21.11.2014 Views

on some aspects in the theory of the estermann zeta-function

on some aspects in the theory of the estermann zeta-function

on some aspects in the theory of the estermann zeta-function

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

115<br />

Proc. Sci. Sem<strong>in</strong>ar<br />

Faculty <strong>of</strong> Physics and Ma<strong>the</strong>matics, Šiauliai University,<br />

5, 2002, 115–130<br />

ON SOME ASPECTS IN THE THEORY<br />

OF THE ESTERMANN ZETA-FUNCTION<br />

Rasa ŠLEŽEVIČIENĖ<br />

Department <strong>of</strong> Ma<strong>the</strong>matics and Informatics, Vilnius University, Naugarduko 24, 2600<br />

Vilnius, Lithuania<br />

e-mail: rasa.slezeviciene@maf.vu.lt<br />

Abstract. This paper gives an overview <strong>on</strong> <strong>some</strong> results <strong>on</strong> <strong>the</strong> mean-square, universality<br />

and zero-distributi<strong>on</strong> <strong>of</strong> <strong>the</strong> Estermann <strong>zeta</strong>-functi<strong>on</strong>.<br />

Key words: Estermann <strong>zeta</strong>-functi<strong>on</strong>, zero-distributi<strong>on</strong>, universality, mean-square.<br />

1. Introducti<strong>on</strong><br />

As usual, let s = σ + it be a complex variable. Fur<strong>the</strong>r, let k and l be coprime<br />

<strong>in</strong>tegers and def<strong>in</strong>e for a fixed complex number α <strong>the</strong> generalized divisor functi<strong>on</strong><br />

by<br />

σ α (n) = ∑ d α .<br />

d|n<br />

Then, for σ > max{1 + Re α, 1}, <strong>the</strong> Estermann <strong>zeta</strong>-functi<strong>on</strong> with parameters k l<br />

and α is def<strong>in</strong>ed by<br />

E<br />

(s; k )<br />

l , α =<br />

One can f<strong>in</strong>d <strong>the</strong> representati<strong>on</strong><br />

E<br />

(s; k )<br />

l , α<br />

= l α−s l∑<br />

f=1<br />

∞∑<br />

n=1<br />

σ α (n)<br />

n s<br />

{<br />

exp 2π<strong>in</strong> k }<br />

. (1)<br />

l<br />

{<br />

exp 2πi fk }<br />

L<br />

(1, f ) ( ) fk<br />

l l , s − α L<br />

l , 1, s , (2)<br />

where L(λ, α, s) stands for <strong>the</strong> Lerch <strong>zeta</strong>-functi<strong>on</strong>, given by<br />

L(λ, α, s) =<br />

∞∑<br />

n=0<br />

exp{2π<strong>in</strong>λ}<br />

(n + α) s<br />

for σ > 1, 0 < α 1 and real λ. Thus, E(s; k l<br />

, α) can be analytically c<strong>on</strong>t<strong>in</strong>ued to a<br />

meromorphic functi<strong>on</strong> <strong>in</strong> s, which is regular <strong>in</strong> <strong>the</strong> whole complex plane up to two


116 On <strong>some</strong> <strong>aspects</strong> <strong>in</strong> <strong>the</strong> <strong>the</strong>ory <strong>of</strong> <strong>the</strong> Estermann <strong>zeta</strong>-functi<strong>on</strong><br />

simple poles at s = 1 and s = 1 + α if α ≠ 0, resp. <strong>on</strong>e double pole at s = 1 if<br />

α = 0. With <strong>the</strong> functi<strong>on</strong>al equati<strong>on</strong> <strong>of</strong> <strong>the</strong> Lerch <strong>zeta</strong>-functi<strong>on</strong> <strong>on</strong>e gets<br />

E<br />

(s; k )<br />

l , α<br />

= 1 ( 2π<br />

π l<br />

{<br />

×<br />

− cos<br />

) 2s−1−α<br />

Γ(1 − s)Γ(1 + α − s)<br />

( )<br />

)<br />

πα<br />

cos E<br />

(1 + α − s; k∗<br />

2<br />

l , α<br />

(<br />

πs − πα 2<br />

)<br />

E<br />

(1 + α − s; − k∗<br />

l , α )}<br />

,<br />

(3)<br />

where k ∗ is def<strong>in</strong>ed by kk ∗ ≡ 1 mod l. S<strong>in</strong>ce σ α (n) = n α σ −α (n) we have fur<strong>the</strong>r<br />

E<br />

(s; k )<br />

l , α = E<br />

(s − α; k )<br />

l , −α . (4)<br />

Therefore, throughout <strong>the</strong> paper we may assume that a := Re α 0.<br />

The Estermann <strong>zeta</strong>-functi<strong>on</strong> was <strong>in</strong>troduced by Estermann <strong>in</strong> 1930 for α = 0<br />

[2]. He <strong>in</strong>vestigated <strong>the</strong> number D(n) <strong>of</strong> soluti<strong>on</strong>s <strong>of</strong><br />

xy + zt = n<br />

and showed that<br />

D(n) = n<br />

2∑<br />

(log n) r<br />

r=0<br />

2∑ ∑<br />

c rs d −1 (log d) s + E(n),<br />

s=0<br />

∑<br />

with certa<strong>in</strong> c<strong>on</strong>stants c rs and an error term E(n) ≪ n 7 8 (log n) 23 4<br />

d|n d− 3 4 .<br />

In 1987 Kiuchi <strong>in</strong> his work <strong>on</strong> exp<strong>on</strong>ential sum <strong>in</strong>volv<strong>in</strong>g <strong>the</strong> generalized divisor<br />

functi<strong>on</strong> [11] def<strong>in</strong>ed E(s; k l , α) for α ∈ (−1, 0]. S<strong>in</strong>ce σ α(n) is an analytic functi<strong>on</strong><br />

<strong>in</strong> α <strong>the</strong> results above hold by analytic c<strong>on</strong>t<strong>in</strong>uati<strong>on</strong> for any complex α.<br />

The Estermann <strong>zeta</strong>-functi<strong>on</strong> was studied <strong>in</strong> papers <strong>of</strong> Jutila and Furuya with<br />

regard to <strong>the</strong> divisor problem (see [3], [9]), and by Ivić [7] for an analytic c<strong>on</strong>t<strong>in</strong>uati<strong>on</strong><br />

<strong>of</strong> <strong>the</strong> error term <strong>in</strong> <strong>the</strong> mean square formula <strong>of</strong> <strong>the</strong> Riemann <strong>zeta</strong>-functi<strong>on</strong>.<br />

The values at <strong>the</strong> <strong>in</strong>tegers were <strong>in</strong>vestigated by Ishibashi [8].<br />

In this paper we will present <strong>some</strong> mean-value <strong>the</strong>orems for <strong>the</strong> Estermann<br />

<strong>zeta</strong>-functi<strong>on</strong>. Also we will discuss <strong>the</strong> universality property <strong>of</strong> <strong>the</strong> Estermann <strong>zeta</strong>functi<strong>on</strong><br />

with certa<strong>in</strong> parameters and we will c<strong>on</strong>clude with <strong>some</strong> results <strong>on</strong> <strong>the</strong><br />

zero-distributi<strong>on</strong>.<br />

d|n


R. Šleževičienė 117<br />

2. Mean-square<br />

It is very important to have knowledge <strong>on</strong> <strong>the</strong> moments <strong>of</strong> <strong>the</strong> Estermann <strong>zeta</strong>functi<strong>on</strong><br />

<strong>in</strong> <strong>the</strong> <strong>in</strong>vestigati<strong>on</strong>s <strong>on</strong> <strong>the</strong> zero-distributi<strong>on</strong> and <strong>the</strong> universality <strong>of</strong> this<br />

functi<strong>on</strong>. Kamiya [10] obta<strong>in</strong>ed an approximate functi<strong>on</strong>al equati<strong>on</strong> for E(s; k l , 0)<br />

and deduced, for A > 49,<br />

l∑<br />

∫<br />

k=1<br />

(k,l)=1[−T,T ]\[−A,A]<br />

( 1<br />

∣ E 2 + it; k )∣ ∣∣∣<br />

2<br />

l , 0 dt ≪ lT (log(lT )) 4 , (5)<br />

as T → ∞. In this secti<strong>on</strong> we present fur<strong>the</strong>r mean-square estimates and formulae<br />

for <strong>the</strong> Estermann <strong>zeta</strong>-functi<strong>on</strong>, which were obta<strong>in</strong>ed by Steud<strong>in</strong>g and <strong>the</strong> author<br />

<strong>in</strong> [20].<br />

Theorem 1. We have uniformly for l T , as T → ∞,<br />

1<br />

ϕ(l)<br />

l∑<br />

k=1<br />

(k,l)=1<br />

<strong>the</strong> implicit c<strong>on</strong>stants do not depend <strong>on</strong> l.<br />

∫ T<br />

1<br />

( 1<br />

∣ E 2 + it; k )∣ ∣∣∣<br />

2<br />

l , 0 dt ≍ T (log T ) 4 ;<br />

This improves slightly Kamiya’s result (5) for highly composite l T . The<br />

pro<strong>of</strong> even allows to give a (complicated) mean-square formula. For simplicity we<br />

c<strong>on</strong>sider <strong>on</strong>ly prime l.<br />

Theorem 2. Let l be a prime number. Then for sufficiently large T<br />

l−1 ∫ T<br />

∑<br />

k=1 1<br />

( 1<br />

∣ E 2 + it; k )∣ ∣∣∣<br />

2<br />

l , 0<br />

dt = l5 − l 4 + 7l 3 − 11l 2 + 5l + 1<br />

2π 2 (l − 1)l 2 T (log T ) 4<br />

(l + 1)<br />

+ O(T (log T ) 3 ).<br />

The pro<strong>of</strong>s <strong>of</strong> <strong>the</strong>se results use a representati<strong>on</strong> <strong>of</strong> E(s; k l<br />

, α) by Dirichlet L-functi<strong>on</strong>s.<br />

First, we recall <strong>some</strong> basics <strong>on</strong> characters and <strong>the</strong>ir associated Dirichlet series.<br />

The Dirichlet L-functi<strong>on</strong> to a character mod q, q ∈ N, is for σ > 1 given by<br />

L(s, χ) =<br />

∞∑<br />

n=1<br />

χ(n)<br />

n s<br />

= ∏ p<br />

(<br />

1 − χ(p)<br />

p s ) −1<br />

,<br />

where <strong>the</strong> product is taken over all prime numbers p. We def<strong>in</strong>e <strong>the</strong> Gauss sum<br />

associated to a Dirichlet character χ mod q by<br />

τ(χ) =<br />

∑ (<br />

χ(f) exp 2πi f )<br />

.<br />

q<br />

f mod q


118 On <strong>some</strong> <strong>aspects</strong> <strong>in</strong> <strong>the</strong> <strong>the</strong>ory <strong>of</strong> <strong>the</strong> Estermann <strong>zeta</strong>-functi<strong>on</strong><br />

It is known that for coprime <strong>in</strong>tegers f, q and for a character χ mod q <strong>the</strong> follow<strong>in</strong>g<br />

relati<strong>on</strong> holds<br />

(<br />

exp 2πi f )<br />

= 1 ∑<br />

τ(χ)χ(f), (6)<br />

q ϕ(q)<br />

χ mod q<br />

where ϕ is Euler’s totient. In view <strong>of</strong> <strong>the</strong> orthog<strong>on</strong>ality relati<strong>on</strong> for characters this<br />

identity is equivalent to<br />

χ(f)τ(χ) =<br />

∑ (<br />

χ(j) exp 2πi jf )<br />

.<br />

q<br />

j mod q<br />

Note, that <strong>the</strong> latter formula holds without any restricti<strong>on</strong>s (not necessarily f coprime<br />

to q) if χ is primitive. Each character is <strong>in</strong>duced by a primitive character.<br />

Us<strong>in</strong>g (6) <strong>on</strong>e can show that<br />

(<br />

exp 2πi f )<br />

= 1<br />

q ϕ(q)<br />

∑<br />

m|q<br />

(m,q/m)=1<br />

µ(q/m)<br />

∑<br />

χ mod m<br />

primitive<br />

τ(χ)χ(f(q/m) ∗ ).<br />

This gives, for arbitrary s,<br />

E<br />

(s; k )<br />

l , α = ∑ d|l<br />

= ∑ d|l<br />

×<br />

∞∑<br />

n=1<br />

σ α (n)<br />

n s<br />

1<br />

d s ϕ(l/d)<br />

∞∑<br />

m=1<br />

(<br />

exp 2πi kn/d )<br />

l/d<br />

∑<br />

b|l/d<br />

(b,l/db)=1<br />

σ α (dm)<br />

m s χ(m).<br />

µ(l/db)<br />

∑<br />

χ mod b<br />

primitive<br />

τ(χ)χ(kd(l/b) ∗ )<br />

(7)<br />

Us<strong>in</strong>g <strong>the</strong> Euler product representati<strong>on</strong> <strong>of</strong> ∑ ∞<br />

m=1<br />

where<br />

∞∑<br />

m=1<br />

λ(s; d, χ, α) := ∏ p|d<br />

σ α (dm)<br />

m<br />

χ(m), we obta<strong>in</strong><br />

s<br />

σ α (dm)<br />

m s χ(m) = λ(s; d, χ, α)L(s, χ) L(s − α, χ),<br />

1 + χ(p)p α(ν(d;p)+1)−s − χ(p)p α−s − p α(ν(d;p)+1)<br />

1 − p α<br />

if α ≠ 2πiv<br />

log p<br />

, v ∈ Z, and<br />

(<br />

λ s; d, χ, 2πiv )<br />

:= ∏ (<br />

ν(d; p) + 1 − ν(d; p)χ(p)p<br />

−s ) ;<br />

log p<br />

p|d


R. Šleževičienė 119<br />

here ν(d; p) is <strong>the</strong> exp<strong>on</strong>ent <strong>of</strong> <strong>the</strong> prime p <strong>in</strong> <strong>the</strong> unique prime factorizati<strong>on</strong> <strong>of</strong> d.<br />

By <strong>the</strong> orthog<strong>on</strong>ality relati<strong>on</strong> for characters we have<br />

l∑<br />

(<br />

∣ E s; k )∣ ∣∣∣<br />

2<br />

l , α =ϕ(l) ∑ 1 ∑<br />

d 2σ ϕ(l/d) 2 µ(l/db) 2 b<br />

d|l<br />

k=1<br />

(k,l)=1<br />

This gives<br />

l∑<br />

k=1<br />

(k,l)=1<br />

∫2T<br />

T<br />

× ∑<br />

χ mod b<br />

primitive<br />

( 1<br />

∣ E 2 + it; k )∣ ∣∣∣<br />

2<br />

l , 0 dt =ϕ(l) ∑ d|l<br />

b|l/d<br />

(b,l/db)=1<br />

|λ(s; d, χ, α)| 2 |L(s, χ) L(s − α, χ)| 2 .<br />

× ∑<br />

χ mod b<br />

primitive<br />

1<br />

dϕ(l/d) 2<br />

∫2T<br />

T<br />

∑<br />

b|l/d<br />

(b,l/db)=1<br />

( )∣ ×<br />

1 ∣∣∣<br />

4<br />

∣ L 2 + it, χ dt.<br />

µ(l/db) 2 b<br />

( )∣ 1 ∣∣∣<br />

2<br />

∣ λ 2 + it; d, χ, 0<br />

Let η(b) denote <strong>the</strong> number <strong>of</strong> primitive characters χ mod b. Tak<strong>in</strong>g <strong>in</strong>to account<br />

Wang’s asymptotic formula for <strong>the</strong> fourth power moment <strong>of</strong> Dirichlet L-functi<strong>on</strong>s<br />

[24]<br />

∑<br />

χ mod b<br />

primitive<br />

∫2T<br />

T<br />

for 1 < b T , we get<br />

where<br />

( )∣ 1 ∣∣∣<br />

4<br />

∣ L 2 + it, χ<br />

l∑<br />

k=1<br />

(k,l)=1<br />

Σ := ∑ d|l<br />

∫2T<br />

T<br />

dt = η(b)<br />

2π 2 ∏<br />

p|b<br />

(<br />

1 − 1 ) 4 (<br />

1 − 1 ) −1<br />

p p 2 T (log(bT )) 4<br />

+ O((bT ) ε m<strong>in</strong>{b 9 8 T<br />

7<br />

8 , bT<br />

11<br />

12 }),<br />

( 1<br />

∣ E 2 + it; k )∣ ∣∣∣<br />

2<br />

l , 0 dt ≍ ϕ(l)T (log T ) 4 · Σ,<br />

σ 0 (d) 2<br />

dϕ(l/d) 2<br />

∑<br />

b|l/d<br />

(b,l/db)=1<br />

µ(l/db) 2 η(b)b ∏ p|b<br />

(<br />

1 − 1 p) 4<br />

;<br />

note that Wang’s formula holds also <strong>in</strong> <strong>the</strong> case b = 1, <strong>the</strong> well-known case <strong>of</strong> <strong>the</strong><br />

fourth moment <strong>of</strong> ζ(s), first proved by Ingham [6]. As a Dirichlet c<strong>on</strong>voluti<strong>on</strong> <strong>of</strong><br />

multiplicative functi<strong>on</strong>s Σ is multiplicative itself. This leads to <strong>the</strong> estimate<br />

Σ ≍ ∏ (1 + 4 ( )) ( 1<br />

p + O p 2 1 − 1 4<br />

≍ 1,<br />

p)<br />

p|l<br />

(8)


120 On <strong>some</strong> <strong>aspects</strong> <strong>in</strong> <strong>the</strong> <strong>the</strong>ory <strong>of</strong> <strong>the</strong> Estermann <strong>zeta</strong>-functi<strong>on</strong><br />

which proves Theorem 1.<br />

To obta<strong>in</strong> Theorem 2 note that for prime l<br />

( )∣ 1 ∣∣∣<br />

2<br />

∣ λ 2 + it; l, χ, 0 = 4 − 4Re {χ(l)l − 1 2 −it } + |χ(l)| 2 l −1 .<br />

Therefore, we can rewrite (8) as<br />

2T<br />

l∑<br />

∫<br />

( 1<br />

∣ E 2 + it; k )∣ ∣∣∣<br />

2<br />

l , 0 dt<br />

or<br />

k=1<br />

T<br />

(k,l)=1<br />

⎧<br />

( ⎪⎨ ∫2T<br />

( )∣<br />

1<br />

= ϕ(l)<br />

1 ∣∣∣<br />

4<br />

ϕ(l) 2 ⎪ ∣ ζ ⎩ 2 + it dt + l<br />

l∑<br />

k=1<br />

(k,l)=1<br />

+ 1 l<br />

∫2T<br />

T<br />

∫2T<br />

T<br />

T<br />

∑<br />

χ mod l<br />

primitive<br />

∫2T<br />

(<br />

4 + 1 ∣ ( )∣ ∣∣∣<br />

l − 4Re {l− 1 1 ∣∣∣<br />

4<br />

2 }) −it ζ<br />

2 + it dt<br />

( 1<br />

∣ E 2 + it; k )∣ ∣∣∣<br />

2<br />

l , 0<br />

dt = 4l3 − 6l 2 + 2l + 1<br />

l 2 (l − 1)<br />

+ l<br />

l − 1<br />

∑<br />

χ mod l<br />

primitive<br />

T<br />

∫2T<br />

T<br />

⎫<br />

( )∣ 1 ∣∣∣<br />

4 ⎪⎬<br />

∣ L 2 + it, χ dt<br />

⎪⎭<br />

∫2T<br />

T<br />

)<br />

,<br />

( )∣ 1 ∣∣∣<br />

4<br />

∣ ζ 2 + it dt<br />

( )∣ 1 ∣∣∣<br />

4<br />

∣ L 2 + it, χ dt<br />

plus an error term which does not exceed <strong>the</strong> modulus <strong>of</strong> <strong>the</strong> real part <strong>of</strong> <strong>the</strong> <strong>in</strong>tegral<br />

∫2T<br />

( )∣ I := exp(−it log l)<br />

1 ∣∣∣<br />

4<br />

∣ ζ 2 + it dt<br />

T<br />

( )∣ ≪ max<br />

1 ∣∣∣<br />

4 (<br />

∣) T t2T<br />

∣ ζ 2 + it m<strong>in</strong><br />

d<br />

∣∣∣ −1<br />

T t2T<br />

∣dt exp(−it log l) .<br />

A simple calculati<strong>on</strong> gives <strong>the</strong> mean-square formula <strong>of</strong> <strong>the</strong> <strong>the</strong>orem.<br />

To <strong>the</strong> right we have<br />

Theorem 3. For σ > 1 2 ,<br />

∫<br />

1<br />

T<br />

(<br />

lim<br />

T →∞ T ∣ E σ + it; k )∣ ∣∣∣<br />

2<br />

l , α<br />

1<br />

Fur<strong>the</strong>r, if a < 0, <strong>the</strong>n for T > 2<br />

⎧<br />

∫ T<br />

(<br />

∣ E σ + it; k )∣ ∣∣∣<br />

2 ⎨<br />

l , α dt ≪<br />

1<br />

dt = ζ(2σ − 2a)ζ(2σ − a)2 ζ(2σ)<br />

.<br />

ζ(4σ − 2a)<br />

T (log T ) 2 if σ = 1 2 ,<br />

T<br />

⎩<br />

2(1−σ) if a + 1 2 < σ < 1 2 ,<br />

T 1−2a (log T ) 2 if σ = a + 1 2 ;<br />

<strong>the</strong> implicit c<strong>on</strong>stants <strong>in</strong> <strong>the</strong> estimates depend <strong>on</strong> l, σ and α.


R. Šleževičienė 121<br />

In <strong>the</strong> formulati<strong>on</strong> <strong>of</strong> <strong>the</strong> <strong>the</strong>orem, ζ(s) is <strong>the</strong> famous Riemann <strong>zeta</strong>-functi<strong>on</strong>,<br />

for σ > 1 def<strong>in</strong>ed by<br />

ζ(s) =<br />

∞∑ 1<br />

n s = ∏ p<br />

n=1<br />

(<br />

1 − 1 p s ) −1<br />

.<br />

This <strong>the</strong>orem can be proved by classical arguments, i.e. <strong>the</strong> mean-square <strong>the</strong>orems<br />

for Dirichlet series and Carls<strong>on</strong>’s <strong>the</strong>orem.<br />

3. Universality<br />

Vor<strong>on</strong><strong>in</strong> [22] proved a remarkable universality property <strong>of</strong> <strong>the</strong> Riemann <strong>zeta</strong>functi<strong>on</strong>,<br />

namely that any n<strong>on</strong>-vanish<strong>in</strong>g analytic functi<strong>on</strong> g(s), def<strong>in</strong>ed <strong>on</strong> <strong>the</strong> disc<br />

|s| < 1 4<br />

, and c<strong>on</strong>t<strong>in</strong>uous <strong>on</strong> <strong>the</strong> boundary, can be approximated to any degree <strong>of</strong><br />

accuracy by ζ(s) <strong>some</strong>where <strong>in</strong> <strong>the</strong> strip 1 2<br />

< σ < 1. Later, it was even proved that<br />

<strong>the</strong> set <strong>of</strong> translati<strong>on</strong>s <strong>of</strong> ζ(s) which approximate a given functi<strong>on</strong> g(s) has a positive<br />

lower (Lebesgue-) density; see [12]. This result was extended, for example, to<br />

jo<strong>in</strong>t universality for Dirichlet L-functi<strong>on</strong>s by Vor<strong>on</strong><strong>in</strong> himself [23], to universality<br />

for Dedek<strong>in</strong>d <strong>zeta</strong>-functi<strong>on</strong>s by Reich [17], for Hurwitz <strong>zeta</strong>-functi<strong>on</strong>s by Bagchi [1],<br />

for Dirichlet series with multiplicative coefficients by Laur<strong>in</strong>čikas [12], Laur<strong>in</strong>čikas<br />

and <strong>the</strong> author [14], and for more general Dirichlet series by G<strong>on</strong>ek [5], Laur<strong>in</strong>čikas,<br />

Schwarz and Steud<strong>in</strong>g [13]. The L<strong>in</strong>nik-Ibragimov c<strong>on</strong>jecture states that all functi<strong>on</strong>s<br />

given by Dirichlet series, analytically c<strong>on</strong>t<strong>in</strong>uable to <strong>the</strong> left <strong>of</strong> <strong>the</strong> half-plane<br />

<strong>of</strong> absolute c<strong>on</strong>vergence, and which satisfy <strong>some</strong> natural growth c<strong>on</strong>diti<strong>on</strong>s, are<br />

universal.<br />

We add to <strong>the</strong> known examples <strong>of</strong> Dirichlet series with <strong>the</strong> universality property<br />

certa<strong>in</strong> Estermann <strong>zeta</strong>-functi<strong>on</strong>s. For this purpose we exchange, as <strong>in</strong> Secti<strong>on</strong><br />

2, <strong>in</strong> formula (1) <strong>the</strong> additive character exp(2π<strong>in</strong> k l<br />

) by a multiplicative character<br />

χ mod l. Therefore we def<strong>in</strong>e, for σ > 1,<br />

E(s; χ, α) =<br />

∞∑<br />

n=1<br />

σ α (n)<br />

n s χ(n). (9)<br />

The identity (6) leads to a representati<strong>on</strong> <strong>of</strong> Estermann <strong>zeta</strong>-functi<strong>on</strong>s by <strong>the</strong> Dirichlet<br />

series E(s, χ, α) given by (9). For <strong>the</strong> sake <strong>of</strong> simplicity we may assume that<br />

α ≠ 2πiv<br />

log l<br />

, v ∈ Z, throughout this secti<strong>on</strong>.<br />

For prime l we have<br />

E<br />

(s; k )<br />

l , α = 1 ∑<br />

τ(χ)χ(k)E(s; χ, α) + Λ(s; α)E(s; χ 0 , α), (10)<br />

ϕ(l)<br />

χ mod l<br />

χ≠χ 0<br />

where<br />

Λ(s; α) := l − l1+α−s − l 1+2α + l 1+2α−s − l s + l α+s<br />

l s (l − 1)(1 − l α )(1 − l −s )(1 − l α−s .<br />

)


122 On <strong>some</strong> <strong>aspects</strong> <strong>in</strong> <strong>the</strong> <strong>the</strong>ory <strong>of</strong> <strong>the</strong> Estermann <strong>zeta</strong>-functi<strong>on</strong><br />

This formula should be compared with (7).<br />

As a Dirichlet series with multiplicative coefficients E(s; χ, α) possesses an Euler<br />

product. Note that for prime l and a character χ mod l <strong>the</strong> follow<strong>in</strong>g relati<strong>on</strong>s hold:<br />

if χ ≠ χ 0 , and o<strong>the</strong>rwise<br />

E(s; χ, α) = 1<br />

τ(χ)<br />

∑<br />

j mod l<br />

χ(j)E<br />

(s; j )<br />

l , α<br />

E(s; χ 0 , α) = ls − l s+α − 1 + l α−s + l 2α − l 2α−s<br />

l s (1 − l α E(s; 1, α).<br />

)<br />

In any case,<br />

E(s; χ, α) = ∏ p<br />

(<br />

1 − χ(p)<br />

p s ) −1 (<br />

1 − χ(p)<br />

p s−α ) −1<br />

= L(s, χ) L(s − α, χ);<br />

<strong>the</strong> Euler product representati<strong>on</strong> is valid for σ > max{1 + Re α, 1} while <strong>the</strong> latter<br />

identity holds throughout <strong>the</strong> whole complex plane. In particular, E(s; χ, α) is an<br />

entire functi<strong>on</strong> if χ is n<strong>on</strong>-pr<strong>in</strong>cipal, whereas E(s; χ 0 , α) is analytic <strong>in</strong> C except for<br />

poles at s = 1, 1 + α.<br />

Note that <strong>the</strong> functi<strong>on</strong>s E(s; χ, α) have better analytic properties than Estermann<br />

<strong>zeta</strong>-functi<strong>on</strong>s (which seems to be caused by <strong>the</strong> Euler product). We know this<br />

phenomen<strong>on</strong> from multiplicative twists (Dirichlet L-functi<strong>on</strong>s) and additive twists<br />

(Lerch <strong>zeta</strong>-functi<strong>on</strong>s) <strong>of</strong> <strong>the</strong> Riemann <strong>zeta</strong>-functi<strong>on</strong>.<br />

Now we can add to <strong>the</strong> known examples <strong>of</strong> Dirichlet series with <strong>the</strong> universality<br />

property certa<strong>in</strong> Estermann <strong>zeta</strong>-functi<strong>on</strong>s. Garunkštis, Laur<strong>in</strong>čikas, Steud<strong>in</strong>g and<br />

<strong>the</strong> author proved <strong>in</strong> [4]<br />

Theorem 4. Suppose that a < −1, l 5 is prime, and that<br />

∞∑<br />

j=1<br />

|σ α (p j )|<br />

p jβ < 1 (11)<br />

holds for p = 2, 3 and <strong>some</strong> β ∈ ( 1 2<br />

, 1). Let K be a compact subset <strong>of</strong> <strong>the</strong> vertical<br />

strip β < σ < 1 with c<strong>on</strong>nected complement, and let g(s) be a c<strong>on</strong>t<strong>in</strong>uous functi<strong>on</strong><br />

<strong>on</strong> K which is holomorphic <strong>in</strong> <strong>the</strong> <strong>in</strong>terior <strong>of</strong> K. Then, for any ɛ > 0,<br />

lim <strong>in</strong>f<br />

T →∞<br />

{<br />

1<br />

T meas τ ∈ [0, T ] : max<br />

s∈K<br />

(<br />

∣ E s + iτ; k ) }<br />

l , α − g(s)<br />

∣ < ε > 0.<br />

The pro<strong>of</strong> <strong>of</strong> this <strong>the</strong>orem is based <strong>on</strong> a jo<strong>in</strong>t universality <strong>the</strong>orem for E(s; χ, α)<br />

proved by <strong>the</strong> author <strong>in</strong> [18].<br />

We say that a multiplicative functi<strong>on</strong> f bel<strong>on</strong>gs to <strong>the</strong> class M χ = M χ (c 1 , β,<br />

θ, c 2 ) if <strong>the</strong> follow<strong>in</strong>g axioms are satisfied:


R. Šleževičienė 123<br />

1) <strong>the</strong>re exists a c<strong>on</strong>stant c 1 such that |f(n)| c 1 for all n ∈ N;<br />

2) <strong>the</strong> associated Dirichlet series<br />

Z(s, f) :=<br />

∞∑<br />

n=1<br />

f(n)<br />

n s<br />

has an analytic c<strong>on</strong>t<strong>in</strong>uati<strong>on</strong> <strong>of</strong> f<strong>in</strong>ite order to <strong>the</strong> half plane σ β with <strong>some</strong><br />

β ∈ ( 1 2<br />

, 1), except for at most <strong>on</strong>e simple pole at s = 1;<br />

3) for σ β <strong>the</strong> estimate<br />

∫ T<br />

0<br />

|Z(σ + it, f)| 2 dt ≪ T<br />

holds, as T → ∞;<br />

4) for 1 h m, coprime to m, exist positive c<strong>on</strong>stants θ h such that<br />

lim<br />

x→∞<br />

1<br />

π(x; h, m)<br />

∑<br />

px<br />

p≡h mod m<br />

|f(p)| 2 = θ h ,<br />

where <strong>the</strong> sum is taken over all prime numbers p x, and where π(x; h, m)<br />

counts <strong>the</strong> primes p x <strong>in</strong> <strong>the</strong> residue class h mod m;<br />

5) <strong>the</strong>re exists a c<strong>on</strong>stant c 2 such that <strong>the</strong> estimate<br />

∞∑<br />

j=1<br />

|f(p j )|<br />

p jβ c 2 < 1<br />

holds for all primes p.<br />

Let χ be a character. We c<strong>on</strong>sider <strong>the</strong> associated twists <strong>of</strong> <strong>the</strong> Dirichlet series<br />

with multiplicative coefficients f(n), given by<br />

Then<br />

Z(s, fχ) =<br />

∞∑<br />

n=1<br />

f(n)χ(n)<br />

n s<br />

= ∏ p<br />

⎛<br />

⎝1 +<br />

∞∑<br />

j=1<br />

⎞<br />

f(p j )χ(p j )<br />

⎠<br />

p js .<br />

Theorem 5. Suppose that χ 1 , . . . , χ N are pairwise n<strong>on</strong>-equivalent caharcters, and<br />

that fχ j ∈ M χ for 1 j N. For 1 j N let K j be a compact subset <strong>of</strong><br />

D := {s ∈ C : β < σ < 1} with c<strong>on</strong>nected complement, and g j (s) be a c<strong>on</strong>t<strong>in</strong>uous<br />

n<strong>on</strong>-vanish<strong>in</strong>g functi<strong>on</strong> <strong>on</strong> K j which is analytic <strong>in</strong> <strong>the</strong> <strong>in</strong>terior <strong>of</strong> K j . Then, for<br />

any ε > 0,<br />

lim <strong>in</strong>f<br />

T →∞<br />

{<br />

}<br />

1<br />

T meas max max |Z(s + iτ, fχ j ) − g j (s)| < ε > 0.<br />

1jn s∈K j<br />

From this jo<strong>in</strong>t universality we will deduce


124 On <strong>some</strong> <strong>aspects</strong> <strong>in</strong> <strong>the</strong> <strong>the</strong>ory <strong>of</strong> <strong>the</strong> Estermann <strong>zeta</strong>-functi<strong>on</strong><br />

Corollary 6. Suppose that Re α = a < −1, l 5 is prime, and that axiom (11)<br />

is fulfilled for p = 2, 3 with <strong>some</strong> β ∈ ( 1 2 , 1). For 1 j n let χ j be pairwise n<strong>on</strong>equivalent<br />

characters mod l, and let K j be a compact subset <strong>of</strong> D with c<strong>on</strong>nected<br />

complement, and let g j (s) be a c<strong>on</strong>t<strong>in</strong>uous n<strong>on</strong>-vanish<strong>in</strong>g functi<strong>on</strong> <strong>on</strong> K j which is<br />

analytic <strong>in</strong> <strong>the</strong> <strong>in</strong>terior <strong>of</strong> K j . Then, for any ε > 0,<br />

lim <strong>in</strong>f<br />

T →∞<br />

{<br />

}<br />

1<br />

T meas max max |E(s + iτ, χ j , α) − g j (s)| < ε > 0.<br />

1jn s∈K j<br />

Pro<strong>of</strong>. S<strong>in</strong>ce σ α (n) is multiplicative, and, for a < −1,<br />

∑<br />

|σ α (n)χ(n)| σ a (n) d a < ζ(−a) = c 1 .<br />

In view <strong>of</strong> well-known properties <strong>of</strong> Dirichlet L-functi<strong>on</strong>s axiom 2 <strong>on</strong> analytic c<strong>on</strong>t<strong>in</strong>uati<strong>on</strong><br />

and, by Theorem 3, axiom 3 <strong>on</strong> <strong>the</strong> mean-square are fulfilled for any<br />

β ∈ ( 1 2<br />

, 1). S<strong>in</strong>ce<br />

⎛<br />

∑<br />

px<br />

p≡h mod l<br />

|σ α (p)χ(p)| 2 = ∑ px<br />

p≡h mod l<br />

dn<br />

⎜<br />

1 + O ⎝<br />

∑<br />

px<br />

p≡h mod l<br />

p a ⎞<br />

⎟<br />

⎠ = π(x; h, l) + O(1),<br />

axiom 4 is also fulfilled. It rema<strong>in</strong>s to check axiom 5. S<strong>in</strong>ce |σ α (p j )χ(p j )| σ a (p j ),<br />

a short computati<strong>on</strong> shows<br />

∞∑<br />

j=1<br />

|σ α (p j )χ(p j )|<br />

p jβ<br />

<br />

1 + p a+β − p a − p β−a<br />

(p β − 1)(p β−a − 1)(p a − 1) .<br />

Therefore, if a < −1, <strong>the</strong>n <strong>in</strong>equality (11) holds for all primes p 5 with any β > 1 2 .<br />

Hence, <strong>the</strong> asserti<strong>on</strong> <strong>of</strong> <strong>the</strong> corollary follows from Theorem 5.<br />

Sketch <strong>of</strong> <strong>the</strong> pro<strong>of</strong> <strong>of</strong> Theorem 4. Let<br />

<strong>the</strong>n c χ ≠ 0. Then, by (10),<br />

E<br />

(s; k )<br />

l , α = ∑<br />

c χ := τ(χ)χ(k) ,<br />

ϕ(l)<br />

c χ E(s; χ, α) + Λ(s; α)E(s; χ 0 , α). (12)<br />

χ mod l<br />

Put F := 1 + sup s∈K |g(s)|. Then g(s) + F ≠ 0 for s ∈ K. Now def<strong>in</strong>e<br />

g χ1 (s) = g(s) + F<br />

c χ1<br />

, g χ2 = − F<br />

c χ2<br />

, and g χ0 (s) = g χj (s) = η


R. Šleževičienė 125<br />

for j = 3, . . . , l − 2, where η is a small positive parameter, chosen later (here we<br />

need l 5). Hence, us<strong>in</strong>g (12), for any τ,<br />

E<br />

(s + iτ, k )<br />

l , α − g(s) = ∑<br />

c χ (E(s + iτ; χ, α) − g χ (s))<br />

χ≠χ 0<br />

⎛<br />

⎞<br />

∑l−1<br />

+ η ⎝ c χj + Λ(s; α) ⎠ + Λ(s + iτ; α)E(s + iτ; χ 0 , α)<br />

j=3<br />

− Λ(s; α)g χ0 (s).<br />

Tak<strong>in</strong>g <strong>the</strong> maximum over all s ∈ K, us<strong>in</strong>g jo<strong>in</strong>t universality for E(s; χ, α) and<br />

tak<strong>in</strong>g <strong>in</strong>to account that Λ(s; α) ≪ l, we obta<strong>in</strong><br />

max<br />

s∈K<br />

(<br />

∣ E s + iτ, k ) l , α − g(s)<br />

<br />

∣ Cl(δ + η),<br />

where <strong>the</strong> c<strong>on</strong>stant C is absolute. With δ and η sufficiently small we obta<strong>in</strong> <strong>the</strong><br />

asserti<strong>on</strong> <strong>of</strong> <strong>the</strong> <strong>the</strong>orem.<br />

It rema<strong>in</strong>s to show that <strong>the</strong> estimate (11) holds for p = 2, 3 with certa<strong>in</strong> values<br />

<strong>of</strong> α <strong>in</strong> <strong>the</strong> half plane a < −1 and <strong>some</strong> β ∈ ( 1 2 , 1). Therefore, take β = 4 5 , <strong>the</strong>n<br />

(11) is true for p = 3. Fur<strong>the</strong>r, α with<br />

Im α ≡<br />

π mod 2π,<br />

log 2<br />

leads to<br />

σ α (2 j ) = 1 − 2 a ± . . . + (−1) j 2 a = 1 − (−2a ) j+1<br />

1 + 2 a ,<br />

and we can bound <strong>the</strong> left hand side <strong>of</strong> (11) by<br />

∞∑ |σ α (2 j )|<br />

j=1<br />

2 j 4 5<br />

= 1 ( 1<br />

1 + 2 a 2 4 5 − 1 − 2 a )<br />

< 1<br />

2 4 5 −a + 1<br />

for −1.7 a < −1. Hence, for example E(s; 1 5 , − 3 2 + i π<br />

log 2<br />

) has <strong>the</strong> universality<br />

property <strong>in</strong> <strong>the</strong> strip 4 5<br />

< σ < 1. Obviously, a choice <strong>of</strong> β close to 1 would imply<br />

universality for E(s; k l<br />

, α) with less restricted α. We have failed to prove universality<br />

for arbitrary Estermann <strong>zeta</strong>-functi<strong>on</strong>s E(s; k l<br />

, α) or functi<strong>on</strong>s E(s; χ, α). However,<br />

we believe that all <strong>in</strong> this paper appear<strong>in</strong>g <strong>zeta</strong>-functi<strong>on</strong>s have <strong>the</strong> universality<br />

property.


126 On <strong>some</strong> <strong>aspects</strong> <strong>in</strong> <strong>the</strong> <strong>the</strong>ory <strong>of</strong> <strong>the</strong> Estermann <strong>zeta</strong>-functi<strong>on</strong><br />

4. Zero-distributi<strong>on</strong><br />

Denote <strong>the</strong> zeros <strong>of</strong> E(s; k l<br />

, α) by ρ = β + iγ. The Estermann <strong>zeta</strong>-functi<strong>on</strong><br />

is presented by a Dirichlet series not identically equal to 0. Hence, <strong>the</strong>re exists a<br />

zero-free regi<strong>on</strong> <strong>on</strong> <strong>the</strong> right. It is not difficult to show that<br />

E<br />

(s; k )<br />

l , α ≠ 0 for σ > 3.<br />

Us<strong>in</strong>g <strong>the</strong> functi<strong>on</strong>al equati<strong>on</strong> (3) and tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong> n<strong>on</strong>-vanish<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

Gamma-functi<strong>on</strong> and <strong>the</strong> zero-free regi<strong>on</strong> <strong>on</strong> <strong>the</strong> right, we get that for σ < −2 + a<br />

<strong>the</strong> functi<strong>on</strong> E(s; k l<br />

, α) can <strong>on</strong>ly have zeros close to <strong>the</strong> negative real axis. We call<br />

zeros ρ <strong>of</strong> E(s; k l<br />

, α) with β < −2 + a trivial. One can easily locate those zeros and<br />

prove that <strong>the</strong> number <strong>of</strong> trivial zeros ρ with |ρ| T is ≍ T . We call o<strong>the</strong>r zeros <strong>of</strong><br />

E(s; k l<br />

, α) n<strong>on</strong>trivial. Therefore, <strong>the</strong> n<strong>on</strong>trivial zeros lie <strong>in</strong> <strong>the</strong> vertical strip<br />

−2 + a σ 3.<br />

Apply<strong>in</strong>g ideas <strong>of</strong> Littlewood [16] and Lev<strong>in</strong>s<strong>on</strong> and M<strong>on</strong>tgomery [15] Steud<strong>in</strong>g<br />

and <strong>the</strong> author proved <strong>in</strong> [19]<br />

Theorem 7. Let B > 3 − a be a c<strong>on</strong>stant. Then, as T tends to <strong>in</strong>f<strong>in</strong>ity,<br />

∑<br />

β>−B<br />

|γ|T<br />

(B + β) = (2B + a + 1) T π log T l + O(log T ).<br />

2πe<br />

Sketch <strong>of</strong> <strong>the</strong> pro<strong>of</strong> <strong>of</strong> Theorem 7. The pro<strong>of</strong> relies ma<strong>in</strong>ly <strong>on</strong><br />

Lemma 8 (Littlewood). Let f(s) be regular <strong>in</strong> and up<strong>on</strong> <strong>the</strong> boundary <strong>of</strong> <strong>the</strong> rectangle<br />

R with vertices b, b + iT, a + iT, a, and not zero <strong>on</strong> σ = b. Denote by ν(σ, T ) <strong>the</strong><br />

number <strong>of</strong> zeros ρ = β + iγ <strong>of</strong> f(s) <strong>in</strong>side <strong>the</strong> rectangle with β > σ <strong>in</strong>clud<strong>in</strong>g those<br />

with γ = T but not γ = 0. Then<br />

∫<br />

R<br />

∫ a<br />

log f(s)ds = −2πi ν(σ, T )dσ.<br />

b<br />

This is an <strong>in</strong>tegrated versi<strong>on</strong> <strong>of</strong> <strong>the</strong> pr<strong>in</strong>ciple <strong>of</strong> <strong>the</strong> argument (for a pro<strong>of</strong> see<br />

[21], §9.9 or [16]).<br />

By <strong>the</strong> c<strong>on</strong>diti<strong>on</strong> <strong>on</strong> B, all n<strong>on</strong>trivial zeros <strong>of</strong> E(s; k l<br />

, α) have real parts <strong>in</strong> (−B, 4).<br />

Write N(σ, T ; k l , α) for <strong>the</strong> number <strong>of</strong> n<strong>on</strong>trivial zeros ρ <strong>of</strong> E(s; k l<br />

, α) with β > σ


R. Šleževičienė 127<br />

and |γ| T . Let R be a rectangle with vertices 4 ± iT, −B ± iT Then Littlewood’s<br />

lemma states<br />

∫<br />

R<br />

log E<br />

(s, k )<br />

∫ 4<br />

l , α ds + O(1) = −2πi<br />

−B<br />

N<br />

(σ, T ; k )<br />

l , α dσ,<br />

here <strong>the</strong> error term occurs from <strong>the</strong> poles at s = 1 and s = 1 + α. Hence<br />

2π ∑<br />

(B + β) + O(1) =<br />

β>−B<br />

|γ|T<br />

∫ T<br />

−T<br />

∫ T<br />

−<br />

−<br />

+<br />

( log<br />

∣ E − B + it; k )∣ ∣∣∣<br />

l , α dt<br />

−T<br />

∫ 4<br />

−B<br />

∫ 4<br />

−B<br />

log<br />

∣<br />

(4 E + it; k )∣ ∣∣∣<br />

l , α dt<br />

arg E<br />

(σ − iT ; k )<br />

l , α dσ<br />

arg E<br />

(σ + iT ; k )<br />

l , α dσ =<br />

4∑<br />

I j ,<br />

say. To def<strong>in</strong>e log E(s; k l<br />

, α) we choose <strong>the</strong> pr<strong>in</strong>cipal branch <strong>of</strong> <strong>the</strong> logarithm <strong>on</strong> <strong>the</strong><br />

real axis, as σ → ∞; for o<strong>the</strong>r po<strong>in</strong>ts s <strong>the</strong> value <strong>of</strong> <strong>the</strong> logarithm is obta<strong>in</strong>ed by<br />

analytic c<strong>on</strong>t<strong>in</strong>uati<strong>on</strong>.<br />

The first <strong>in</strong>tegral gives <strong>the</strong> ma<strong>in</strong> term <strong>in</strong> <strong>the</strong> formula <strong>of</strong> Theorem 7. For its<br />

computati<strong>on</strong> we use <strong>the</strong> functi<strong>on</strong>al equati<strong>on</strong> for <strong>the</strong> Estermann <strong>zeta</strong>-functi<strong>on</strong> and<br />

Stirl<strong>in</strong>g’s formula. The sec<strong>on</strong>d <strong>in</strong>tegral is bounded and <strong>the</strong> horiz<strong>on</strong>tal <strong>in</strong>tegrals are<br />

<strong>of</strong> oder log T by a standard argument, us<strong>in</strong>g Jensen’s formula.<br />

By Theorem 7 we can obta<strong>in</strong> a formula for <strong>the</strong> number <strong>of</strong> n<strong>on</strong>trivial zeros. Denote<br />

by N(T ; k l , α) <strong>the</strong> number <strong>of</strong> n<strong>on</strong>trivial zeros ρ <strong>of</strong> E(s; k l<br />

, α) with |γ| T (accord<strong>in</strong>g<br />

multiplicities). Us<strong>in</strong>g <strong>the</strong> formula <strong>of</strong> Theorem 7 with B + 1 <strong>in</strong>stead <strong>of</strong> B, we get<br />

after subtract<strong>in</strong>g <strong>the</strong> result<strong>in</strong>g formula from <strong>the</strong> <strong>on</strong>e above<br />

Corollary 9.<br />

As T tends to <strong>in</strong>f<strong>in</strong>ity,<br />

N<br />

(T ; k )<br />

l , α = 2 T lT<br />

log + O(log T ).<br />

π 2πe<br />

j=1<br />

Note that <strong>the</strong> ma<strong>in</strong> term <strong>in</strong> <strong>the</strong> asymptotic formula does not depend <strong>on</strong> k and<br />

α.<br />

Multiply<strong>in</strong>g <strong>the</strong> formula <strong>of</strong> Corollary 9 with B and subtract<strong>in</strong>g it from <strong>the</strong> formula<br />

<strong>of</strong> Theorem 7 gives


128 On <strong>some</strong> <strong>aspects</strong> <strong>in</strong> <strong>the</strong> <strong>the</strong>ory <strong>of</strong> <strong>the</strong> Estermann <strong>zeta</strong>-functi<strong>on</strong><br />

Corollary 10.<br />

We have, as T tends to <strong>in</strong>f<strong>in</strong>ity,<br />

1 ∑<br />

N(T ; k l , α) β = a + 1 + O(T −1 ).<br />

2<br />

ρ n<strong>on</strong>trivial<br />

|γ|T<br />

One may <strong>in</strong>terpret <strong>the</strong> last formula <strong>in</strong> <strong>the</strong> sense that <strong>the</strong> mean value <strong>of</strong> <strong>the</strong> real<br />

parts <strong>of</strong> <strong>the</strong> n<strong>on</strong>trivial zeros <strong>of</strong> E(s; k a+1<br />

l<br />

, α) is<br />

2<br />

. However, <strong>in</strong> <strong>the</strong> example<br />

E(s; 1, α) = ζ(s)ζ(s − α) (13)<br />

we expect no zeros ly<strong>in</strong>g <strong>on</strong> <strong>the</strong> l<strong>in</strong>e σ = a+1<br />

2<br />

unless a ≠ 0.<br />

Moreover, we can prove upper bounds for <strong>the</strong> number <strong>of</strong> zeros <strong>in</strong> half-planes <strong>on</strong><br />

<strong>the</strong> right, namely<br />

Theorem 11. We have uniformly <strong>in</strong> δ > 0, as T tends to <strong>in</strong>f<strong>in</strong>ity,<br />

( 1<br />

N<br />

2 + δ, T ; k )<br />

(<br />

l , α T log log T log log T<br />

≪ ≪<br />

δ δ log T N T ; k )<br />

l , α ,<br />

and, for fixed σ > 1 2 ,<br />

N<br />

(σ, T ; k )<br />

l , α ≪ T.<br />

Sketch <strong>of</strong> <strong>the</strong> pro<strong>of</strong> <strong>of</strong> Theorem 11. With similar arguments as <strong>in</strong> <strong>the</strong> pro<strong>of</strong> <strong>of</strong><br />

Theorem 7 we obta<strong>in</strong> for every δ > 0<br />

δN<br />

(σ + δ, T ; k )<br />

l , α =δ ∑ ∑<br />

1 (β − σ) = 1 ∫<br />

log E<br />

(s; k )<br />

2π<br />

l , α ds<br />

= 1<br />

2π<br />

β>σ+δ<br />

∫ T<br />

−T<br />

β>σ<br />

|γ|T<br />

By Jensen’s <strong>in</strong>equality,<br />

∫<br />

1<br />

T<br />

log<br />

2π ∣<br />

(σ E + it; k )∣ ∣∣∣<br />

l , α dt T { 1<br />

<br />

4π log T<br />

−T<br />

log<br />

∣<br />

(σ E + it; k )∣ ∣∣∣<br />

l , α dt + O(log T ).<br />

∫ T<br />

−T<br />

(<br />

∣ E σ + it; k )∣ ∣∣∣<br />

2 }<br />

l , α dt .<br />

Now Theorem 3 yields <strong>the</strong> estimates <strong>of</strong> Theorem 11.<br />

By <strong>the</strong> last <strong>the</strong>orem <strong>the</strong> number <strong>of</strong> zeros <strong>on</strong> <strong>the</strong> right <strong>of</strong><br />

σ = 1 log t<br />

+ φ(t)log<br />

2 log t<br />

has zero density <strong>in</strong> <strong>the</strong> set <strong>of</strong> all n<strong>on</strong>trivial zeros, whenever φ(t) is a positive functi<strong>on</strong><br />

which tends with t to <strong>in</strong>f<strong>in</strong>ity. We c<strong>on</strong>jecture that <strong>the</strong> example (13) is typical, i. e.<br />

that a positive proporti<strong>on</strong> <strong>of</strong> <strong>the</strong> n<strong>on</strong>trivial zeros is clustered around <strong>the</strong> l<strong>in</strong>es σ = 1 2<br />

and σ = 1 2 + a.<br />

We c<strong>on</strong>clude with <strong>some</strong> c<strong>on</strong>sequence <strong>of</strong> <strong>the</strong> universality property. Therefore, we<br />

assume that E(s; k l<br />

, α) satisfies all c<strong>on</strong>diti<strong>on</strong>s <strong>of</strong> Theorem 4. In comb<strong>in</strong>ati<strong>on</strong> with<br />

<strong>the</strong> upper estimates <strong>of</strong> Theorem 11 we obta<strong>in</strong> now for <strong>the</strong> number N(σ, T ; k l<br />

, α) <strong>the</strong><br />

right order.


R. Šleževičienė 129<br />

Corollary 12.<br />

T → ∞,<br />

Under <strong>the</strong> assumpti<strong>on</strong>s <strong>of</strong> Theorem 4 we have for σ > 1 2 , as<br />

T ≪ N<br />

(σ, T ; k )<br />

l , α ≪ T.<br />

Therefore, such Estermann <strong>zeta</strong>-functi<strong>on</strong>s have many zeros <strong>of</strong>f <strong>the</strong> l<strong>in</strong>es σ = 1 2<br />

and σ = 1 2<br />

+ a whereas for E(s; 1, α) = ζ(s)ζ(s − α) it is expected that all n<strong>on</strong>trivial<br />

zeros lie exactly <strong>on</strong> <strong>the</strong>se l<strong>in</strong>es.<br />

REFERENCES<br />

[1] B. Bagchi, A jo<strong>in</strong>t universality <strong>the</strong>orem for Dirichlet L-functi<strong>on</strong>s, Math. Z. 181, 319–334<br />

(1992).<br />

[2] T. Estermann, On <strong>the</strong> representati<strong>on</strong> <strong>of</strong> a number as <strong>the</strong> sum <strong>of</strong> two products, Proc. L<strong>on</strong>d<strong>on</strong><br />

Math. Soc. 31, 123–133 (1930).<br />

[3] J. Furuya, Mean square <strong>of</strong> an error term related to a certa<strong>in</strong> exp<strong>on</strong>ential sum <strong>in</strong>volv<strong>in</strong>g <strong>the</strong><br />

divisor functi<strong>on</strong>, Number <strong>the</strong>ory and its applicati<strong>on</strong>s, Kyoto 1997, 111–127 , Kluwer Acad.<br />

Publ., Dordrecht (1999).<br />

[4] R. Garunkštis, A. Laur<strong>in</strong>čikas, R. Šleževičienė, J. Steud<strong>in</strong>g, On <strong>the</strong> universality <strong>of</strong> Estermann<br />

<strong>zeta</strong>-functi<strong>on</strong>s, Analysis (to appear).<br />

[5] S. M. G<strong>on</strong>ek, Analytic properties <strong>of</strong> <strong>zeta</strong> and L-functi<strong>on</strong>s, Ph. D. Thesis, University <strong>of</strong><br />

Michigan (1979).<br />

[6] A. E. Ingham, Mean value <strong>the</strong>orems <strong>in</strong> <strong>the</strong> <strong>the</strong>ory <strong>of</strong> <strong>the</strong> Riemann <strong>zeta</strong>-functi<strong>on</strong>, Proc. L<strong>on</strong>d<strong>on</strong><br />

Math. Soc. 27, 273–300 (1926).<br />

[7] A. Ivic, Mean values <strong>of</strong> <strong>the</strong> Riemann <strong>zeta</strong>-functi<strong>on</strong>, Tata Institute <strong>of</strong> Fundamental Research,<br />

Bombay (1991).<br />

[8] M. Ishibashi, The value <strong>of</strong> <strong>the</strong> Estermann <strong>zeta</strong>-functi<strong>on</strong>s at s = 0, Acta Arith. 73, 357-361<br />

(1995).<br />

[9] M. Jutila, On exp<strong>on</strong>ential sums <strong>in</strong>volv<strong>in</strong>g <strong>the</strong> divisor functi<strong>on</strong>, J. re<strong>in</strong>e angew. Math. 355,<br />

173-190 (1985).<br />

[10] Y. Kamiya, On <strong>the</strong> mean square <strong>of</strong> <strong>the</strong> Estermann <strong>zeta</strong>-functi<strong>on</strong>, Number <strong>the</strong>ory and its applicati<strong>on</strong>s<br />

(Japanese) (Kyoto, 1997); Surkaisekikenkyusho Kokyuroku 1060, 166-171 (1998).<br />

[11] I. Kiuchi, On an exp<strong>on</strong>ential sum <strong>in</strong>volv<strong>in</strong>g <strong>the</strong> arithmetic functi<strong>on</strong> σ a (n), Math. J. Okayama<br />

Univ. 29, 193-205 (1987).<br />

[12] A. Laur<strong>in</strong>čikas, Limit <strong>the</strong>orems for <strong>the</strong> Riemann <strong>zeta</strong>-functi<strong>on</strong>, Kluwer Academic Publishers,<br />

Dordrecht (1996).<br />

[13] A. Laur<strong>in</strong>čikas, W. Schwarz, J. Steud<strong>in</strong>g, The universality <strong>of</strong> general Dirichlet series, prepr<strong>in</strong>t<br />

(2002).<br />

[14] A. Laur<strong>in</strong>čikas, R. Šleževičienė, The universality <strong>of</strong> <strong>zeta</strong>-functi<strong>on</strong>s with multiplicative coefficients,<br />

Integral transforms and special functi<strong>on</strong>s 13, 243–257 (2002).<br />

[15] N. Lev<strong>in</strong>s<strong>on</strong>, H. L. M<strong>on</strong>tgomery, Zeros <strong>of</strong> <strong>the</strong> derivative <strong>of</strong> <strong>the</strong> Riemann <strong>zeta</strong>-functi<strong>on</strong>, Acta<br />

Math. 133, 49–65 (1974).<br />

[16] J. E. Littlewood, On <strong>the</strong> zeros <strong>of</strong> <strong>the</strong> Riemann zetra-functi<strong>on</strong>, Proc. Cambridge Phil. Soc.<br />

22, 295–318 (1924).


130 On <strong>some</strong> <strong>aspects</strong> <strong>in</strong> <strong>the</strong> <strong>the</strong>ory <strong>of</strong> <strong>the</strong> Estermann <strong>zeta</strong>-functi<strong>on</strong><br />

[17] A. Reich, Wertverteilung v<strong>on</strong> Zetafunkti<strong>on</strong>en, Arch. Math. 34, 440–451 (1980).<br />

[18] R. Šleževičienė, The jo<strong>in</strong>t universality for twists <strong>of</strong> Dirichlet series with multiplicative coefficients<br />

by characters,<br />

Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> III Internati<strong>on</strong>al C<strong>on</strong>ference <strong>in</strong> Palanga ”Analytic<br />

and Probabilistic methods <strong>in</strong> Number Theory”, 24-28 September, 2001 (to appear).<br />

[19] R. Šleževičienė, J. Steud<strong>in</strong>g, On <strong>the</strong> zeros <strong>of</strong> <strong>the</strong> Estermann <strong>zeta</strong>-functi<strong>on</strong>, Integral transforms<br />

and special functi<strong>on</strong>s 13, 363–371 (2002).<br />

[20] R. Šleževičienė, J. Steud<strong>in</strong>g, The mean-square <strong>of</strong> <strong>the</strong> Estermann <strong>zeta</strong>-functi<strong>on</strong>, (submitted<br />

for publicati<strong>on</strong>).<br />

[21] E. C. Titchmarsh, The <strong>the</strong>ory <strong>of</strong> <strong>the</strong> Riemann <strong>zeta</strong>-functi<strong>on</strong>, 2nd ed., revised by D.R. Heath-<br />

Brown, Oxford University Press (1986).<br />

[22] S. M. Vor<strong>on</strong><strong>in</strong>, Theorem <strong>on</strong> <strong>the</strong> ’universality’ <strong>of</strong> <strong>the</strong> Riemann <strong>zeta</strong>-functi<strong>on</strong>, Izv. Akad. Nauk<br />

SSSR, Ser. Matem. 39, 475-786 (1975). (<strong>in</strong> Russian) // Math. USSR Izv. 9, 443–453<br />

(1975).<br />

[23] S. M. Vor<strong>on</strong><strong>in</strong>, On <strong>the</strong> functi<strong>on</strong>al <strong>in</strong>dependence <strong>of</strong> Dirichlet L-functi<strong>on</strong>s, Acta. Arit. 27,<br />

493–503 (1975).<br />

[24] W. Wang, Fourth power mean value <strong>of</strong> Dirichlet’s L-functi<strong>on</strong>s, G<strong>on</strong>g, Sheng (Eds.) et al.,<br />

Internati<strong>on</strong>al symposium <strong>on</strong> number <strong>the</strong>ory and analysis <strong>in</strong> memory <strong>of</strong> Hua Loo Keng, Beij<strong>in</strong>g<br />

1988, Vol 1, Number <strong>the</strong>ory, Spr<strong>in</strong>ger 293–321 (1991).<br />

Kai kurie Estermano d<strong>zeta</strong> funkcijos teorijos aspektai<br />

R. Šleževičienė<br />

Straipsnyje pateikiama kai kuri¸u Estermano d<strong>zeta</strong> funkcijos teorijos rezultat¸u apžvalga.<br />

Rankraštis gautas<br />

2002 07 02

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!