21.11.2014 Views

Session 3 - Tamil Nadu Agricultural University

Session 3 - Tamil Nadu Agricultural University

Session 3 - Tamil Nadu Agricultural University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

GREEN SUPER RICE (GSR)<br />

BREEDING TECHNOLOGY:<br />

ACHIEVEMENTS & ADVANCES<br />

Drought tolerance Screening<br />

Jauhar Ali<br />

Plant Breeder, Senior Scientist I<br />

GSR Project Leader &<br />

Regional Project Coordinator (Asia) GSR<br />

PBGB, IRRI


Why GSR?<br />

• Food Security –threat-2008-global<br />

village concept<br />

• Stable sustainable yields using lesser<br />

inputs-farmer practice-rainfed &<br />

irrigated<br />

• Diseases & Insect pest threats-high<br />

input environments<br />

• Caring for environment-pollution of<br />

water systems-chemical residues


What is “GSR” ?<br />

Rice cultivars that produce higher and more stable yields<br />

with lesser inputs (water, fertilizers and pesticides)<br />

High yielding GSR cultivars with “Green” traits:<br />

Resistances/ tolerances to:<br />

Abiotic stresses: Drought, salinity, alkalinity, iron toxicity, etc.<br />

Diseases:<br />

Blast, bacterial blight, sheath blight, viruses,<br />

and false smut etc<br />

Insects:<br />

Brown plant hopper, Green leaf hopper, etc<br />

Grain quality<br />

Mostly in elite RP background- later in RP-NARES<br />

High resource-use efficiency: Water and nutrients (N P K)<br />

• TEST SITES: AFRICA & ASIA=15countries<br />

Asia: Cambodia,Indonesia,Laos,Vietnam,Bangladesh,Pakistan,Sri Lanka<br />

Africa: Liberia, Mali, Mozambique, Nigeria, Rwanda, Senegal, Tanzania, Uganda<br />

China: Guangxi,Guizhou,Suchuan,Yunnan<br />

GSR Materials given to NARES=Hybrids(193) + Inbreds (152)<br />

Less inputs, more production & environment sustainability


Li, Z.K. and Xu, J.L. (2007) “Advances in Molecular Breeding Toward<br />

Drought and Salt Tolerant Crops” Springer pp. 531-565.<br />

Ali et al (2006) FCR 97:66-76<br />

Development of GSR materials by designed QTL pyramiding (DQP)<br />

strategy for select target component traits for a given ecosystem<br />

RP (3) x donors(205) F 1 s x RP BC 1 F 1 s x RP<br />

Self and bulk<br />

harvest<br />

~25 BC 2 F 1 s/donor x RP<br />

x<br />

Bulk BC 2 F 2 populations<br />

1, 2, 3, 4, 5, 6, ……<br />

BC 3 F 1 s x RP<br />

Self and bulk<br />

x<br />

harvest<br />

BC 3 F 2 populations<br />

1, 2, 3, 4, 5, 6, ……<br />

Screening for target traits such as tolerances to<br />

drought, salinity, submergence, anaerobic<br />

germ., P & Zn def., BPH, etc.<br />

Selection for target traits<br />

and backcrossing<br />

BC 4 F 1 s<br />

x<br />

BC 4 F 2 s<br />

Confirmation of the selected traits by replicated phenotyping<br />

and genotyping of ILs for gene/QTL identification<br />

Crosses made between sister ILs<br />

having unlinked desirable genes/<br />

QTLs for target ecosystem<br />

DQP &MAS for pyramiding desirable<br />

genes/QTLs and against undesirable donor<br />

segments for target ecosystem<br />

Development of GSR materials with improved target traits for wide scale<br />

testing in different ecosystems and its release.<br />

NILs for individual genes/QTLs for functional genomic studies


Development of ILS for different abiotic and<br />

biotic stress tolerances at IRRI<br />

Z.K. Li et al (2005) PMB 59:33-52; Ali et al (2006) FCR 97:66-76


Hidden diversity for abiotic and biotic<br />

tolerance in the primary gene pool of rice<br />

• Tremendous amounts of hidden diversity-BC progenytransgressive<br />

-target traits-regardless of donor performance-severe<br />

stress screening<br />

• Common to identify in BC progeny-extreme phenotypes (tolerances)<br />

• Selection efficiency –highly dependent upon background<br />

• Selection efficiency-affected by level of stress applied<br />

• Selection efficiency for different target traits vary in BC generations.<br />

• More distantly related donors, particularly landraces, tend to give more<br />

transgressive segregations for complex phenotypes in the BC<br />

progenies.<br />

• Wide presence and random distribution of stress tolerance genes in<br />

primary gene pool of rice –good news for rice breeders<br />

Yu et al (2003) TAG 108:131-140; Ali et al (2006) FCR 97:66-76


Donors that gave better results with varying<br />

recurrent parental backgrounds<br />

S.No.<br />

ST<br />

ZDT<br />

AG<br />

SUBT<br />

LTG<br />

BPH<br />

MULTI-<br />

TRAITS<br />

FAVOURABLE DONORS (VARY ACCORDING TO RP)<br />

OM1706,OM1723,FR13A,NAN29-2,BABOAMI, KHAZAR<br />

TKM9,HEI-HE-AI-HUI(HHAH),JIANGXI-SI-MIAO(JSM), KHAZAR, MADHUKAR,<br />

SHWE-THWE-YIN-HYE (STYH), BASMATI385, IKSAN438, YU-QIU-GU, TETEP,<br />

NIPPONBARE, CO43, RASI, YUNHUI, BG304,BR24, FR13A GAYABYEO<br />

Y134,TKM9,KHAZAR,GAYABYEO,STYH,NAN29-2,<br />

BABOAMI,JSM,FR13A,OM1706<br />

CISEDANE,FR13A,IR50,NAN29-2,OM1706,STYH,TAROM MOLAEI,TKM9,Y134<br />

NAN29-2,GAYABYEO<br />

JSM,BABOAMI,TKM9,BG300,C418,LEMONT,MADHUKAR,MR167,OM1706,STYH,<br />

Y134<br />

BABOAMI, GAYABYEO, SHWE-THWE-YIN-HYE (STYH), NAN29-2, FR13A,<br />

OM1706, KHAZAR, JIANGXI-SI-MIAO<br />

Ali et al (2006) FCR 97:66-76


Experiment set I<br />

Experiment set II<br />

Experiment set III<br />

Designed QTL pyramiding experiments<br />

IR64 x BR24<br />

F 1<br />

x IR64<br />

BC 2 F 2<br />

IR64 x Binam<br />

F 1 x IR64<br />

BC 2 F 2<br />

IR64 x STYH<br />

F 1 x IR64<br />

BC 2 F 2<br />

IR64 x OM1723<br />

F 1<br />

x IR64<br />

BC 2 F 2<br />

IR64 x Type3<br />

13 BC 2 F 2 populations screened under two types of severe drought, resulting in 221 survived<br />

DT BC 2 F 3 introgression lines (ILs), which were genotyped with SSR markers<br />

F 1<br />

x IR64<br />

BC 2 F 2<br />

IR64 x HAN<br />

F 1<br />

x IR64<br />

BC 2 F 2<br />

IR64 x Zihui100<br />

F 1<br />

x IR64<br />

BC 2 F 2<br />

IL 1 x IL 2<br />

F 1<br />

X<br />

IL 3 x IL 4<br />

F 1<br />

X<br />

IL 7 x IL 15<br />

F 1<br />

X<br />

9 1 st round pyramiding<br />

F 2 populations from<br />

crosses between 15 ILs<br />

F 2<br />

F 2<br />

F 2<br />

Screened under severe drought at the reproductive stage, resulting in 455 survived<br />

DT F 2 plants, which were progeny tested and genotyped with SSR markers<br />

(PL 1 , PL 2 , PL 3 ) x (PL 4 , PL 5 , PL 6 , PL 7 , PL 8 )<br />

F 1 s<br />

X<br />

F 2 s<br />

14 2 nd round pyramiding F 2<br />

populations from crosses<br />

between 8 1 st round PLs<br />

Screened under severe drought at the reproductive stage and 667 survived<br />

DT F 3 lines were progeny tested and genotyped with SSR markers


Putative genetic networks identified in 455 DT PLs derived<br />

from 9 crosses between DT IR64 ILs<br />

A:<br />

Drought<br />

B:<br />

Drought<br />

I: Drought<br />

AG 1-1 (7)<br />

1.00<br />

AG 2-1 (5)<br />

0.994<br />

AL 9-1 (3)<br />

1.000<br />

AG 1-2 (7)<br />

0.979<br />

RM347<br />

(3.8)<br />

0.691<br />

RM561<br />

(2.6)<br />

0.618<br />

RM342<br />

(8.5)<br />

0.673<br />

AG 2-2 (6)<br />

0.891<br />

RM309<br />

(12.5)<br />

0.927<br />

RM469<br />

(6.1)<br />

0.818<br />

RM575<br />

(1.4)<br />

0.745<br />

RM179<br />

(12.3)<br />

0.727<br />

RM211<br />

(2.2)<br />

0.800<br />

RM350<br />

(8.4)<br />

0.800<br />

AG 9-5 (3)<br />

0.553<br />

AG 9-2 (2)<br />

0.915<br />

AG 9-4 (5)<br />

0.500<br />

RM152<br />

(8.1)<br />

0.930<br />

RM215<br />

(9.7)<br />

0.870<br />

RM554<br />

(3.7)<br />

0.700<br />

RM109<br />

(2.1)<br />

0.617<br />

AG 1-3<br />

(13)<br />

0.748<br />

AG 1-4<br />

(4)<br />

0.688<br />

AG 1-5<br />

(5)<br />

0.726<br />

RM418<br />

(7.3)<br />

0.717<br />

RM179<br />

(12.3)<br />

0.607<br />

RM202<br />

(11.3)<br />

0.745<br />

RM463<br />

(12.5)<br />

0.745<br />

RM544<br />

(8.2)<br />

0.727<br />

RM215<br />

(9.8)<br />

0.527<br />

AG 9-3(24)<br />

0.870<br />

RM446<br />

(1.6)<br />

0.830<br />

D:<br />

Drought<br />

E:<br />

Drought<br />

G:<br />

Drought<br />

AG 4-1<br />

(6)<br />

RM543<br />

(1.1)<br />

1.000<br />

AG 7-1 (18)<br />

1.00<br />

RM271<br />

(10.4)<br />

AG 4-2<br />

(4)<br />

RM23<br />

(1.5)<br />

AG 4-3<br />

(4)<br />

RM433<br />

(8.7)<br />

0.867<br />

AG 5-1 (12)<br />

0.711<br />

RM401<br />

(4.1)<br />

0.733<br />

AG 5-4 (2)<br />

0.767<br />

RM298<br />

(7.1)<br />

0.767<br />

AG 5-2 (9)<br />

0.809<br />

RM53<br />

(2.3)<br />

0.833<br />

RM85<br />

(3.12)<br />

AG7-5<br />

(2)<br />

RM286<br />

(11.1)<br />

AG7-3<br />

(16)<br />

RM44<br />

(8.3)<br />

AG 7-2<br />

(2)<br />

RM469<br />

(6.1)<br />

RM289<br />

(5.3)<br />

RM516<br />

(5.3)<br />

AG7-7<br />

(2)<br />

RM245<br />

(9.8)<br />

RM36<br />

(3.3)<br />

RM18<br />

(7.6)<br />

RM215<br />

(9.8)<br />

RM544<br />

(8.3)<br />

RM272<br />

(1.3)<br />

RM179<br />

(12.3)<br />

RM441<br />

(11.2)<br />

AG4-4<br />

(3)<br />

RM220<br />

(1.2)<br />

RM222<br />

(10.1)<br />

0.567<br />

RM270<br />

(12.6)<br />

0.567<br />

RM17<br />

(12.7)<br />

0.500<br />

RM424<br />

(2.5)<br />

0.667<br />

RM244<br />

(10.1)<br />

0.583<br />

RM101<br />

(12.4)<br />

0.766<br />

AG 5-3(2)<br />

0.525<br />

RM248<br />

(7.7)<br />

0.500<br />

RM275 RM294B RM224 RM110 RM435<br />

(6.6) (1.6) (11.7) (2.1) (6.1)<br />

AG7-4<br />

(7)<br />

RM13<br />

(5.2)<br />

RM5<br />

(1.7)<br />

RM30 RM465A<br />

(6.8) (2.5)<br />

F:<br />

Drought<br />

H:<br />

Drought<br />

AG 6-1 (8)<br />

1.000<br />

AG 6-2 (5)<br />

0.967<br />

RM307<br />

(2.1)<br />

RM446<br />

(1.6)<br />

RM5<br />

(1.7)<br />

RM535<br />

(2.12)<br />

RM331<br />

(8.4)<br />

AG 8-1 (26)<br />

1.00<br />

RM197<br />

(6.1)<br />

RM449<br />

(1.6)<br />

RM481<br />

(7.1)<br />

RM32<br />

(8.3)<br />

RM448<br />

(3.10)<br />

C:<br />

Drought<br />

AG 3-1 (4)<br />

1.00<br />

RM51<br />

(7.1)<br />

0.833<br />

AG 6-3<br />

(12)<br />

0.894<br />

AG 6-4<br />

(2)<br />

0.772<br />

RM44<br />

(8.3)<br />

0.633<br />

RM235<br />

(12.6)<br />

0.667<br />

RM14<br />

(1.13)<br />

RM211<br />

(2.2)<br />

RM154 RM317 RM562<br />

(2.1) (4.6) (1.6)<br />

AG8-3<br />

(3)<br />

AG8-4<br />

(3)<br />

RM589<br />

(6.1)<br />

AG8-5<br />

(2)<br />

RM30<br />

(6.7)<br />

RM547<br />

(8.3)<br />

AG8-2<br />

(2)<br />

RM275 RM335<br />

(6.5) (3.12)<br />

RM143<br />

(3.12)<br />

RG8-6<br />

(2)<br />

AG 3-3<br />

(3)<br />

0.736<br />

AG 3-2<br />

(4)<br />

0.855<br />

RM302<br />

(1.10)<br />

0.782<br />

RM172<br />

(7.7)<br />

0.727<br />

RM20<br />

12.1<br />

0.567<br />

RM258<br />

(10.4)<br />

RM246<br />

(1.8)<br />

RM169<br />

(5.3)<br />

RM245<br />

(9.8)<br />

Li et al 2012 unpubl.


Ch.1 Ch.2<br />

Ch.3 Ch.4 Ch.5 Ch.6<br />

RM499<br />

RM462<br />

RM428<br />

RM10287<br />

RM323<br />

RM84<br />

RM220<br />

RM86<br />

RM283<br />

RM522<br />

RM1<br />

RM272<br />

RM490<br />

RM575<br />

RM576<br />

RM259<br />

RM243<br />

RM583<br />

RM600<br />

RM572<br />

RM581<br />

RM580<br />

RM23<br />

RM129<br />

RM329<br />

RM446<br />

RM562<br />

RM594<br />

RM9<br />

RM5<br />

RM306<br />

RM488<br />

RM237<br />

RM246<br />

RM473A<br />

RM11570<br />

RM403<br />

RM128<br />

RM302<br />

RM212<br />

RM319<br />

RM265<br />

RM297<br />

RM315<br />

RM472<br />

RM431<br />

OSR23<br />

RM14<br />

RM436<br />

RM51<br />

RM481<br />

RM125<br />

RM180<br />

RM501<br />

OSR22<br />

RM214<br />

RM418<br />

RM432<br />

RM11<br />

RM346<br />

RM182<br />

RM336<br />

RM10<br />

RM351<br />

RM455<br />

RM505<br />

RM234<br />

RM18<br />

RM172<br />

RM248<br />

Ch.7<br />

Bin1.1<br />

Bin1.2<br />

Bin1.3<br />

Bin1.4<br />

Bin1.5<br />

Bin1.6<br />

Bin1.7<br />

Bin1.8<br />

Bin1.9<br />

Bin1.10<br />

Bin1.11<br />

Bin1.12<br />

Bin1.13<br />

Bin7.1<br />

Bin7.2<br />

Bin7.3<br />

Bin7.4<br />

Bin7.5<br />

Bin7.6<br />

Bin7.7<br />

RM109<br />

RM485<br />

RM154<br />

RM211<br />

RM236<br />

RM279<br />

RM423<br />

RM8<br />

RM53<br />

RM555<br />

RM233A<br />

RM174<br />

RM145<br />

RM71<br />

RM327<br />

RM521<br />

RM300<br />

RM324<br />

RM424<br />

RM262<br />

RM561<br />

RM341<br />

RM475<br />

RM106<br />

RM263<br />

RM526<br />

RM221<br />

RM525<br />

RM318<br />

RM450<br />

RM497<br />

RM6<br />

RM240<br />

RM530<br />

RM112<br />

RM250<br />

RM166<br />

RM197<br />

RM213<br />

RM48<br />

RM207<br />

RM266<br />

RM535<br />

RM138<br />

RM408<br />

RM506<br />

RM407<br />

OSR30<br />

RM547<br />

RM544<br />

RM25<br />

RM126<br />

RM407<br />

RM44<br />

RM72<br />

RM137<br />

RM331<br />

RM339<br />

RM342A<br />

RM515<br />

RM223<br />

RM284<br />

RM210<br />

RM556<br />

RM447<br />

RM256<br />

RM149<br />

RM60<br />

RM81B<br />

RM22<br />

RM523<br />

RM569<br />

RM231<br />

RM175<br />

RM545<br />

RM245<br />

RM517<br />

OSR13<br />

RM14963<br />

RM7<br />

RM232<br />

RM251<br />

RM282<br />

RM338<br />

RM156<br />

RM411<br />

RM487<br />

RM16<br />

RM347<br />

RM504<br />

RM203<br />

RM186<br />

RM55<br />

RM168<br />

RM416<br />

RM520<br />

RM293<br />

RM114<br />

RM130<br />

RM565<br />

RM514<br />

RM570<br />

RM227<br />

RM85<br />

RM307<br />

RM401<br />

RM537<br />

RM551<br />

RM335<br />

RM518<br />

RM261<br />

RM471<br />

RM142<br />

RM273<br />

RM252<br />

RM241<br />

RM470<br />

RM303<br />

RM317<br />

RM348<br />

RM349<br />

RM131<br />

RM280<br />

RM567<br />

RM559<br />

Ch.8 Ch.9 Ch.10 Ch.11 Ch.12<br />

RM230<br />

Bin2.1<br />

Bin2.2<br />

Bin2.3<br />

Bin2.4<br />

Bin2.5<br />

Bin2.6<br />

Bin2.7<br />

Bin2.8<br />

Bin2.9<br />

Bin2.10<br />

Bin2.11<br />

Bin2.12<br />

Bin8.1<br />

Bin8.2<br />

Bin8.3<br />

Bin8.4<br />

Bin8.5<br />

Bin8.6<br />

Bin8.7<br />

RM296<br />

RM285<br />

RM316<br />

RM23818<br />

RM444<br />

RM219<br />

RM524<br />

RM105<br />

RM321<br />

RM409<br />

RM460<br />

RM566<br />

RM434<br />

RM257<br />

RM108<br />

RM242<br />

RM278<br />

RM201<br />

RM107<br />

OSR28<br />

RM189<br />

RM215<br />

RM245<br />

RM205<br />

Bin9.1<br />

Bin9.2<br />

Bin9.3<br />

Bin9.4<br />

Bin9.5<br />

Bin9.6<br />

Bin9.7<br />

Bin9.8<br />

Bin3.1<br />

Bin3.2<br />

Bin3.3<br />

Bin3.4<br />

Bin3.5<br />

Bin3.6<br />

Bin3.7<br />

Bin3.8<br />

Bin3.9<br />

Bin3.10<br />

Bin3.11<br />

Bin3.12<br />

RM264<br />

RM281<br />

RM224<br />

Bin8.8<br />

RM144<br />

Bin11.7<br />

Genomic correspondences between FGUs identified in 150 ILs of 8 BC 2 populations,<br />

RM474<br />

RM25022<br />

RM25181<br />

RM222<br />

RM216<br />

RM239<br />

RM311<br />

RM467<br />

RM184<br />

RM271<br />

RM269<br />

RM258<br />

RM171<br />

RM304<br />

RM228<br />

RM147<br />

RM333<br />

RM496<br />

Bin4.1<br />

Bin4.2<br />

Bin4.3<br />

Bin4.4<br />

Bin4.5<br />

Bin4.6<br />

Bin4.7<br />

Bin4.8<br />

STYH segments<br />

BR24 segments<br />

OM1723 segments<br />

Binam segments<br />

200 PLs of 3 1 st round pyramiding crosses and 4 2 nd round pyramiding crosses.<br />

Li et al 2012 (unpubl)<br />

Bin10.1<br />

Bin10.2<br />

Bin10.3<br />

Bin10.4<br />

Bin10.5<br />

Bin10.6<br />

Bin10.7<br />

RM122<br />

RM153<br />

RM399<br />

RM413<br />

RM13<br />

RM267<br />

RM437<br />

RM289<br />

RM516<br />

RM169<br />

RM509<br />

RM598<br />

RM163<br />

RM164<br />

RM291<br />

RM161<br />

RM188<br />

RM19029<br />

RM233B<br />

RM421<br />

RM178<br />

RM26<br />

RM274<br />

RM87<br />

RM480<br />

RM538<br />

RM334<br />

RM181<br />

RM286<br />

RM4B<br />

RM26063<br />

RM332<br />

RM167<br />

RM120<br />

RM479<br />

RM202<br />

RM536<br />

RM260<br />

RM287<br />

RM209<br />

RM229<br />

RM457<br />

RM187<br />

RM21<br />

RM473E<br />

RM206<br />

RM254<br />

Bin5.1<br />

Bin5.2<br />

Bin5.3<br />

Bin5.4<br />

Bin5.5<br />

Bin5.6<br />

Bin5.7<br />

Bin11.1<br />

Bin11.2<br />

Bin11.3<br />

Bin11.4<br />

Bin11.5<br />

Bin11.6<br />

RM204<br />

RM540<br />

RM469<br />

RM587<br />

RM588<br />

RM190<br />

RM589<br />

RM510<br />

RM204<br />

RM585<br />

RM584<br />

RM557<br />

RM111<br />

RM225<br />

RM314<br />

RM253<br />

RM50<br />

RM549<br />

RM539<br />

RM136<br />

RM19778<br />

RM527<br />

RM3<br />

RM454<br />

RM162<br />

RM343<br />

RM528<br />

RM30<br />

RM340<br />

RM400<br />

RM439<br />

RM103<br />

RM141<br />

RM176<br />

RM494<br />

RM20A<br />

RM4A<br />

RM19<br />

RM247<br />

RM512<br />

RM179<br />

RM101<br />

RM277<br />

RM511<br />

RM519<br />

RM313<br />

RM309<br />

RM463<br />

RM235<br />

RM270<br />

RM17<br />

Bin6.1<br />

Bin6.2<br />

Bin6.3<br />

Bin6.4<br />

Bin6.5<br />

Bin6.6<br />

Bin6.7<br />

Bin6.8<br />

Bin6.9<br />

FGUs identified in cross II-1<br />

FGUs identified in cross II-2<br />

FGUs identified in cross II-3<br />

Cross III-1<br />

Cross III-2<br />

Cross III-3<br />

Cross III-4<br />

Bin12.1<br />

Bin12.2<br />

Bin12.3<br />

Bin12.4<br />

Bin12.5<br />

Bin12.6<br />

Bin12.7


Mean yield under the<br />

irrigated control (t/ha)<br />

6.5<br />

6.0<br />

5.5<br />

5.0<br />

IR64 (CK)<br />

C: 4.68±0.23<br />

VS: 1.49±0.14<br />

RS: 0.52±0.38<br />

Type II (N=5)<br />

C: 5.71±0.42<br />

VS: 1.36±0.38<br />

RS: 2.20±0.45<br />

Type IV (N=7)<br />

C: 4.66±0.48<br />

VS: 1.34±0.41<br />

RS: 1.86±0.51<br />

Type I (N=17)<br />

C: 5.76±0.53<br />

VS: 2.07±0.55<br />

RS: 1.79±0.47<br />

Type III (N=19)<br />

C: 5.06±0.47<br />

VS: 1.98±0.47<br />

RS: 1.94±0.52<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

0.0<br />

0.5<br />

0.5<br />

1.0<br />

1.0<br />

1.5<br />

1.5<br />

2.0<br />

2.0<br />

2.5<br />

2.5<br />

3.0<br />

3.0<br />

The mean yield performances (t/ha) of 48 2 nd round PLs (4 types) as<br />

compared to IR64 (CK), under the irrigated control (C), drought stresses<br />

at the vegetative (VS) and reproductive stages (RS) in the 2007 and 2008<br />

dry-season. Guan et al. 2010 JXB


Highly<br />

salinity<br />

tolerant


GSR Drought tolerant pyramided lines in IR64 background<br />

Under zero input conditions at IRRI DS2010<br />

IRRI DT Check variety<br />

IR74371-70-1-1<br />

GSR-IR83142-B-19-B


PC 2<br />

-1.0 -0.5 0.0 0.5<br />

DT PDLs AMMI-Biplot: 6 Locations -2011DS<br />

BRAC-Gaz, VAAS-Gia, VAAS-Duo, ICRR-Jak, ICRR-Teg, & IRRI-Los Banos<br />

Entry<br />

No.<br />

GSR Lines<br />

Mean<br />

(t/ha)<br />

LSD<br />

Group<br />

15 IR 83142-B-57-B 5.46 a<br />

9 IR 83141-B-17-B 5.17 b<br />

19 IR 83142-B-7-B-B 5.13 bc<br />

18 IR 83142-B-79-B 5.12 bc<br />

11 IR 83142-B-19-B 5.06 bcd<br />

5 IR 83140-B-11-B 5.05 bcde<br />

10 IR 83141-B-18-B 5.02 bcdef<br />

6 IR 83140-B-28-B 4.94 bcdefg<br />

13 IR 83142-B-21-B 4.86 cdefg<br />

12 IR 83142-B-20-B 4.79 defg<br />

14 IR 83142-B-49-B 4.78 efg<br />

16 IR 83142-B-60-B 4.75 fg<br />

20 IR 83142-B-8-B-B 4.74 g<br />

7 IR 83140-B-32-B 4.74 g<br />

3 Best Check 4.67 g<br />

8 IR 83140-B-36-B 4.32 h<br />

1 2nd Best Check 4.29 h<br />

17 IR 83142-B-61-B 4.27 h<br />

4 IR 74371-70-1-1 3.57 i<br />

2 Apo 3.53 i<br />

10amBrGa PC %<br />

1<br />

2<br />

60.9<br />

24.7<br />

2 nd 1Best 17 Check<br />

8<br />

3Best<br />

Check<br />

10dsIRig<br />

Why such yield advantages?<br />

Mean LSD<br />

Environments<br />

(t/ha) Group<br />

Designed QTL Pyramiding<br />

IRRI-Los Banos 6.55 a<br />

Possible role of Epigenetics VAAS-Gia 6.53 a<br />

10dsIcTe<br />

Selection for grain yield, higher VAAS-Duo 6.06 b<br />

spikelet fertility, deeper and thicker BRAC-Gaz 4.29 c<br />

roots esp. under reproductive -0.5 0.0 0.5 1.0<br />

ICRR-Jak 3.18 d<br />

stage DT stress<br />

ICRR-Teg PC 1<br />

2.08 e<br />

2<br />

12<br />

13<br />

4<br />

10dsIcJa 16<br />

19<br />

6<br />

18<br />

IR 1183142-B-19-B<br />

7<br />

14 IR 1583142-B-57-B<br />

9<br />

IR 583140-B-11-B<br />

20<br />

10<br />

10suVaDu 10suVaGi


Promising GSR Drought + Salinity tolerant materials tested under Iloilo during WS2010<br />

GSR entry<br />

No of<br />

panicles<br />

Plant<br />

height<br />

(cm)<br />

Maturity<br />

(days)<br />

Yield<br />

(kg/ha)<br />

%<br />

increase<br />

over<br />

FL478<br />

SES<br />

score<br />

4WAT<br />

SES<br />

score<br />

Maturity<br />

IR83140-B-11-B 16 84 116 1140 103.6 4 5<br />

IR83140-B-28-B 13 86 114 876 56.4 4 5<br />

IR83140-B-32-B 15 85 114 657 17.3 4 5<br />

FL478 11 70 111 560 0.0 5 -<br />

NSIC 222 19 83 112 147 -73.8 4 -<br />

First two nominated for NCT Philippines WS2011


Grain yield t/ha<br />

IR83140-B-11-B<br />

Untung et al (2012) unpubl.<br />

PVS Purvakarta<br />

2.5ha trial area<br />

Indonesia 8.2011<br />

Site specific nutrient management (SSNM)


Summary of GSR data received from NARES in Asia<br />

HYBRIDS<br />

INBREDS<br />

Batch 1 Batch 2 Batch 2 Batch 3 Batch 4 Batch 1 Batch 2 Batch 3 IRRI-GSR<br />

Total<br />

No. of lines 24 80 42 37 9 22 31 9 47 301<br />

IRLL, HY IRLL, HY RFLL, DT IRLL, DT,<br />

RFLL, (I & RFLL, I, RFLL (I & DT, SubT, -<br />

HT, Nuse,<br />

J) DT, T-BL, J), DT, T- ST, HY<br />

T-BB, BL,<br />

GQ BL, BB,<br />

Line composition<br />

BPH, SB<br />

TBB, HT,<br />

WT, ST,<br />

GQ<br />

Total no. of experiment reported - 15 10 21 12 16 39 31 10 154<br />

No. of location - 14 8 17 11 14 21 18 8 111<br />

Year/Season - 5 4 5 3 5 7 6 4 39<br />

No. of data sets received from<br />

NARES<br />

- 12 10 10 12 13 23 27 9 116<br />

No. of replicated data - 5 5 10 10 4 23 19 76<br />

No. of data sets usable for GxE<br />

Analysis<br />

- 3 4 10 10 3 14 14 58<br />

5 Best Entries<br />

1 - IIyou3203 HanF1-40 CXY2 HuF1-9<br />

Zonghua<br />

1<br />

Luyin 46<br />

2 - CXY2 HanF1-41 QS2 HuF1-17 HHZ SAGC-4<br />

ZH1<br />

TME8051<br />

8<br />

3 - CXY727 HanF1-27 IIyou623 HuF1-8 BD007 926 FFZ<br />

4 - ZXY673 HanF1-36 Annong5 HuF1-4 SACG-4 SAGC-08 P35<br />

5 - XYR24 HanF1-39 3LYR24 HuF1-13 RC8 SAGC-02 HHZ<br />

Mean yield across location (t/ha) 7.13 5.83 5.49 6.17 4.21 5.09 5.26<br />

Average advantage over the best<br />

check<br />

8.3% 22.1% 6.2% 28.8% -1.6% 8.7% 12.5%<br />

Yield advantage of the best entry 13.3% 26.9% 13.1% 33.5% 7.9% 12.8% 19.6%<br />

ANOVA: Pr(>F)<br />

ENV 8.808E-09 2.334E-05 5.551E-16 1.143E-10 7.674E-06


List of the nominated GSR inbreds and<br />

hybrids for NCTs in the target SSA, SEA and<br />

SA countries<br />

Type of GSR<br />

lines in NCT<br />

trials<br />

Mali<br />

Senegal<br />

Rwanda<br />

Nigeria<br />

Mozambique<br />

Tanzania<br />

Uganda<br />

Bangladesh<br />

Vietnam<br />

Sri Lanka<br />

Pakistan<br />

Cambodia<br />

Lao PDR<br />

Indonesia<br />

Philippines<br />

Inbreds<br />

Hybrids<br />

Total<br />

2 4 1 3 3 2 5 7 4 1 6 2 4 15<br />

2 4 2 3 3 3 4 8 2<br />

4 8 3 6 3 3 5 9 13 4 1 6 2 6 15<br />

• A total of 20 GSR inbreds and 21 hybrids have been nominated to the NCTs<br />

of the 8 target SSA countries;<br />

• A total of 48 inbreds and 24 hybrids have been nominated in the NCTs of 8<br />

Asian countries.


List of the promising widely adaptable GSR inbreds<br />

identified from adaptation yield trials in SSA, SEA and SA<br />

Name<br />

Cote D’ivoir<br />

Mali<br />

Rwanda<br />

Nigeria<br />

Mozambique<br />

Tanzania<br />

Uganda<br />

Bangladesh<br />

Indonesia<br />

Lao PDR<br />

Pakistan<br />

Sri Lanka<br />

Vietnam<br />

Philippines<br />

All<br />

HHZ 2 1 1 2 1 2 1 1 11<br />

Zhongzu14 2 1 1 1 1 1 7<br />

ZH1 2 1 2 1 1 1 1 9<br />

KCD1 2 1 1 1 1 1 7<br />

RC8 1 2 1 1 1 6<br />

Weed Tolerant 1 1 2 1 2 1 7<br />

HUA-565 2 2 1 5<br />

FFZ 1 1 1 1 1 5<br />

SAGC-4 2 2 1 1 1 7<br />

WX763 2 1 1 1 5<br />

HHZ developed in GAAS is a mega-variety of high yield & superior quality grown in 8 provinces of<br />

South & Central China (Guangdong, Jiangxi, Fujian, Hunan, Hubei, Anhui, Yunan and Guangxi).


The complex pedigree of Huang-Hua-Zhan<br />

(HHZ) involving 14 parents


S. C. Zhou et al., unpublished Z.K. Li et al 2012 (unpubl.)<br />

P 1 (FHZ) P 2 (HXZ) HHZ P 1 (FHZ) P 2 (HXZ) HHZ


Ch. 1<br />

Ch. 2<br />

Ch. 3<br />

Ch. 4<br />

Ch. 5<br />

Ch. 6<br />

Ch. 7<br />

Ch. 8<br />

Ch. 9<br />

Ch. 10<br />

Ch.11<br />

Chr. 12<br />

Genomic composition of the HHZ genome based on the<br />

re-sequencing data (From S. C. Zhou et al., unpublished)<br />

Each colored vertical line corresponds to a window of 10 kb. Vertical lines distribute upper side on each<br />

chromosome represent AZ haplotype blocks (red for ≥200kb AZ blocks, light red for


IRRI-GSR breeding program & strategy


Two batches of 16 populations with the recurrent parent, Huang-<br />

Hua-Zhan (HHZ) and 16 donors from 9 different countries<br />

Batch Pop. Donor Country of origin Gen.(10 DS)<br />

1 HHZ5 OM1723 Vietnam (I) BC1F5<br />

1 HHZ8 Phalguna India (I) BC1F5<br />

1 HHZ9 IR50 IRRI (I) BC1F5<br />

1 HHZ11 IR64 IRRI (I) BC1F5<br />

1 HHZ12 Teqing China (I) BC1F5<br />

1 HHZ15 PSB Rc66 Philippines (I) BC1F5<br />

1 HHZ17 CDR22 India (I) BC1F5<br />

1 HHZ19 PSB Rc28 Philippines (I) BC1F5<br />

2 HHZ1 Yue-Xiang-Zhan China (I) BC1F4<br />

2 HHZ2 Khazar Iran (J) BC1F4<br />

2 HHZ3 OM1706 Vietnam (I) BC1F4<br />

2 HHZ6 IRAT352 CIAT (upland) BC1F4<br />

2 HHZ10 Zhong 413 China (I) BC1F4<br />

2 HHZ14 R644 China (I) BC1F4<br />

2 HHZ16 IR58025B IRRI (I) BC1F4<br />

2 HHZ18 Bg304 Sri Lanka (I) BC1F4


The Introgression Breeding Procedure<br />

06WS<br />

8 HHZ BC 1 F 2 populations (08WS)<br />

08WS<br />

Yield traits<br />

DT screen<br />

ST screen<br />

SUB screen<br />

Random plants<br />

Ist round<br />

selection<br />

82HY plants<br />

109DT plants<br />

120ST plants<br />

15SUBT plants<br />

09DS<br />

2nd round<br />

selection<br />

326 Genotyping/progeny testing for all target traits<br />

326Yield 326DT screen 326ST screen 311SUB screen<br />

73HY ILs<br />

47DT ILs 78ST ILs 171SUB ILs<br />

QTL/Allelic<br />

diversity<br />

discovery<br />

for target<br />

traits<br />

09WS<br />

3rd round<br />

selection<br />

10DS<br />

Selections can<br />

be continued if<br />

certain lines<br />

segregating<br />

10WS/11DS<br />

369Genotyping/progeny testing for all target traits<br />

108Preliminary yield trials under DT, low input, NC<br />

68Promising ILs<br />

68 Replicated<br />

yield trials<br />

3Demo<br />

2NCT &<br />

29 MET for 11WS<br />

~80 promising ILs as<br />

parents for designed<br />

QTL pyramiding<br />

Confirming genetic<br />

networks for target<br />

traits and their<br />

genetic relationships


06WS<br />

The Introgression Breeding Procedure<br />

8 HHZ BC 1 F 2 populations (09WS)<br />

09WS<br />

Yield traits<br />

DT screen<br />

ST screen<br />

SUB screen<br />

Random plants<br />

10DS<br />

119HY plants<br />

210DT plants<br />

287ST plants<br />

21SUBT plants<br />

637Genotyping/progeny testing for all target traits<br />

Yield under<br />

NC & LI<br />

DT screen<br />

ST screen<br />

SUB screen<br />

QTL/Allelic<br />

diversity<br />

discovery<br />

for target<br />

traits<br />

420HY&FUE ILs<br />

180DT ILs<br />

44ST ILs<br />

221SUB ILs<br />

10WS<br />

11DS<br />

865Genotyping/progeny testing for all target traits<br />

Yield under<br />

NC & LI<br />

DT screen<br />

ST screen<br />

SUB screen<br />

Confirming genetic<br />

networks for target<br />

traits and their<br />

genetic relationships<br />

HY&FUE ILs<br />

DT ILs<br />

ST ILs<br />

SUB ILs<br />

11WS<br />

12 DS<br />

136 PYT<br />

80 RYT<br />

2 Demo<br />

2 NCT & 11 MET<br />

12DS<br />

~80 promising ILs as parents<br />

for designed QTL pyramiding


2 nd Generation GSR materials<br />

Multiple abiotic stress tolerant ILs developed from 16 donors into Huanghuazhan<br />

background and nominated to NCT using GSR breeding scheme.<br />

Target traits<br />

Number of ILs<br />

Produced from Selected at PYT & Nominated to<br />

BN<br />

RYT MET & NCT<br />

Drought tolerance (DT) 613 79 21<br />

High yield under low-input (LI) 370 27 3<br />

Salinity tolerance (SAL) 502 73 18<br />

Submergence tolerance (SUB) 128 13 2<br />

High yield under irrigated (Y) 576 100 27<br />

DT+LI 246 15 2<br />

DT+SAL 326 19 5<br />

DT+SUB 82 6<br />

DT+Y 382 40 11<br />

LI+SAL 274 10 1<br />

LI+SUB 38 0<br />

LI+Y 178 1<br />

SAL+SUB 60 9<br />

SAL+Y 292 42 8<br />

SUB+Y 101 5 1<br />

DT+SAL+SUB 35 3 1<br />

DT+SAL+Y 154 9<br />

DT+SUB+Y 58 3<br />

LI+SAL+SUB 20 0<br />

LI+SAL+Y 117 0<br />

LI+SUB+Y 36 0<br />

SAL+SUB+Y 39 2<br />

total: 845 146 40<br />

IL=Introgression lines; BN=Backcross Nursery;PYT=Preliminary Yield Trial;RYT=Replicated Yield Trial; NCT=National Cooperative Testing<br />

(Philippines); Multi-environment testing (IRRI)


GSR Technology<br />

GSR<br />

Technology<br />

IL-Breeding,<br />

PDLs & DQP<br />

GSR<br />

500 donors<br />

56 RPs<br />

Ideal RP BG<br />

Ecosystem based approach<br />

Screening of<br />

released GSR<br />

materials under<br />

target ecosystems<br />

Screening of already<br />

developed PDLs for<br />

abiotic stresses DT,<br />

ST, SUB, LI in the<br />

target ecosystems<br />

DQP for a trait &<br />

ecosystem related<br />

traits<br />

ILs, PDLs, DQP<br />

with adaptable RP<br />

BG for different<br />

target ecosystem<br />

First Phase<br />

2009-2012<br />

Second Phase<br />

2012-2018<br />

Increase in success rate to develop highly<br />

adaptable genotypes for a given ecosystem


Blast evaluation of virulent strains Evaluation of BB resistance of >500<br />

lines (HHZ background) against 14<br />

strains of 10 Xoo races, 2010 WS<br />

Vera Cruz et al<br />

HHZ PSBRc66 BC1F5 # 329 BC1F5 #350


Viscosity, cP<br />

Temperature<br />

Rapid Visco Analyzer (RVA) Pasting properties of GSR lines in IR64 and HHZ RP<br />

backgrounds-suitable for varied consumers with different taste preferences<br />

6000<br />

5000<br />

120<br />

100<br />

4000<br />

80<br />

3000<br />

60<br />

2000<br />

40<br />

1000<br />

0<br />

20<br />

0 100 200 300 400 500 600 700 800<br />

-1000<br />

0<br />

Time, sec<br />

AC=14.5-31.6%;GT=H-I-L;Protein=7.8-11.2<br />

1 2<br />

3 4<br />

5 6<br />

7 8<br />

9 10<br />

11 12<br />

13 14<br />

15 16<br />

17 18<br />

19 20<br />

21 22<br />

23 24<br />

25 26<br />

27 28<br />

29 30<br />

31 32<br />

33 34<br />

35 36<br />

37 38<br />

39 40


HHZ12-DT10-SAL1-DT1- PVS trials (40 farmers) at<br />

Puypuy, Laguna –ranked best over farmer’s check<br />

NSiC214 during WS2011 with preference<br />

score=0.118 against -0.0063(NSiC214)<br />

High Yielding, suitable for Direct seeding & Irrigated conditions,<br />

Aromatic, Drought and Salinity tolerant


Plot size:<br />

30sqm<br />

SSNM<br />

Performance of IRRI bred GSR High Yield Potential<br />

Varieties under Irrigated Conditions<br />

Designation<br />

Grain Yield (t/ha)<br />

2010WS<br />

2011DS<br />

Mean<br />

over<br />

seasons<br />

% over<br />

IR72<br />

% over<br />

NSICRc<br />

158<br />

HHZ8-SAL6-SAL3-Y2 6.55ab 8.0ab 7.28 10.56 12.27<br />

Mestizo7 (Hybrid) 5.68 bcde 8.7a 7.19 9.27 10.96<br />

HHZ12-DT10-SAL1-DT1 6.75a 7.2 bcde 6.98 6.00 7.64<br />

IR83142-B-7-B-B 6.00 abcde 7.6 bc 6.80 3.34 4.94<br />

HHZ5-SAL10-DT1-DT1 6.14abcd 7.4 bcd 6.77 2.89 4.48<br />

IR72 5.96abcde 7.2 cde 6.58 0.00 1.54<br />

HHZ5-DT8-DT1-Y1 5.55 cde 7.6 bc 6.58 -0.08 1.47<br />

HHZ8-SAL12-Y2-DT1 6.43abc 6.7 def 6.57 -0.23 1.31<br />

NSICRc158 5.86 bcde 7.1 cdef 6.48 -1.52 0.00<br />

HHZ12-Y4-DT1-Y1 5.57cde 7.1 cdef 6.34 -3.72 -2.24<br />

IR83142-B-19-B 5.12 e 7.5 bcd 6.31 -4.10 -2.62<br />

IR83142-B-57-B 5.48 de 7.1 cdef 6.29 -4.41 -2.93<br />

IR83143-B-21-B 5.16 e 7.2 cde 6.18 -6.08 -4.63<br />

HHZ8-SAL9-DT2-Y1 5.78 bcde 6.4 defg 6.09 -7.45 -6.02<br />

HHZ5-SAL10-DT3-Y2 5.69 bcde 6.3 fg 6.00 -8.89 -7.48<br />

HHZ5-SAL10-DT2-DT1 5.47 de 6.0 g 5.74 -12.84 -11.50<br />

Reason:Higher HI, spikelets per panicle;panicles per sqm;total spikelets per sqm,CGR


Zhongzu14-ski-4-1


BPH and Virus Resistance Screening<br />

IRRI-ICRR joint project collaborators: Prof.Baehaki/Drs Muhsin,Untung<br />

BC2 F3 HHZ populations screened against<br />

virulent BPH strain that caused outbreak in<br />

Sukamandi in 2010<br />

Several populations showed ILs with comparable<br />

resistance with the checks in second round of<br />

screening.<br />

• 30 BC3F2 and BC2F3 population (CS 3)<br />

• 39 BC3F3 and BC2F4 population (CS 4;<br />

3 rd year)ongoing<br />

ICRR 8.2011


An additional tonne of rice in the<br />

rainfed and irrigated lowlands will<br />

change the livelihoods of millions of<br />

resource poor farmers from the<br />

clutches of poverty and sustained<br />

income source to prosper….<br />

THANKS


Acknowledements & Thanks:<br />

CAAS-IRRI-BMGF<br />

Dr Zhikang Li Director GSR project<br />

GSR National Coordinators (Asia & Africa)<br />

Drs Tuat, Untung, Rafiqul-Islam, Somphet, Nimal, Riaz and Arif, Makara,<br />

Two public/NGO sectors:<br />

Dr W.Xu (Boshima-SS,IDO) & Dr Sirajul Islam(BRAC)<br />

Dr C.X Mao GSR Training Consultant (CAAS-GAAS)<br />

GSR-CAAS team: Drs Z. Li, Gao, Xu, Judy, Fu, Yu & many unknown<br />

contributors to the GSR materials<br />

IRRI GSR: Drs Nollie, Glenn, Choi, Redonna, Pandey, Andy, Krishna,Wang,Tao<br />

GSR-GML group Gelo (Data & field); Corine(PVS), Lolit(field operations),<br />

Nina(Screenings)<br />

Visiting Research Fellows: Drs Ma, Dr Uzokwe PhD: Zilhas, Meng; OJT:Shahana,<br />

Dilruba<br />

GSR Project Adm.: Pauline; Secretarial Assistance: Badett<br />

“Cooperation & Collaboration makes the world a smaller place”


Dr. V. Ravindra Babu<br />

Principal Scientist, Plant Breeding<br />

Directorate of Rice Research,<br />

Rajendranagar, Hyderabad-30,<br />

rbvemuri1955@gmail.com


OUTLINE OF PRESENTATION<br />

INTRODUCTION<br />

METHODOLOGY<br />

FINDINGS<br />

CONCLUSIONS<br />

FUTURE COURSE OF ACTION


INTRODUCTION<br />

Rice is the dominant cereal crop in most Asian countries<br />

and is the staple food for more than half of the world’s<br />

population, even a small increase in its nutritive value<br />

would be highly beneficial for human health.<br />

Recently breeding rice with high nutrient content known as<br />

bio-fortification has evolved as a new strategy to address<br />

micronutrient mal-nutrition<br />

Bio-fortification provides a cost effective and sustainable<br />

solution to combat mal-nutrition<br />

At DRR, more than 200 varieties were tested for their iron<br />

and zinc content and also identified donors for them and<br />

breeding strategy was evolved to develop high iron and<br />

zinc content lines


Micronutrient fortification of plants<br />

through plant breeding:<br />

improve nutrition in man at low cost?<br />

Can it<br />

To be successful, the biofortification strategy must<br />

address four fundamental questions:<br />

1. Can commonly eaten food staple crops be developed that<br />

fortify their seeds with essential minerals and vitamins?<br />

2. Can farmers be induced to grow such varieties?<br />

3. If so, would this result in a significant Improvement in human<br />

nutrition at a lower cost than existing nutrition interventions?<br />

4. Bio-availability of these minerals?


GLOBAL SHARE OF DIETARY ENERGY SUPPLY<br />

FROM DIFFERENT PLANT SOURCES<br />

Others<br />

19%<br />

Other Veg. oils<br />

3%<br />

Wheat<br />

24%<br />

Soyabean oil<br />

3%<br />

Suger<br />

9%<br />

Sweet potatoes<br />

2%<br />

Millet & Sorghum<br />

4%<br />

Potatoes<br />

2%<br />

Maize<br />

7%<br />

Rice<br />

27%<br />

Source FAO. 1996


2.7 billion people globally are<br />

known to be affected by iron<br />

deficiency till to date (Hirschi,<br />

2009)<br />

Regulates enzyme activity<br />

and plays an important<br />

role in the immune system<br />

(Lynch, 2003)<br />

IRON<br />

REQUIREMENT PER<br />

DAY<br />

10-15 milligrams<br />

(mg)<br />

Health problems caused by iron deficiency<br />

Mental and psychomotor impairment in children, and<br />

Increased levels of morbidity and mortality rate of mother and<br />

child during childbirth (Frossard et al., 2000)


In Asia and Africa, it is<br />

estimated that 500-600 million<br />

people are at risk for low zinc<br />

intake (Harvest Plus, 2010)<br />

Regulates enzyme<br />

activity, essential for cell<br />

division and DNA<br />

replication<br />

ZINC<br />

REQUIREMENT PER<br />

DAY<br />

Males 12-15mg/day<br />

Females 68 mg/day<br />

Health problems caused by zinc deficiency<br />

Anorexia,<br />

Dwarfism,<br />

Weak immune system (Solomons, 2003)<br />

Skin lesions,<br />

Hypogonadism, and<br />

Diarrhoea (McClain et al., 1985).


In the last two decades, new research findings generated by the<br />

nutritionists have brought to light the importance of vitamins,<br />

minerals (micronutrients) and proteins in maintaining good health<br />

Nutritionist<br />

Breeder<br />

Biotechnologist<br />

RICE, WHEAT, MAIZE, PEARL<br />

MILLET, CANOLA<br />

A genetic approach called<br />

Biofortification (Bouis, 2002) has been<br />

developed, which aims at biological<br />

and genetic enrichment of food stuffs<br />

with vital nutrients


Breeders are now focusing on breeding for<br />

nutritional enhancement to overcome the problem of<br />

malnutrition.<br />

The range in brown rice<br />

Iron 6.3 - 24.4 ppm<br />

Zinc 13.5 - 28.4 ppm<br />

Suggesting some genetic potential to increase the<br />

concentration of these micronutrients in rice grains<br />

(Gregorio, 2002)


1/17/2012 9:59:16 PM 10


Collection of germplasm & screening for Fe and Zn contents<br />

Selection of parents for hybridization programme<br />

Crossing programme for developing high Iron and Zinc genotypes<br />

Selections in segregating generation<br />

G X E Interactions<br />

Study of losses due to polishing<br />

Impact of polishing on grain type<br />

Impact of parboling on Fe and Zn contents<br />

Correlation between Fe and Zn to yield<br />

Continued……………..


Conventional and molecular Breeding Approach<br />

Fe and Zn contents in red rices and popular varieties<br />

Genetic analysis of Fe and Zn contents<br />

Impact of agronomic management on Fe and Zn<br />

Developing High Iron and Zinc line with higher yields<br />

Variety testing in AICRIP programme and release<br />

Impact of Fe and Zn on grain quality<br />

Molecular Studies<br />

Bioavailability studies<br />

Studies on protein, bran oil, phytates & glycemic index


NUTRITIONAL STATUS OF STUDY MATERIAL<br />

Trait General Study material<br />

(max)<br />

Iron (ppm) 7.0 34.4<br />

Zinc (ppm) 14.0 28.3<br />

Protein (%) 6.8 12.48<br />

Fat (%) 0.5 3.77<br />

Fiber (%) 0.2 0.80<br />

Energy (kcal 100g -1 ) 345 376<br />

Thiamin (mg 100g -1 ) 0.06 1.91


Losses due to polishing rice (%)<br />

Protein 29<br />

Fat 79<br />

Lime 84<br />

Iron 67<br />

Losses due to washing of milled rice (%)<br />

Thiamine 40<br />

Riboflavin 25<br />

Niacin 23<br />

Losses from cooking & washing (%)<br />

Calories 15<br />

Proteins 10<br />

Iron 75<br />

Calcium 50<br />

Phosphorus 50


PERCENTAGE LOSSES AS COMPARED TO<br />

RAW MILLED RICE<br />

5% polishing 10% polishing<br />

Zinc 62.5 68.4<br />

Iron 61.0 69.3<br />

Thiamine 75.4 89.7<br />

Ash content 55.2 63.91<br />

Protein 7.08 12.70<br />

Fat 69.14 88.54<br />

Crude fibre 84.4 93.8<br />

Energy 3.2 3.5


Iron and Zinc contents in Brown, 5% & 10% polished rice of land races<br />

from Karnataka, Maharashtra and Manipur<br />

Fe (ppm)<br />

Zn (ppm)<br />

S.No.<br />

Name of Genotype<br />

Grain<br />

Type<br />

Brown<br />

Rice<br />

5%<br />

polished<br />

rice<br />

10%<br />

polished<br />

rice<br />

Brown<br />

Rice<br />

5%<br />

polishe<br />

d rice<br />

10%<br />

polished<br />

rice<br />

1 PANDY SB 20.8 12.9 8.6 22.3 19.3 15.9<br />

2 BHADAS SB 10.4 5.6 2.3 22.9 18.1 17.4<br />

3 MUNGA SB 22.5 4.0 2.1 31.1 18.4 17.3<br />

4 RALAK LS 14.3 5.2 8.0 19.9 16.3 14.8<br />

5 IMPHAL LS 10.1 5.4 4.1 23.1 18.5 17.9<br />

6 FOXTAIL SB 9.0 3.3 2.3 25.2 19.5 18.0<br />

7 DODDABYRA SB 3.2 2.6 0.9 29.0 21.4 17.1<br />

8 CHAGLEI SB 5.3 2.4 2.0 28.3 20.3 16.9<br />

9 THANU MS 4.6 3.0 2.5 24.1 18.6 14.7<br />

10 HEMAVATHI SB 5.1 3.3 2.4 27.7 24.7 20.1<br />

11 PANVEL-2 LS 5.2 4.2 3.8 29.6 28.3 25.2<br />

12 BYRANELU SB 9.7 8.0 6.3 28.4 19.5 17.2<br />

13 KANCHANA SB 10.7 3.5 2.3 25.7 18.7 20.2<br />

14 SHARAVATHI SB 8.7 4.3 2.5 30.4 23.0 17.1<br />

15 NAHAZING SB 4.9 4.0 2.7 29.8 23.1 20.6


Iron and Zinc contents in Brown, 5% & 10% polished rice of land races<br />

from Karnataka, Maharashtra and Manipur<br />

Fe (ppm)<br />

Zn (ppm)<br />

S.No.<br />

Name of Genotype<br />

Grain<br />

Type<br />

Brown Rice<br />

5%<br />

polished<br />

rice<br />

10%<br />

polished<br />

rice<br />

Brown<br />

Rice<br />

5%<br />

polishe<br />

d rice<br />

10%<br />

polished<br />

rice<br />

16 MOIRANG PHOU SB 5.2 2.1 1.1 33.1 25.4 28.4<br />

17 ERIMA LB 10.5 4.7 4.2 23.5 19.6 18.8<br />

18 KOBRA MS 13.5 4.3 3.5 29.8 21.1 21.4<br />

19 SANNAMALLYA SB 9.8 5.0 4.5 26.0 19.1 17.3<br />

20 PHOUOBI LS 10.8 6.2 2.3 24.4 17.8 16.5<br />

21 GINTHOU LS 9.5 5.2 3.1 24.6 19.1 17.7<br />

22 AKUTPHOU LB 20.1 12.9 4.3 29.0 27.8 22.7<br />

23 KEIBITHOU SB 13.0 5.7 4.9 23.4 18.4 16.2<br />

24 SANATHOU LB 11.9 4.3 3.4 24.8 18.9 17.8<br />

25 JHOGARSI SB 8.0 4.7 2.8 21.0 16.5 14.9<br />

26 THUNGA LS 9.5 6.7 2.9 17.7 13.9 12.3<br />

27 PHOU DUM LS 5.3 5.6 0.9 33.1 26.9 21.1<br />

28 GANDHASALI SB 19.3 17.2 11.2 17.4 11.0 11.6<br />

29 MYSORE MALLIGE MS 8.8 6.4 5.1 19.7 14.9 13.9<br />

30 KMP-148 LS 9.1 6.8 3.3 25.3 19.9 18.9


Range of Fe & Zn in Brown Rice, 5% & 10% polished rice<br />

and loss(%) due to polishing<br />

Fe content<br />

(ppm)<br />

Zn content<br />

(ppm)<br />

Brown rice: 4.9 to 22.5 17.4 to 33.1<br />

5% polished rice:<br />

2.4 to 17.2<br />

11.0 to 28.3<br />

Loss: %<br />

10% polished:<br />

10.9 to 82.2<br />

1.1 to 11.2<br />

4.1 to 40.8<br />

11.6 to 28.4<br />

Loss: %<br />

26.9 to 90.7<br />

14.2 to 44.4


IRON (ppm)<br />

Mean 12.9 + 6.24<br />

Range 7.5 – 34.4<br />

Compared to general availability there are varieties<br />

with good content<br />

Top 5 entries: Kalanamak (34.4), Karjat 4 (30.6),<br />

Chittimuthyalu (24.9), MSE 9 (24.4), Kanchan (20.4)<br />

Top 5 entries with less loss on polishing: ADT 43,<br />

Manoharshali, Karjat 4, Swarna, Seshadri


IRON (mg 100g -1 )<br />

•Kalanamak (3.44),<br />

•Karjat 4 (3.06),<br />

•Chiti Muthyalu (2.49)<br />

•MSE 9 (2.44),<br />

•Kanchan (2.04)


ZINC (ppm)<br />

Mean 22.7 + 2.95<br />

Range 10.1 – 31.3<br />

Compared to general availability there are varities<br />

with good content<br />

Top 5 entries: Poornima(31.3), Ranbir Bas(30.9), ADT<br />

43(30.9), Chittimuthyalu (30.5), Type 3 (30.3)<br />

Top 5 entries with less loss on polishing: White<br />

Ponni, Bas 386, Kanishk, Giri, Karjat 4


Zinc (mg/100g)<br />

•Poornima(3.13)<br />

•Ranbir Bas(3.09)<br />

•ADT 43(3.09)<br />

•Chittimuthyalu (3.05)<br />

•Type 3 (3.03)


Nutritional Profiling of<br />

Parents & Segregating Lines<br />

Variety Fe (ppm) Zn (ppm)<br />

0% 5% 10% 0% 5% 10%<br />

PR 116 7.5 2.8 2.6 20.6 17.4 16.5<br />

BPT 5204 8.3 5.6 4.9 10.3 7.6 4.9<br />

Ranbir Basmati 13.0 9.5 7.1 30.9 28.3 27.4<br />

Chittimutyalu 24.9 14.0 9.8 30.5 25.7 24.4<br />

F 4 Generation<br />

PR 116 x Ranbir<br />

Basmati<br />

BPT 5204 x<br />

Chittimutyalu<br />

13.3 9.4 4.6 17.0 15.2 13.4<br />

10.5 7.6 7.0 22.1 19.9 16.6


Improvement of Fe & Zn (ppm) in<br />

Segregating Lines of BPT 5204 & PR 116<br />

Parents<br />

Crosses (F 4 ) PR 116 Ranbir Basmati<br />

Improvement in<br />

PR 116 x Ranbir<br />

Basmati<br />

Improvement in<br />

BPT 5204 x<br />

Chittimutyalu<br />

Iron Zinc Iron Zinc<br />

7.5 20.6 13.0 30.9<br />

13.3 (77%) ---<br />

BPT 5204<br />

Chittimuthyalu<br />

Iron Zinc Iron Zinc<br />

8.3 10.3 24.9 30.5<br />

10.5 (26.5%) 22.1 (114.5%)


IMPORTANT ACHIEVEMENT:<br />

Under biofortification programme at DRR, One line derived<br />

from a cross between BPT 5204 X Chittimuthyalu with short bold<br />

grains, semi dwarf with high yield potential (> 4.5t/ha) and<br />

medium duration with high Iron (31.2 ppm) and Zinc (40.0 ppm)<br />

in brown rice was identified. With good quality characters viz.<br />

good HRR% (67.5%), Intermediate ASV(5.01), AC(24.05%) with<br />

mild aroma.<br />

NIN :<br />

Brown rice- Fe-28.9 (ppm); Zn-37.5 (ppm )<br />

Polished rice-Fe-8.0(ppm); Zn-26.9(ppm)<br />

Some more fixed lines are also in the pipe line.


Fe and Zn contents in brown rice<br />

Fe 10.3 ppm & Zn 10.8 ppm<br />

Fe 24.9 ppm & Zn 30.5 ppm<br />

Fe 31.2 ppm & Zn 40.0 ppm


QUALITY PARAMETERS OF HIGH IRON & ZINC GENOTYPE<br />

Hull 76.8%<br />

Mill 68.8<br />

HRR 67.5<br />

KL 4.15<br />

KB 2.02<br />

L/B 2.05<br />

Grain Type<br />

Grain chalk<br />

Type<br />

SB<br />

A<br />

VER 4.8<br />

WU 155<br />

KLA 7.2<br />

ER 1.73<br />

ASV 5.0<br />

AC 24.03<br />

GC 22<br />

Aroma<br />

Iron (ppm)<br />

Zinc (ppm)<br />

MS<br />

31.2 (Brown Rice)<br />

40.0 (Brown Rice)


T1 Control (RFD 100%)<br />

TREATMENTS<br />

T2<br />

T3<br />

T4<br />

T5<br />

T6<br />

T7<br />

T8<br />

T9<br />

T10<br />

T11<br />

T12<br />

Control + Zn soil application<br />

Control + Zn foliar spray<br />

Control + Fe soil application<br />

Control + Fe foliar spray<br />

Control + Zn + Fe soil application<br />

Control + Zn + Fe foliar spray<br />

Control + micro mix soil application<br />

Control + micro mix foliar spray<br />

FYM (10 t/ha)<br />

FYM 50% + 50% RFD<br />

FYM 50% + 50% RFD + micro mix spray<br />

• Results showed that increase in iron and zinc contents through application of<br />

iron and zinc fertilizers either soil / foliar application.<br />

• Soil application of iron is better than foliar spray.<br />

• Foliar spray of Zn is better than soil application.


GENETIC STUDIES REVEALED THAT:<br />

The ratio of GCA to SCA variances showed that nonadditive<br />

gene action was predominant in inheritance of<br />

all characters studied.<br />

Chittimutyalu, Ranbir Basmati and Madhukar are found to<br />

be good general combiners for grain zinc content.<br />

PR116 X Chittimutyalu, Swarna X Ranbir Basmati,<br />

Mandya Vijaya X Type 3 were good specific combiners for<br />

grain zinc content.<br />

IR64 Chittimuthyalu and PR 116 Chittimuthyalu found<br />

to be good heterotic hybrids for grain iron and zinc<br />

content.<br />

Grain iron & zinc content had no correlation with grain<br />

yield.<br />

Grain iron had significant positive correlation with grain


MAPPING OF CHROMOSOMAL REGIONS ASSOCIATED<br />

WITH IRON AND ZINC CONTENT IN RICE GRAINS<br />

~ 200 germplasm lines were characterized for Fe and Zn content in the brown rice<br />

Genotype Iron (ppm) Zinc (ppm)<br />

Chittimutyalu : 24.9 30.5<br />

Ranbir Basmati : 13.0 30.9<br />

BPT 5204 : 8.3 10.3<br />

PR 116 : 7.5 20.6<br />

Based on that, two donors were selected<br />

1.Chittimuthyalu and Ranbir Basmati<br />

Iron - BPT5204/Chittimuthyalu<br />

154 F 2 plants – 0.6 to 238 ppm<br />

Zinc - BPT5204/Ranbir Basmati<br />

109 F 2 plants – 2.3 to 103 ppm


Putative genes involved in Fe and Zn as reported in rice<br />

genome database<br />

1. OsYs (Orzya sativa Yellow stripe like)<br />

2. NRAMP (Natural Resistance-Associated Macrophage<br />

Protein)<br />

3. Ferritin linked genes<br />

4. Zinc transport, Zinc Regulated Transporter<br />

5. ZIP genes for Zinc and Iron related Proteins<br />

Based on these candidate genes, 46 SSR markers were<br />

identified / designed


ZT<br />

SC 103<br />

SC 129<br />

ZIP<br />

Chr 3<br />

6.7<br />

15.6<br />

SC 435<br />

SC 123<br />

SC 120<br />

Chr 4<br />

6.2<br />

12.8<br />

13.6<br />

SC 126<br />

SC 448<br />

Chr 8<br />

cM<br />

cM cM<br />

}<br />

}<br />

YSL<br />

YSL<br />

}<br />

}<br />

}<br />

YSL<br />

}<br />

}<br />

12.7<br />

13.4<br />

ZT 13.5<br />

SC 116 }<br />

Tentative SSR based linkage maps for regions associated with enhanced<br />

iron accumulation in F 2 lines from Samba Mahsuri / Chittimuthyalu


ZT<br />

SC 103<br />

SC 129<br />

ZIP<br />

Chr 3<br />

}<br />

cM<br />

}<br />

26.2<br />

19.6<br />

SC 123<br />

YSL<br />

SC 435<br />

YSL<br />

SC 120<br />

Chr 4<br />

}<br />

cM<br />

8.7<br />

} 13.4<br />

} 21.5<br />

SC 448<br />

YSL<br />

SC 126<br />

SC 116<br />

Chr 8<br />

}<br />

}<br />

}<br />

cM<br />

11.6<br />

22.3<br />

15.3<br />

Tentative SSR based linkage maps for regions associated with enhanced zinc<br />

accumulation in F 2 lines from Samba Mahsuri / Chittimuthyalu


ZIP<br />

SC 129<br />

ZT<br />

SC 425<br />

Chr 3<br />

cM<br />

}<br />

}<br />

9.8<br />

9.8<br />

SC 434<br />

YSL<br />

Chr 4<br />

cM<br />

8.5<br />

Chr 5<br />

cM<br />

Chr 6<br />

cM<br />

Chr 12<br />

SC 430<br />

6.4<br />

SC 135<br />

SC 418<br />

} ZIP<br />

} }<br />

10.5<br />

14.5<br />

15.9<br />

ZIP<br />

} }<br />

SC 428<br />

NRAMP<br />

cM<br />

Tentative SSR based linkage maps for regions associated with enhanced zinc<br />

accumulation in F 2 lines from Samba Mahsuri / Ranbir Basmati


ZIP<br />

SC 129<br />

ZT<br />

SC 425<br />

Chr 3<br />

cM<br />

}<br />

}<br />

SC 434<br />

12.5<br />

YSL<br />

16.5<br />

Chr 4<br />

cM<br />

}<br />

13.9<br />

SC 135<br />

ZIP<br />

Chr 5<br />

cM<br />

}<br />

13.4<br />

SC 428<br />

SC 430<br />

Chr 6<br />

}<br />

}<br />

cM<br />

8.8<br />

10.5<br />

Chr 12<br />

cM<br />

SC 418<br />

}<br />

21.6<br />

NRAMP<br />

Tentative SSR based linkage maps for regions associated with enhanced<br />

iron accumulation in F 2 lines from Samba Mahsuri / Ranbir Basmati


The markers always co segregated for<br />

Fe and Zn together<br />

Three loci were identified common for two donors for both Fe & Zn<br />

1. Zinc transporter- Chr 3<br />

2. ZIP genes (Zinc and Iron related Proteins) – Chr 3<br />

3. OsYs (Orzya sativa Yellow stripe like) – Chr 4<br />

Two loci in Chittimuthyalu<br />

1. OsYs (Orzya sativa Yellow stripe like) – Chr 8<br />

2. Zinc transporter – Chr 8<br />

Three loci in Ranbir Basmati<br />

1. ZIP genes (Zinc and Iron related Proteins) – Chr5<br />

2. ZIP genes (Zinc and Iron related Proteins) – Chr6<br />

3. NRAMP (Natural Resistance-Associated Macrophage protein)- Chr12<br />

• Two loci from chromosome 3 and one locus from chromosome 4 found to be<br />

common between the two donors associated with iron and zinc metabolism.<br />

• A recombinant with sd1 gene and aroma gene was identified from BPT 5204 and<br />

Chittimuthyalu from F 4 families segregating population with maximum back ground<br />

genome of Chittimuthyalu.


Plant Breeding & BIOTECHNOLOGY –<br />

New ToolS for Fighting Micronutrient Malnutrition<br />

The final permanent solution to micronutrient<br />

malnutrition is breeding staple foods that are dense<br />

in minerals and vitamins provides a low-cost ,<br />

sustainable strategy for reducing levels of<br />

micronutrient malnutrition.<br />

Molecular marker technology expedites the<br />

development of rice varieties with improved iron and<br />

zinc content through identified genomic regions


SCIENTISTS INVOLVED IN THE PROJECT:<br />

• Dr. T. Longvah-Food Chemistry,NIN,HYD<br />

• Dr. C. N.Neeraja-Biotchnology,DRR<br />

• Dr. K. Surekha-Soil Science,DRR<br />

• Dr. B. Sreedevi-Agronomy,DRR<br />

• Dr. L. V. Subba Rao-Seed Technology,DRR<br />

• Dr. N. Shobha Rani-Seed Quality,DRR<br />

• Dr. B. C. Viraktamath-Hybrid Rice,DRR<br />

• M.Sc.(Ag.) & Ph.D. students from ANGRAU,HYD<br />

1/17/2012 9:59:16 PM 39


Thank you<br />

1/17/2012 9:59:16 PM<br />

40


International Symposium on “100 years of Rice Science and Looking Beyond”<br />

on 10 th January 2012 at TNAU, Coimbatore<br />

Genome-wide variations<br />

between elite lines of indica<br />

rice discovered through whole<br />

genome re-sequencing<br />

Gopala Krishnan S, Dan Waters and Robert Henry


Population (in billion)<br />

Rice<br />

‣ Rice is a staple food for over half of the world's population<br />

and accounts for over 20 percent of global calorie intake (FAO,<br />

2004)<br />

‣ Global rice production (2009) – 683 mt million tonnes (FAO,<br />

2011) and to feed projected population in 2050, rice yields to<br />

be increased by 50%<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

1900 1 2 3 4 5 1950 6 7 8 9 10 2000 11 12 13 14 15 2050 16<br />

8.91<br />

Year<br />

(Source: UN Population Division)


The options...<br />

‣ Enabling crop improvement<br />

» Enhancing photosynthetic efficiency<br />

» Marker assisted selection, transgenics, etc.<br />

‣ The way out<br />

» Improving productivity per ha


Heterosis<br />

‣ Heterosis refers to superior performance of F 1 hybrids in terms<br />

of increase in size, yield, vigor, etc. compared to their parental<br />

lines (Shull, 1914)<br />

‣ Hybrid rice yields 10-20% more than the elite inbred varieties<br />

‣ Primarily based on three line breeding system – CMS (A line), isonuclear<br />

maintainer (B line) and genetically diverse restorer (R<br />

line)<br />

‣ The challenge ?<br />

Ability to predict hybrid performance<br />

‣ Advances in genomic sequencing provide powerful tools to<br />

study allelic variations at whole genome level


Re-sequencing of elite rice inbreds<br />

‣ SNPs resources in rice based on only a few rice cultivars (Shen et<br />

al., 2004; Feltus et al., 2004, Yamamoto et al., 2010, Arai-Kichise et<br />

al., 2011)<br />

‣ Emphasis to sequence diverse set of additional rice genotypes to<br />

enlarge the pool of DNA polymorphisms<br />

‣ Three elite CMS and restorer indica rice inbreds each were<br />

sequenced using Illumina GAIIx<br />

‣ Whole genome re-sequencing yielded 3.38 billion 75-bp paired<br />

end reads (24.4 Gb of high quality raw data)


Assembly of reads<br />

Organelle<br />

Multi<br />

65.05 X 10 6<br />

Unmapped<br />

25.37 X 10 6<br />

24.96 X 10 6<br />

7.4 %<br />

7.5 %<br />

Total reads<br />

338.01 X 10 6<br />

Nuclear<br />

287.67 X 10 6<br />

(85.1 %)<br />

Unique<br />

222.62 X 10 6


Assembly of reads<br />

Chromosome<br />

Coverage<br />

(%)<br />

Uniquely mapped reads<br />

Sequencing<br />

depth (fold)<br />

Total number Mb<br />

Chromosome 1 87.99 27,012,387 # 1,960 45.17<br />

Chromosome 2 88.69 23,765,016 1,724 47.84<br />

Chromosome 3 91.01 # 24,086,909 1,747 48.17<br />

Chromosome 4 82.13 19,856,483 1,440 40.48<br />

Chromosome 5 86.53 18,783,399 1,362 45.76<br />

Chromosome 6 84.57 18,536,789 1,345 43.71<br />

Chromosome 7 83.37 16,996,652 1,233 41.56<br />

Chromosome 8 84.36 16,629,683 1,206 42.41<br />

Chromosome 9 84.24 13,328,131 9,67 42.54<br />

Chromosome 10 84.36 13,438,388 9,75 42.97<br />

Chromosome 11 81.92 15,116,942 1,096 38.62<br />

Chromosome 12 82.22 15,065,493 1,093 39.68<br />

Total 85.40 222,616,272 16,153 43.24


SNPs


o.)<br />

SNPs (No.)<br />

SNPs (No.)<br />

SNPs (No.)<br />

SNPs (No.)<br />

SNPs (No.)<br />

SNPs (No.)<br />

SNPs (No.)<br />

SNPs (No.)<br />

SNPs (No.)<br />

2000<br />

SNPs (No.)<br />

SNPs (No.)<br />

SNPs (No.)<br />

SNPs (No.)<br />

SNPs (No.)<br />

SNPs (No.)<br />

SNPs (No.)<br />

SNPs (No.)<br />

SNPs - a snap shot across<br />

0<br />

genome<br />

Chr. 5<br />

(162723)<br />

Chr. 6<br />

(201656)<br />

2000<br />

1000<br />

2000<br />

1000<br />

0<br />

10 20 [29.7 Mb]<br />

10 20 30 [30.7 Mb]<br />

Chr. 1<br />

(284078)<br />

2000<br />

1000<br />

0<br />

10 20 30 40 [43.2 Mb]<br />

Chr. 7<br />

(188047)<br />

2000<br />

1000<br />

0<br />

10 20 [29.6 Mb]<br />

Chr. 2<br />

(243923)<br />

2000<br />

1000<br />

0<br />

10 20 30 [36.0 Mb]<br />

Chr. 8<br />

(197285)<br />

2000<br />

1000<br />

0<br />

10 20 [28.4 Mb]<br />

Chr. 3<br />

(211527)<br />

2000<br />

1000<br />

0<br />

10 20 30 [36.2 Mb]<br />

Chr. 9<br />

(151888)<br />

2000<br />

1000<br />

0<br />

10 20 [22.7 Mb]<br />

Chr. 4<br />

(236006)<br />

2000<br />

1000<br />

0<br />

10 20 30 [35.5 Mb]<br />

Chr. 10<br />

(176433)<br />

2000<br />

1000<br />

0<br />

10 20 [22.7 Mb]<br />

Chr. 5<br />

(162723)<br />

2000<br />

1000<br />

0<br />

10 20 [29.7 Mb]<br />

Chr. 11<br />

(224589)<br />

2000<br />

1000<br />

0<br />

10 20 [28.4 Mb]<br />

Chr. 6<br />

(201656)<br />

2000<br />

1000<br />

0<br />

10 20 30 [30.7 Mb]<br />

Chr. 12<br />

(216598)<br />

2000<br />

1000<br />

0<br />

10 20 [27.6 Mb]<br />

2000<br />

Chr.<br />

‣<br />

7<br />

2,495,052 1000 SNPs were detected across the rice genome with an average density of<br />

(188047)<br />

0<br />

10 20 [29.6 Mb]<br />

6.78 SNPs/kb in the non repetitive region<br />

2000<br />

Chr. 8<br />

(197285) 1000<br />

‣ Average<br />

0<br />

polymorphism rate is significantly higher than the previous estimates of<br />

10 20 [28.4 Mb]<br />

4.31 SNPs/ kb (Nasu et al., 2002) and 1.70 SNPs/ kb (Feltus et al., 2004), offering<br />

2000<br />

Chr. 9<br />

(151888) high 1000 density coverage across the entire genome<br />

0<br />

10 20 [22.7 Mb]


Detection of InDels


Insertions (No.)<br />

Deletions (No.)<br />

Insertions (No.)<br />

Deletions (No.)<br />

Insertions (No.)<br />

Deletions (No.)<br />

Insertions (No.)<br />

Deletions (No.)<br />

Insertions (No.)<br />

Deletions (No.)<br />

Insertions (No.)<br />

Deletions (No.)<br />

Insertions (No.)<br />

Deletions (No.)<br />

Insertions (No.)<br />

Deletions (No.)<br />

Insertions (No.)<br />

Deletions (No.)<br />

Insertions (No.)<br />

Deletions (No.)<br />

Insertions (No.)<br />

Deletions (No.)<br />

Insertions (No.)<br />

Deletions (No.)<br />

InDels<br />

Chr. 1<br />

(20137)<br />

160<br />

80<br />

0<br />

Chr. 1<br />

(20287)<br />

150<br />

100<br />

50<br />

0<br />

10 20 30 40 [43.2 Mb]<br />

10 20 30 40 [43.2 Mb]<br />

Chr. 2<br />

(17269)<br />

160<br />

80<br />

0<br />

Chr. 2<br />

(17496)<br />

150<br />

100<br />

50<br />

0<br />

10 20 30 [36.0 Mb]<br />

10 20 30 [36.0 Mb]<br />

Chr. 3<br />

(15390)<br />

160<br />

80<br />

0<br />

Chr. 3<br />

(15069)<br />

150<br />

100<br />

50<br />

0<br />

10 20 30 [36.2 Mb]<br />

10 20 30 [36.2 Mb]<br />

Chr. 4<br />

(13460)<br />

160<br />

80<br />

0<br />

Chr. 4<br />

(14361)<br />

150<br />

100<br />

50<br />

0<br />

10 20 30 [35.5 Mb]<br />

10 20 30 [35.5 Mb]<br />

Chr. 5<br />

(11157)<br />

160<br />

80<br />

0<br />

Chr. 5<br />

(11107)<br />

150<br />

100<br />

50<br />

0<br />

10 20 [29.7 Mb]<br />

10 20 [29.7 Mb]<br />

Chr. 6<br />

(13010)<br />

160<br />

80<br />

0<br />

10 20 30 [30.7 Mb]<br />

Chr. 6<br />

(13320)<br />

150<br />

100<br />

50<br />

0<br />

10 20 30 [30.7 Mb]<br />

Chr. 7<br />

(11707)<br />

160<br />

80<br />

0<br />

10 20 [29.6 Mb]<br />

Chr. 7<br />

(12110)<br />

150<br />

100<br />

50<br />

0<br />

10 20 [29.6 Mb]<br />

Chr. 8<br />

(12550)<br />

Chr. 9<br />

(9362)<br />

Chr. 10<br />

(10380)<br />

Chr. 11<br />

(13521)<br />

Chr. 12<br />

(12535)<br />

160<br />

80<br />

0<br />

160<br />

80<br />

0<br />

160<br />

80<br />

0<br />

160<br />

80<br />

0<br />

160<br />

80<br />

0<br />

10 20 [28.4 Mb]<br />

10 20 [22.7 Mb]<br />

10 20 [22.7 Mb]<br />

10 20 [28.4 Mb]<br />

10 20 [27.6 Mb]<br />

Chr. 8<br />

(12788)<br />

Chr. 9<br />

(9576)<br />

Chr. 10<br />

(11063)<br />

Chr. 11<br />

(13483)<br />

Chr. 12<br />

(12896)<br />

150<br />

100<br />

50<br />

0<br />

150<br />

100<br />

50<br />

0<br />

150<br />

100<br />

50<br />

0<br />

150<br />

100<br />

50<br />

0<br />

150<br />

100<br />

50<br />

0<br />

10 20 [28.4 Mb]<br />

10 20 [22.7 Mb]<br />

10 20 [22.7 Mb]<br />

10 20 [28.4 Mb]<br />

10 20 [27.6 Mb]<br />

‣ 224,034 InDels were across the rice genome with an average density of 4.32<br />

insertions/kb and 4.41 deletions/kb


Annotation of SNPs and InDels<br />

Synonymous<br />

Non-synonymous<br />

63342 83262<br />

CDS<br />

UTRs 146604<br />

73051<br />

Genic<br />

497250<br />

Introns & Reg.<br />

Sequences<br />

277595<br />

Genic<br />

35871<br />

UTRs<br />

6814<br />

CDS<br />

1733<br />

Introns & Reg.<br />

Sequences<br />

27324<br />

Genic<br />

36731<br />

UTRs<br />

6663<br />

CDS<br />

1887<br />

Introns & Reg.<br />

Sequences<br />

27821<br />

Intergenic<br />

1987802<br />

Intergenic<br />

124607<br />

Intergenic<br />

127185<br />

Non repeat<br />

regions<br />

2495052<br />

Non repeat<br />

regions<br />

160478<br />

Non repeat<br />

regions<br />

163556<br />

Repeat<br />

regions<br />

2151486<br />

Repeat<br />

regions<br />

36147<br />

Repeat<br />

regions<br />

42589<br />

‣ About 1/3 rd of the SNPs occur in the non-repeat regions while 10.7 % of the total<br />

SNPs have been found in 25,591 genes<br />

‣ Overall, 83,262 non-synonymous SNPs spanning 16,379 genes and 3,620 InDels<br />

in the coding sequences 2,625 genes have been identified


CMS lines<br />

Restorer lines<br />

Polymorphisms - Genotype wise<br />

SNPs<br />

InDels<br />

A<br />

(988986)<br />

B<br />

(912695)<br />

C<br />

(1061109)<br />

D<br />

(879916)<br />

E<br />

(1093043)<br />

F<br />

(2445994)<br />

100000<br />

50000<br />

0<br />

100000<br />

50000<br />

0<br />

100000<br />

50000<br />

0<br />

100000<br />

50000<br />

0<br />

100000<br />

50000<br />

0<br />

100000<br />

50000<br />

0<br />

1<br />

2 3 4 5 6 7 8 9 10 11 12<br />

Chromosomes<br />

15000<br />

10000<br />

5000<br />

0<br />

15000<br />

10000<br />

5000<br />

0<br />

15000<br />

10000<br />

5000<br />

0<br />

15000<br />

10000<br />

5000<br />

0<br />

15000<br />

10000<br />

5000<br />

0<br />

15000<br />

10000<br />

5000<br />

0<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

Chromosomes


Detecting polymorphism<br />

between inbreds


Pairwise Polymorphism<br />

‣ At present, all bioinformatic tools helps in detecting SNPs in comparison<br />

to a reference genome<br />

‣ The challenge?<br />

‣ To identify SNPs between two inbreds<br />

‣ Try obtaining consensus sequence by mapping an inbred to reference<br />

genome, and then use the consensus as reference for further mapping?<br />

‣ Did not work as consensus is not absolute genotype<br />

‣ Cumbersome process<br />

‣ Loss of the annotations and need to reannotate the consensus


Potential problems<br />

‣ Combined mapping of inbreds to reference may help<br />

‣ Potential problems while using combined mapping approach for<br />

identifying polymorphisms between inbreds<br />

‣ It will still detect SNPs based on polymorphism in comparison to<br />

reference genome, then how to identify a SNP between inbreds?<br />

‣ Expect 50:50 alleles at a given SNP loci of inbreds?<br />

‣ Bias in number of reads from an inbred being mapped to each<br />

position?<br />

‣ False positives between inbreds?


Situation 1<br />

Combined assembly_Inbred 1 and 5<br />

Inbred 1 assembly<br />

Inbred 5 assembly<br />

SNP compared to<br />

reference<br />

(22 C/ 0T)<br />

SNP in Inbred 1<br />

compared to reference<br />

(9C/ 0T)<br />

SNP in Inbred 5<br />

compared to reference<br />

(13C/ 0T)


Not a SNP between Inbred 1 and 5<br />

Combined assembly_Inbred 1 and 5<br />

Inbred 1 assembly<br />

Inbred 5 assembly<br />

SNP compared to<br />

reference but not<br />

between the inbreds<br />

SNP in Inbred 1<br />

compared to reference<br />

assembly<br />

SNP in Inbred 5<br />

compared to reference<br />

assembly<br />

In order to be a SNP between Inbred 1 and Inbred 5, each inbred should have alternate<br />

allele (heterozygote like situation - 50:50) in combined assembly


Situation 2<br />

Combined assembly_Inbred 1 and 5<br />

Inbred 1 assembly<br />

Inbred 5 assembly<br />

Call it a SNP?<br />

Heterozygote<br />

compared to<br />

reference<br />

(12 G / 8A)<br />

Heterozygote in Inbred 1<br />

(4 G/ 4A)<br />

Heterozygote in Inbred 5<br />

(8G/ 4A)


Not a true SNP<br />

Combined assembly_Inbred 1 and 5 Inbred 1 assembly Inbred 5 assembly<br />

Heterozygote like<br />

situation (50:50)<br />

compared to<br />

reference (12 G / 8A)<br />

Heterozygote in Inbred 1<br />

(4 G/ 4A)<br />

Heterozygote in Inbred 5<br />

(8G/ 4A)<br />

Combined assembly results in heterozygote like situation (50:50) at a given position but<br />

not a true SNP between the Inbred 1 and Inbred 5


Situation 3<br />

Combined assembly_Inbred 1 and 5<br />

Inbred 1 assembly<br />

Inbred 5 assembly<br />

Call it a SNP?<br />

Heterozygote like<br />

situation (57:42)<br />

compared to<br />

reference<br />

(12C/ 9T)<br />

SNP in Inbred 1<br />

compared to reference<br />

(0C/ 9T)<br />

Not a SNP in Inbred 5<br />

compared to reference<br />

(12C/ 0T)


True SNP between Inbred 1 and 5<br />

Combined assembly_Inbred 1 and 5 Inbred 1 assembly Inbred 5 assembly<br />

Heterozygote like<br />

situation (57:43)<br />

compared to<br />

reference<br />

(12C/ 9T)<br />

SNP in Inbred 1<br />

compared to reference<br />

(0C/ 9T)<br />

Not a SNP in Inbred 5<br />

compared to reference<br />

(12C/ 0T)<br />

Combined assembly results in heterozygote like situation (57:43) at a given position and<br />

SNP between the Inbred 1 and Inbred 5


Pairwise comparison<br />

Step 1<br />

‣ Combined mapping of sequences from each pair of genotypes to the<br />

IRGSP Nipponbare reference genome<br />

Inbreds<br />

CMS lines<br />

Restorer lines<br />

Inbred 1 Inbred 2 Inbred 3 Inbred 4 Inbred 5 Inbred 6<br />

CMS lines<br />

Inbred 1 X A B D E F<br />

Inbred 2 X X C G H I<br />

Inbred 3 X X X J K L<br />

Restorer lines<br />

Inbred 4 X X X X M N<br />

Inbred 5 X X X X X O<br />

Inbred 6 X X X X X X<br />

Step 2<br />

‣ SNPs and InDels from pairwise assembly (Coverage > 9, count allele 1 ><br />

4, count allele 2 > 4)


Pairwise comparison<br />

Step 3<br />

‣ SNPs and InDels from each inbred using filters (Coverage > 4, count<br />

allele 1 > 0, count allele 2 > 0) in order to eliminate heterozygotes<br />

Step 4<br />

‣ Identify and eliminate the duplicates between each combination of<br />

assembly for a pair and eliminate<br />

‣ The SNPs remaining after eliminating the duplicates - SNPs between<br />

inbred 1 and inbred 2


Technique overcomes bias in reads<br />

SNPs_Combined assembly SNPS_Inbred 1 SNPs_Inbred 5<br />

15 reads<br />

10 reads 5 reads only


Polymorphisms - Pairwise (within group)<br />

SNPS<br />

InDels<br />

CMS line 2<br />

Restorer 2<br />

CMS line 2<br />

Restorer 2<br />

172,409<br />

(44,010)<br />

88,557<br />

(21,707)<br />

249,897<br />

(64,740)<br />

319,629<br />

(76,680)<br />

8,757<br />

(2,314)<br />

4,830<br />

(1,223)<br />

8,718<br />

(2,352)<br />

17,036<br />

(4,177)<br />

CMS line 1<br />

124,091<br />

(31,500)<br />

CMS line 3<br />

Restorer 1<br />

293,013<br />

(74,187)<br />

Restorer 3<br />

CMS line 1<br />

8,042<br />

(2,084)<br />

CMS line 3<br />

Restorer 1<br />

12,253<br />

(3,299)<br />

Restorer 3<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

CMS line 1<br />

CMS line 2<br />

CMS line 3 Restorer 1<br />

229,124<br />

(61,337)<br />

260,081<br />

(55,033) 251,876<br />

(61,396)<br />

278,365<br />

(69,441)<br />

150,822<br />

(38,403)<br />

303,763<br />

(63,861)<br />

(a)<br />

164,685<br />

(41,669)<br />

263,476<br />

(66,207)<br />

185,849<br />

(36,946)<br />

Restorer 2<br />

Restorer 3<br />

CMS line 1<br />

CMS line 2<br />

CMS line 3 Restorer 1<br />

7,905<br />

(2,251)<br />

10,618<br />

(2,913) 10,945<br />

(3,035)<br />

14,338<br />

(3,756)<br />

6,444<br />

(1,689)<br />

19,010<br />

(4,668)<br />

(b)<br />

8,952<br />

(2,312)<br />

13,976<br />

(3,618)<br />

12,085<br />

(2,391)<br />

Restorer 2<br />

Restorer 3


Polymorphisms - Pairwise (within group)<br />

SNPS<br />

CMS lines Inbred 1 Inbred 2 Inbred 3<br />

Inbred 1 X 172,409 124,091<br />

Inbred 2 X X 88,557<br />

InDels<br />

CMS lines Inbred 1 Inbred 2 Inbred 3<br />

Inbred 1 X 8,757 8,042<br />

Inbred 2 X X 4,830<br />

Inbred 3 XDiverse among X CMS X lines - Inbred 31 and XInbred 2 X X<br />

Restorers Inbred 4 Inbred 5 Inbred 6<br />

Inbred 4 X 249,897 293,013<br />

Inbred 5 X X 319,629<br />

Restorers Inbred 4 Inbred 5 Inbred 6<br />

Inbred 4 X 8,718 12,253<br />

Inbred 5 X X 17,036<br />

Inbred 6 XDiverse among X Restorers X - Inbred 65 and Inbred X 6 X X


Polymorphisms in Genes- Pairwise<br />

(within group)<br />

SNPS<br />

InDels<br />

CMS lines Inbred 1 Inbred 2 Inbred 3<br />

CMS lines Inbred 1 Inbred 2 Inbred 3<br />

Inbred 1<br />

X<br />

44,010<br />

(5,097)<br />

31,500<br />

(3,764)<br />

Inbred 1<br />

X<br />

2,314<br />

(55)<br />

2,084<br />

(51)<br />

Inbred 2 X X<br />

21,707<br />

(2,515)<br />

Inbred 2 X X<br />

1,223<br />

(32)<br />

Inbred 3 X X X<br />

Diverse among CMS lines - Inbred 1 and Inbred 2<br />

Inbred 3 X X X<br />

Restorers Inbred 4 Inbred 5 Inbred 6<br />

Restorers Inbred 4 Inbred 5 Inbred 6<br />

Inbred 4<br />

X<br />

64,740<br />

(7,266)<br />

74,187<br />

(8,948)<br />

Inbred 4<br />

X<br />

2,352<br />

(50)<br />

3,299<br />

(79)<br />

Inbred 5 X X<br />

76,680<br />

(9,388)<br />

Inbred 5 X X<br />

4,177<br />

(188)<br />

Inbred 6 X X X<br />

Diverse among Restorers - Inbred 5 and Inbred 6<br />

Inbred 6 X X X


Polymorphism - Pairwise (between group)<br />

SNPs<br />

Restorer lines<br />

Inbred 4 Inbred 5 Inbred 6<br />

Most diverse - Inbred 1 and Inbred 6<br />

CMS lines<br />

Inbred 1 260,081 278,365 303,763<br />

Inbred 2 229,124 251,876 263,476<br />

Inbred 3 150,822 164,685 185,849<br />

Least diverse - Inbred 3 and inbred 4<br />

Most diverse - Inbred 1 and Inbred 6<br />

Least diverse - Inbred 3 and inbred 4<br />

CMS lines<br />

InDels<br />

Restorer lines<br />

Inbred 4 Inbred 5 Inbred 6<br />

Inbred 1 10,618 14,338 19,010<br />

Inbred 2 7,905 10,945 13,976<br />

Inbred 3 6,444 8,952 12,085


Polymorphism in Genes - Pairwise<br />

(between group)<br />

SNPs<br />

Restorer lines<br />

Inbred 4 Inbred 5 Inbred 6<br />

Most diverse - Inbred 1 and Inbred 5<br />

CMS lines<br />

Inbred 1<br />

55,033 69,441<br />

(6,108) (8,343)<br />

Inbred 2<br />

61,337 61,396<br />

(6,833) (7,084)<br />

Inbred 3<br />

38,403 41,669<br />

(4,317) (4,979)<br />

63,861<br />

(7,785)<br />

66,207<br />

(7,808)<br />

36,946<br />

(4,413)<br />

Most diverse - Inbred 1 and Inbred 6<br />

Least diverse - Inbred 3 and inbred 4<br />

Least diverse - Inbred 3 and inbred 6<br />

CMS lines<br />

InDels<br />

Restorer lines<br />

Inbred 4 Inbred 5 Inbred 6<br />

Inbred 1<br />

2,913 3,759<br />

(50) (81)<br />

Inbred 2<br />

2,251 3,035<br />

(43) (65)<br />

Inbred 3<br />

1,689 2,312<br />

(43) (69)<br />

4,668<br />

(269)<br />

3,618<br />

(96)<br />

2,391<br />

(105)


To summarise<br />

‣ Through whole genome re-sequencing 2,819,086 non-redundant<br />

DNA polymorphisms (2,495,052 SNPs, 160,478 insertions and<br />

163,556 deletions) were discovered<br />

‣ The non-synonymous SNPs spanning the genes across the<br />

genome rice will provide valuable insights into the molecular<br />

basis of heterosis<br />

‣ Enrich the SNP resources in rice - providing high density<br />

coverage which will help in molecular breeding applications


To proceed with…<br />

‣ Hybrids involving the elite rice inbred lines are being<br />

produced and will be evaluated for yield performance<br />

‣ Genome-wide association analysis with the phenotypic<br />

traits will help in determining key genes/ alleles for<br />

predicting hybrid performance


Acknowledgements<br />

‣ Department of Science and Technology, India<br />

(BOYSCAST Fellowship)<br />

‣ Indian Council of <strong>Agricultural</strong> Research, New Delhi<br />

‣ Indian <strong>Agricultural</strong> Research Institute, New Delhi<br />

‣ Southern Cross <strong>University</strong>, Lismore, NSW, Australia


Thank you


GENETIC ENGINEERING FOR SEMI DWARF RICE<br />

USING RNA INTERFERENCE (RNAi)<br />

G.Bindusree<br />

Research Scholar<br />

Guide<br />

Dr. M. Parani<br />

Prof. & Head Department<br />

Genetic Engineering<br />

SRM <strong>University</strong>


Why Semi Dwarf Rice ??<br />

•High yielding<br />

• Responsiveness to nitrogen fertilizers<br />

• Lodging resistance<br />

Classification<br />

Tall<br />

Medium Tall<br />

Semi Dwarf<br />

Dwarf<br />

Height<br />

More than 130cm<br />

110-130 cm<br />

80-110 cm<br />

Less than 80 cm


Semi dwarf gene (sd1)<br />

Dee-geo-woo-gen was used in breeding programs in eastern Asia to<br />

produce many of the high-yielding semi dwarf cultivars grown today<br />

(383-base-pair deletion)<br />

IR8 ‘Green Revolution’<br />

Parentage: Dee-geo-woo-gen x Peta,<br />

Dwarf (80-85 cm ) Yield: 50-55 Q/ha.<br />

Phenotypic<br />

Description<br />

Semi dwarf, resistant to lodging, high yielding. Elongation of<br />

lower internodes. Defective in biosynthetic enzyme<br />

GA20ox2 that catalyzed the conversion of GA53 to GA20<br />

Sd1 gene represents a loss-of-function deletion mutation in GA20ox2 gene<br />

that codes for GA20 oxidase.


YIELD<br />

80<br />

TALL<br />

70<br />

Tikkana<br />

PMK-1<br />

60<br />

50<br />

40<br />

30<br />

20<br />

White Ponni<br />

Subramaniya Bharathi<br />

TKM-10<br />

SEMI DWARF<br />

ADT-44<br />

ADT-37<br />

CORH-2<br />

ASD-20<br />

ADTRH-1<br />

DWARF<br />

Jyothi<br />

10<br />

Annapoorna<br />

Annapurna-28<br />

0<br />

YIELD Q/ha


PARTICULARS White Ponni<br />

Parentage Mayang,Ebos-80;Taichung 65/2<br />

Duration (Days) 135-140<br />

Average Yield (kg/ha) 4500<br />

1000 grain wt (g) 16.4<br />

Grain L/B ratio 3.22<br />

Grain type<br />

Medium slender<br />

Habit<br />

Leaf sheath<br />

Septum<br />

Ligule<br />

Auricle<br />

Panicle<br />

Husk colour<br />

Rice colour<br />

Abdominal white<br />

Morphological Characters<br />

Length 8<br />

Breadth 3<br />

Thickness 2<br />

Medium tall (130-135 cm)<br />

Green<br />

Green<br />

White<br />

Colourless<br />

Long drooping<br />

Straw<br />

White<br />

Absent<br />

Grain size (mm)<br />

White Ponni


RNAi Pathway


GA Metabolic Enzymes<br />

Early steps in the pathway<br />

(CPS)-ent-copalyl diphosphate synthase<br />

(KS)-ent-Kaurene synthase<br />

(KO)-ent-Kaurene oxidase<br />

(KAO)-ent-Kaurenoic acid oxidase<br />

GA20 oxidase<br />

GA2 oxidase<br />

GA3 oxidase<br />

Later steps in the pathway<br />

GA20ox1<br />

GA20ox2 (sd1)<br />

GA20ox3<br />

GA20ox4<br />

GA2ox1<br />

GA2ox2<br />

GA2ox3<br />

GA2ox4<br />

GA3ox1<br />

GA3ox2


GA Biosynthesis in Plants<br />

trans-Geranylgeranly<br />

Diphosphate<br />

(GGDP)<br />

CDP<br />

synthase<br />

(CPS)<br />

ent-Copalyl<br />

Diphosphate<br />

(CDP)<br />

Kaurene<br />

Synthase<br />

(KS)<br />

ent-Kaurene<br />

Plastid<br />

Kaurene<br />

Oxidase (KO)<br />

GA53<br />

GA13ox<br />

ER Membrane<br />

GA12<br />

Kaurenoic acid<br />

Oxidase (KAO)<br />

ent-kaurenoic<br />

Acid (KA)<br />

GA20ox<br />

GA20ox<br />

GA20<br />

GA9<br />

GA2ox1,3<br />

GA29<br />

GA3ox<br />

GA1<br />

GA2ox1,3<br />

GA8<br />

GA2ox<br />

GA51<br />

Cytoplasm<br />

GA3ox<br />

GA4<br />

GA34<br />

GA2ox


648bp<br />

750bp<br />

1072bp<br />

2543bp<br />

3149bp<br />

GA20ox2 Gene<br />

Oryza sativa genomic DNA Acc No: AP003561, 183580bp.<br />

Gibberellin 20-oxidase gene (GA20ox2): 139292.<br />

GA20ox2 mRNA joins: EXON 1:139292 (291bp + 3’UTR 315bp = 606bp).<br />

Open Reading Frame GenBank: AP003561, 1770bp<br />

TOTAL GENOMIC CLONE WITH 2 INTRONS: 3149bp<br />

648bp 322bp 606bp<br />

EXON 1<br />

EXON 2 EXON 3


Rice Actin 1 gene(Act1)<br />

Act1-promoter Acc No: S44221, 1266bp.<br />

Efficient promoter for transgenic rice.<br />

It consists of the following-<br />

5’-flanking and 5’-transcribed sequence(Non coding exon1) and the 1Intron<br />

Long poly(dA) between -146 and -186<br />

Restriction sites-XhoI, BamHI, EcoRV


Objectives<br />

Designing RNAi constructs specific for GA20ox2<br />

Generation of transgenic rice plants by Agrobacteriummediated<br />

transformation.<br />

Molecular and Phenotypic analysis of the transgenic plants


100<br />

200<br />

300<br />

400<br />

500<br />

600<br />

700<br />

800<br />

900<br />

1000<br />

1100<br />

1200<br />

1300<br />

1400<br />

1500<br />

1576<br />

Work done so far<br />

1. Identification of trigger sequence<br />

5’ UTR<br />

OsGA20ox2<br />

3’ UTR<br />

OsGA20ox1<br />

OsGA20ox3<br />

OsGA20ox4<br />

OsGA2ox1<br />

211<br />

1195<br />

OsGA2ox2<br />

OsGA2ox3<br />

OsGA2ox4<br />

OsGA3ox1<br />

OsGA3ox2<br />

Minimum 10 contiguous nucleotide identity from ClustalW


2.Designing of the construct<br />

Kpn I<br />

Xba I<br />

Act1-Promoter 1228bp<br />

Antisense 362bp<br />

Intron1 122bp<br />

Sense 362bp<br />

hpRNA<br />

RNAi Pathway


3. Amplification of loop and Sense<br />

1 2 3<br />

Lane 1 – 100 bp marker<br />

600 bp<br />

500 bp<br />

100bp<br />

Lane 2 – amplified loop (122 bp)<br />

Lane 3 – Amplified sense (362 bp)<br />

Fig.1


4. Ligation of loop and Sense and PCR amplification of the ligated product<br />

1 2<br />

Lane 1 – 100 bp marker<br />

600 bp<br />

500 bp<br />

Lane 2 – PCR amplification of ligated<br />

product of loop+sense (484)<br />

100bp<br />

Fig.2


5. Confirmation of loop and sense ligation by sequencing<br />

CGCCAATGGGGTAATTAAAACGATGGTGGacGACATTGCATTTCAAATTCAAAACAAATTCAAAACACACCGAC<br />

CGAGATTATGcTGAATTCAAACGCGTTTGTGCGCGCAGGAGGGTGTACACGCGCTGGCTCGCGCCGCCGGCCGC<br />

CGACGCCGCCGCGACGGCGCAGGTCGAGGCAGCCAGCTGATCGCCGAACGGAACGAAACGGAACGAACAGAA<br />

GCCGATTTTTGGCGGGGCCCACGTGGGGGATTTGCCCACGTGAGGCCCCACGTGGACAGTGGGCCCGGGCGGA<br />

GGTGGCACCCACGTGGACCGCGGGCCCCGCGCCGCCTTCCAATTTTGGACCCTACCGCTGTACATATTCATATATT<br />

GCAAGAAGAAGCAAAACGTACGTGTGGGTTGGGTTGGGCTTCTCTCTATTACTAAAAAAAATATAATGGAACG<br />

ACGGATGAATGGATGCTTATTTATTTATCTAAATTGAATTCGAATTCGGcTCAA


6. Amplification of Actin promoter and cloning in to pUC18<br />

1 2<br />

1 2 3 4<br />

3 kb<br />

2 kb<br />

1 kb<br />

3 kb<br />

2 kb<br />

1 kb<br />

Fig.3<br />

Lane 1 – Amplified Actin promoter (1.2 kb)<br />

Lane 2 – 1 kb maker<br />

Lane 1,4 - 1 kb marker<br />

Lane 2<br />

Lane 3<br />

Fig.4<br />

– pUC 18 DD with XbaI and<br />

KpnI and eluted<br />

– Actin DD with XbaI and<br />

KpnI and eluted


Biochemical Pathway for GA Biosynthesis<br />

1 st stage (Proplastids)<br />

Geranylgeranyl<br />

diphosphate<br />

CPS<br />

ent- copalyl<br />

diphosphate<br />

KS<br />

Ent-kaurene<br />

2 nd stage (Endoplasmic Reticulum)<br />

GA13ox GA7ox<br />

GA 53 GA12 GA 12 -aldehyde<br />

KAO<br />

Ent-7α hydroxy<br />

Kaurenoic acid<br />

KAO<br />

KO<br />

Ent-Kaurenoic<br />

acid<br />

GA 51<br />

Non-13 hydroxylation pathway<br />

GA 12<br />

GA20ox<br />

GA 15<br />

GA 24<br />

GA 53 GA 44<br />

3 rd stage (Cytosol)<br />

GA20ox<br />

GA2ox<br />

GA20ox<br />

GA20ox GA20ox GA20ox<br />

GA 19<br />

GA 9<br />

GA3ox<br />

GA3ox<br />

GA2ox<br />

GA3ox<br />

GA 5<br />

Early-13 hydroxylation pathway<br />

GA 4<br />

GA 34<br />

GA 20<br />

GA3ox<br />

GA2ox<br />

GA 1 GA 8<br />

GA 3


Structural and functional analysis of<br />

glyoxalase I promoter from rice<br />

Arul L, Suresh Kumar*, Kushboo R, Sivaranjani S, LathaMageswari V, Kumar<br />

KKK, Kokiladevi E, Sudhakar D, Balasubramanian P<br />

Centre for Plant Molecular Biology & Biotechnology<br />

<strong>Tamil</strong> <strong>Nadu</strong> <strong>Agricultural</strong> <strong>University</strong>, Coimbatore -641 003 (TN)<br />

*Division of Crop Improvement, I.G.F.R.I., Jhansi -284 003 (UP)


About Promoters<br />

• cis-acting, regulatory element<br />

• Indispensible component for the expression of gene(s)<br />

+1<br />

5’ - ’ promoter Gene (CDS) Ter - 3’<br />

(mRNA)


Promoter types<br />

Constitutive promoters<br />

• CaMv35S, maize Ubi, rice Act-1<br />

Inducible promoters<br />

• rd29A, PR1<br />

Tissue specific promoters<br />

• TA9, Gt1


Inducible promoter<br />

• Induced by the presence of biotic or abiotic factors<br />

• Regulated expression<br />

need based, switching on/off of gene expression (only at<br />

times of stress)<br />

• Adds greater strength to the transgenic technology<br />

(Kasuga et al., 2004)<br />

• Recent research on ABA, salt and drought stress inducible<br />

promoters in rice<br />

OsABA2 (Rai et al., 2009)<br />

Wsi18 (N et al., 2011)


Current study<br />

Objectives:<br />

Cloning and characterization of the promoter of a known<br />

stress inducible gene, glyoxalase I (glyI) from rice<br />

Functional characterization of the isolated promoter for<br />

expression and inducibility under abiotic stress conditions<br />

in transgenic rice


About glyoxalase I (glyI)<br />

• Glyoxalase pathway is universal, off shoot of glyocolysis<br />

• GlyI catalyzes the first step towards detoxification of methylgloxal (MG)<br />

• Increased glyI activity in meristematic tissues and cells undergoing<br />

stress (abiotic)<br />

Plant cells under stress<br />

(Sethi et al., 1988; Deswal et al., 1993; Veena et al., 1999;<br />

Mustafiz et al, 2011)<br />

Adaptive measures<br />

Additional energy<br />

requirement(demand for ATP)<br />

Increased rate of glycolysis<br />

• Methylglyoxal is detoxified via S-D-Lactoylglutathione<br />

into lactate and glutathione<br />

Accumulation of methylglyoxal<br />

Upregulation of gly pathway<br />

Detoxification of methylglyoxal


Work done – promoter cloning<br />

1. The glyI sequence from cv. Nipponbare (Usui et al., 2001)<br />

2. A 3 kb sequence upstream of AUG of glyI was identified from<br />

the BAC clone (OSJNBa0056006) sequence<br />

3. PCR amplification of a 2120 bp region from the genomic DNA of<br />

Nipponbare<br />

4. Sequencing and in silico analysis<br />

rev<br />

for<br />

Pst I<br />

EcoR I


Work done - genetic transformation<br />

5. Cloning the putative pglyI promoter, Pst I - EcoR I restriction<br />

fragment of 1545 bp in front of a promoter less GUS vector<br />

(pCAMBIA 1391z)<br />

6. Generation of stable rice transformants (cv. Pusa Basmati1)<br />

using the putative pglyI -1391z


Results<br />

1. Structural analysis of (pglyI)<br />

• Transcription start site (TSS) predicted at 825 th base from the 5’-<br />

end of the sequence on the plus strand<br />

• TATA box “CTATAAATAC” was predicted between 791 and 801<br />

bases<br />

• Region between 826 base and 1545 base consisted of an initial<br />

UTR exon and first intron<br />

<br />

First intron fall between 1464 and 1545 bases<br />

• GenBank submission: EU605981.1


Structure of pglyI and maize pUbi<br />

Similar architecture, between pglyI and, maize ubiquitin promoter (Christensen et al., 1992)<br />

pUbi<br />

pglyI


Upstream (-825 to +1 bases) stress responsive<br />

motifs<br />

Motifs<br />

Conserved<br />

Sequence<br />

Location<br />

( 5’- end)<br />

Implicated function<br />

ABRE motif -A TACGTGTC 111 An Abscisic acid response element, ABA<br />

induced transcription in rice<br />

ABRE-like<br />

sequence<br />

ACGTG 267 Dehydration stress and dark-induced<br />

senescence<br />

Anaerobic box AAACAAA 421 Motifs found in anaerobically induced genes<br />

MYB core CNGTTR 556, 689 Binding site for MYB, responds to<br />

dehydration stress<br />

WRKY box TGAC 29, 43 WRKY proteins are involved in pathogen<br />

defense<br />

CE CGACG 544 Coupling element along with ABRE motif<br />

SAUR motif CATATG 490, 550 Auxin response modules<br />

G box TTTAA 752 bZIPs transcription binding site


Functional analysis<br />

• Six pglyI transgenic Pusa Basmati (T 0 ) events<br />

were confirmed by PCR<br />

• Stable GUS assay showed blue color<br />

development<br />

Transient GUS<br />

Expression<br />

Stable GUS<br />

Expression


Localization of GUS Expression<br />

TS<br />

GUS assay of shoots<br />

LS


GUS PCR<br />

• Homozygous line identified in one of the<br />

above event at T2 generation<br />

PCR for uidA gene


2. Function of induciblity<br />

• ABA stress (40 micro moles) @ 3 week seedlings in<br />

hydroponics<br />

• Semi-quantitative RT-PCR for GUS in two different<br />

transgenic lines (pglyI-GUS) & (pCaMV 35S-GUS)<br />

L1- pCaMV 35-GUS (0 hour)<br />

L2- pCaMV 35-GUS (4 hour)<br />

L3- pgly GUS (0 hour)<br />

L4- pgly GUS (4 hour)<br />

Rice Actin<br />

GUS<br />

L1 L2 L3 L4


Conclusion<br />

• The cloned promoter region (pglyI)<br />

successfully drive the expression of transgene<br />

(GUS)<br />

• Low/moderate level of constitutive GUS<br />

expression under normal conditions<br />

• Preliminary expression analysis suggest, the<br />

promoter is inturn inducible under ABA stress


• Thanks


+1 (825 base)<br />

5’-<br />

Promoter (825 bases)<br />

UTR exon (637 bases)<br />

Intron (81 bases)<br />

1 base 1545 base<br />

- 3’<br />

Initial UTR exon<br />

826 -1463<br />

First intron<br />

1464-1545

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!