 B/ 10 B<br />

e<br />

T( e ) < T( e ) < T( x )<br />

e<br />

3.2 4.0 6.0<br />

MeV<br />

T e = 3.2 MeV, T e = 4 MeV<br />

T , = T = 6 MeV<br />

0.05<br />

, , ,<br />

0<br />

0 10 20 30 40 50 60<br />

(MeV)


-A reaction cross sections?<br />

Haxton’s SM cal. (Woosley et al. ApJ. 356 (1990), 272)<br />

Suzuki’s new SM cal. with NEW Hamiltonian<br />

Suzuki, Chiba, Yoshida, Kajino & Otsuka, PR C74 (2006), 034307.<br />

Suzuki, Fujimoto & Otsuka, PR C67, 044302 (2003)<br />

12<br />

C: New Hamiltonian = Spin-isospin flip int. with<br />

tensor force to explain neutron-rich exotic nuclei.<br />

- -moments <strong>of</strong> p-shell nuclei<br />

- GT strength for 12 C 12 N, 14 C 14 N, etc. (GT)<br />

- DAR (,’), (,e-) cross sections<br />

Cheoun et al., PRC81 (2010), 028501; J. Phys. G37 (2010) 055101: QRPA Cal.<br />

SFO<br />

12<br />

C( e ,e - ) 12 N<br />

12<br />

C( e ,e - ) 12 N(gs,1 + ) GT


- 180 Ta, 138 La, 92 Nb, 42 Ca, 12 C, 4 He… X-sections<br />

in Quasi-particle R<strong>and</strong>om Phase Approximation (QRPA)<br />

Cheoun, Ha, Hayakawa, Kajino & Chiba, PRC82 (2010), 035504;<br />

Cheoun, Ha, Kim, & Kajino, J. Phys. G37 (2010) 055101; Cheoun, Ha & Kajino,<br />

PRC 83 (2011), 028801<br />

GT + Spin-Multipole transitions !<br />

181<br />

Ta + → 180 Ta + n + ’ (NC)<br />

180<br />

Hf + → 180 Ta + e - (CC)<br />

Total sum<br />

Total sum<br />

GT<br />

Spin-Mutipole<br />

GT<br />

Spin-Mutipole


Counts<br />

● -beam is not yet available !<br />

● EM-PROBE (CEX hadrons, g’s) !<br />

c.f. Harakeh, Shima<br />

Similarity between Electro-Magnetic & Weak Interactions<br />

58<br />

Ni( 3 He, t) 58 Cu<br />

E = 140 MeV/u<br />

Y. Fujita et al., EPJ A 13 (’02) 411.<br />

Y. Fujita et al., PRC 75 (’07)<br />

58<br />

Ni(p, n) 58 Cu<br />

E p = 160 MeV<br />

J. Rapaport et al., NPA (‘83)<br />

EM-current = V, Weak-current = V - A<br />

IV i gV<br />

V gV<br />

s q ( p p')<br />

2m<br />

2m<br />

A<br />

g<br />

A<br />

s<br />

Weak operator in non-relativistic limit<br />

Gamow-Tellar operator =<br />

Spin-Multipole operator =<br />

s <br />

<br />

<br />

J J<br />

[<br />

[ s r Y r (L) ] ] <br />

0 2 4 6 8 10 12 14<br />

Excitation Energy (MeV)<br />

Charge-Exchange Reaction<br />

Photo-induced Reaction


Double b decay - mass - Astro-Cosmology Connection<br />

K. Yako et al., PRL 103 (2009) 012503.<br />

Experiment<br />

(RCNP, Osaka)<br />

Shell model (theory)


<strong>Neutrino</strong> Mass in <strong>Physics</strong> & Cosmology<br />

0bb<br />

COUORE:<br />

|∑U 2 ebm b | < 0.3 eV<br />

CMB Anisotropies + LSS<br />

Σm ν < 0.28 eV (95% C.L.): WMAP-7yr +SPT (Benson et al. arXiv:1112.5435)<br />

< 0.36 eV (95%C.L.): WMAP-7yr + HST + CMASS (Putter et al. arXiv:1201.1909)<br />

Recent more complete analysis:<br />

Cosamic Magnetic Field + <strong>Neutrino</strong> Mass<br />

(+ SZ effect + integrated SW effect<br />

+ <strong>Neutrino</strong> free streaming)<br />

∑ m < 0.2 eV (2s, B


<strong>Oscillation</strong> (MSW) Effect on <strong>Supernova</strong> -Process<br />

SN II: Yoshida, Kajino & Hartman, Phys. Rev. Lett. 94 (2005), 231101.<br />

SNIc + II: Nakamura, Yoshida, Shigeyama, Kajino, ApJL 718 (2010), L137.<br />

<br />

Abundance X A<br />

<br />

~85%<br />

~15%<br />

MSW high-density resonance<br />

Suzuki, Chiba, Yoshida,<br />

Kajino & Otsuka, PRC74<br />

(2006), 034307<br />

x → e


SN-<strong>Neutrino</strong> <strong>Oscillation</strong> (MSW) Effect on -Process<br />

Adiabatic<br />

Conversion Probability<br />

Non-Adiabatic<br />

e<br />

e<br />

<br />

<br />

<br />

e<br />

<br />

<br />

e<br />

Center Radius/R sun Center Radius sun<br />

- sin 2 2q 13 = 0.04<br />

Parameters:<br />

25M solar SN model (Hashimoto & Nomoto 1999)<br />

- ⊿m 13<br />

2<br />

= 2.4x10 -3 eV 2<br />

- L = 3x10 53 erg, = 3 sec Fermi-Dirac distr. <strong>of</strong> -spectrum,<br />

so that the observed 11 B abundance<br />

- E e =12MeV, E e =20MeV, E =24MeV in <strong>Supernova</strong> <strong>Nucleosynthesis</strong> is reproduced.


Mass Fraction<br />

Mass Fraction<br />

SN <strong>Nucleosynthesis</strong> with <strong>Neutrino</strong> <strong>Oscillation</strong>s<br />

<strong>Supernova</strong> nucleosynthesis (-process)<br />

16.2 M star supernova model corresponding to SN 1987A<br />

Normal mass hierarchy, sin 2 2q 13 = 0.01<br />

10 -7<br />

O-rich O/C He/C He/N<br />

7 Be<br />

mix 7 Li<br />

10 -6<br />

O-rich O/C He/C He/N<br />

11 B<br />

10 -8<br />

10 -7<br />

10 -9<br />

10 -6 2 3 4 5 6<br />

no mix<br />

10 -5 2 3 4 5 6<br />

10 -8<br />

11 C<br />

10 -10<br />

10 -9<br />

Mr / M<br />

Mr / M<br />

7<br />

Be, 11 C abundance Increase by a factor <strong>of</strong> 2.5 <strong>and</strong> 1.4<br />

Increase in the rates <strong>of</strong> charged-current reactions<br />

4<br />

He( e ,e - p) 3 He <strong>and</strong> 12 C( e ,e - p) 11 C in the He layer


larger effect !<br />

Yoshida, Kajino, Yokomakura, Kimura,Takamura & Hartmann,<br />

PRL 96 (2006) 09110; ApJ 649 (2006), 349.<br />

T e < T e < T , <br />

=<br />

=<br />

=<br />

3.2MeV 4.0MeV 6.0MeV<br />

smaller effect !<br />

Normal<br />

L<br />

H-Resonance<br />

m <br />

L<br />

Normal<br />

Mass Hierarchy<br />

N e<br />

Inverted<br />

Inverted<br />

m <br />

H-Resonance<br />

10 -6 10 -4 10 -2<br />

NO 13-mixing<br />

N e


Predicted 7 Li/ 11 B-Ratio<br />

Our Theoretical Prediction<br />

Yoshida, Kajino et al . 2005, PRL94, 231101;<br />

2006, PRL 96, 091101; 2006, ApJ 649, 319; 2008, ApJ 686, 448.<br />

7<br />

Li/ 11 B<br />

Normal Mass<br />

Hierarchy<br />

Excluded by T2K <strong>and</strong> MINOS ++<br />

No Mixing<br />

Inverted<br />

10 -6 10 -5 10 -4 10 -3 10 -2 10 -1<br />

Astrophysics:<br />

Mass Hierarchy<br />

⊿m 13<br />

2<br />

13-Mixing Angle<br />

q 13<br />

Long BaselineExp.<br />

in 2011:<br />

・T2K (Kamioka)<br />

・MINOS<br />

Reactor Exp. in<br />

2012:<br />

・Double CHOOZ<br />

・Daya Bay<br />

・RENO (KOREA)<br />

sin 2 2q 13<br />

sin 2 2q 13 = 0.1


T2K & MINOS results (2011)<br />

Sin 2 2q 23 =1<br />

Mass hierarchy is still unknown !<br />

sin 2 2q 13 = 0.1


RENO, Daya Bay <strong>and</strong> Double Chooz results (2012)<br />

Measuring q 13 with<br />

Reactor Anti-neutrinos<br />

sin 2 2q 13 = 0.103+-0.013(st)<br />

+-0.011(sys)<br />

→ q 13 = 8.88 deg<br />

Small-amplitude<br />

oscillation due to q 13<br />

integrated over E<br />

q 13<br />

Large-amplitude<br />

oscillation due to q 12<br />

Reactor neutrino energies are<br />

too low to produce muons.<br />

Hence this is an antineutrino<br />

disappearance experiment<br />

(also no matter effects).<br />

~1-1.8 km<br />

> 0.1 km<br />

m 2 13≈ m 2 23<br />

detector 1 detector 2<br />

Mass hierarchy is still unknown !


Mass Hierarchy, Normal or Inverted ?<br />

Mathews, Kajino, Aoki <strong>and</strong> Fujiya, Phys. Rev. D85,105023 (2012).<br />

Predicted 7 Li/ 11 B-Ratio<br />

Normal Mass<br />

Hierarchy<br />

Excluded by T2K, MINOS, RENO,<br />

Daya Bay & Double Chooz<br />

Excluded by<br />

SiC X-Grains<br />

First Detection <strong>of</strong> 7 Li/ 11 B<br />

W. Fujiya, P. Hoppe, <strong>and</strong><br />

U. Ott, ApJ 730, L7 (2011).<br />

11<br />

B <strong>and</strong> 7 Li were measured<br />

in SiC presolar<br />

X-grains which are made<br />

<strong>of</strong> <strong>Supernova</strong> dusts.<br />

Inverted Mass<br />

Hierarchy<br />

“Inverted Mass Hierarchy”<br />

is more preferred !


Murchison SiC X-grains<br />

SiC X grains exhibit<br />

- 12 C/ 13 C > Solar<br />

- 14 N/ 15 N < Solar<br />

- Enhanced 28 Si<br />

- Decay <strong>of</strong> 26 Al (t 1/2 = 7x10 5 yr)<br />

& 44 Ti (t 1/2 = 60 yr)<br />

Originates from Core Collapse <strong>Supernova</strong>e


<strong>Supernova</strong> ν-nucleosynthesis<br />

is a weakly-interacting process, <strong>and</strong><br />

preturbative treatment is possible!<br />

Nucleosynthetic yields for various physical conditions<br />

(stellar mass, explosion energy, decay time <strong>of</strong> neutrino<br />

luminosity, etc.) are averaged over IMF <strong>of</strong> stellar birth rate<br />

to compare with observed abundance yields.<br />

(Claim by Austin, Heger & Tur, PRL 106 (2011), 152501 )<br />

-nucleosynthesis in well studied SN1987A<br />

model can scale to various SN models:<br />

- T. Shigeyama & K. Nomoto 1990, ApJ 360, 242.<br />

- R. H<strong>of</strong>man, S. Woosley & A.A. Weaver 2001,<br />

ApJ 549, 1085; T. Rauscher, A. Heger,<br />

R. H<strong>of</strong>man & S.E. Woosley 2002, ApJ 576, 323.


<strong>Neutrino</strong> Hamiltonian: H tot = H + H <br />

H = Mixing <strong>and</strong> Interaction with Background Electrons<br />

MSW (Matter) Effect: Mikeheev-Smirnov-Wolfebstein (1978, 1985)<br />

p 1 e<br />

p 1 x<br />

H = Self-Interaction<br />

Self-Interaction<br />

x<br />

N e = electron density<br />

p 1 e p 2 e<br />

p 2 x<br />

p 1 x<br />

Quest for EXACT Many-Body SOLUTION !<br />

“Invariants <strong>of</strong> collective neutrino oscillations”<br />

Y. Pehlivan, A.B. Balantekin, T. Kajino & T. Yoshida<br />

Phys. Rev. D84, 065008 (2011)


self-interaction (Quantum Effect)<br />

neutrino-phere<br />

H. Duan, G.M. Fuller, J. Carlson, Y.-Z. Qian,<br />

PRL 97 (2006), 241101.<br />

G. Fogli, E. Lisi, A. Marrone, & A. Mirizzi,<br />

JCAP 12, (2007) 010.<br />

A. B. Balantekin, Y. Pehlivan, J. Phys.G34, (2007) 47.<br />

r = 200km<br />

Swapping !<br />

High-energy


CONCLUSION<br />

We propose a new astrophysical method to determine<br />

the unknown -mass hierarchy m 13<br />

2<br />

in terms <strong>of</strong> the<br />

supernova -nucleosynthesis by taking account <strong>of</strong> the MSW<br />

effects.<br />

Combining the recent detection <strong>of</strong> 7 Li/ 11 B isotopic ratio<br />

measured in presolar <strong>Supernova</strong> X-grains <strong>and</strong> the q 13 value<br />

determined from the long-baseline <strong>and</strong> reactor neutrinooscillation<br />

experiments, we can conclude that the “inverted<br />

mass hierarchy” is statistically more preferred.<br />

We need to study the neutrino-nucleus cross sections <strong>and</strong><br />

the nature <strong>of</strong> neutrino oscillation due to the MSW matter<br />

effects <strong>and</strong> the effects <strong>of</strong> self interactions.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!