21.11.2014 Views

Transforming Education in Electric Energy Systems Marija Ilic - ecedha

Transforming Education in Electric Energy Systems Marija Ilic - ecedha

Transforming Education in Electric Energy Systems Marija Ilic - ecedha

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Transform<strong>in</strong>g</strong> <strong>Education</strong> <strong>in</strong> <strong>Electric</strong> <strong>Energy</strong><br />

<strong>Systems</strong><br />

<strong>Marija</strong> <strong>Ilic</strong><br />

Professor of <strong>Electric</strong>al and Computer Eng<strong>in</strong>eer<strong>in</strong>g<br />

and Eng<strong>in</strong>eer<strong>in</strong>g and Public Policy<br />

milic@ece.cmu.edu<br />

ECEDHA <strong>Energy</strong> Workshop<br />

November 1,2010


Outl<strong>in</strong>e<br />

Boom-and-bust cycles of electric energy systems<br />

education <strong>in</strong> the United States<br />

Difficult <strong>in</strong>itial conditions<br />

Societal transformational changes ---<br />

implement<strong>in</strong>g susta<strong>in</strong>able Socio-Ecological <strong>Energy</strong><br />

<strong>Systems</strong> (SEES)<br />

The transformational role of man-made power<br />

grids and its Information Communications<br />

Technology (ICT)?


Many boom-and-bust cycles <strong>in</strong> the US electric energy<br />

education<br />

Boom #1 : The biggest contribution of the 20 th century –<br />

electrification; Well established programs (even entire<br />

departments on electric power eng<strong>in</strong>eer<strong>in</strong>g—RPI).<br />

Bust #1: Clos<strong>in</strong>g of power eng<strong>in</strong>eer<strong>in</strong>g programs and labs at<br />

lead<strong>in</strong>g universities; education and research on life support.<br />

Boom #2: Restructur<strong>in</strong>g of electric power <strong>in</strong>dustry--- economics,<br />

policy discipl<strong>in</strong>es ga<strong>in</strong> recognition. Eng<strong>in</strong>eer<strong>in</strong>g knowledge<br />

assumed.<br />

Bust #2: Restructur<strong>in</strong>g problems –markets ``not work<strong>in</strong>g’’—<br />

they never were designed nor implemented to support physics of<br />

electric power grids.<br />

Boom #3: <strong>Energy</strong> and environment emerge as key social goals.<br />

Young m<strong>in</strong>ds very excited and motivated to make the vision a<br />

reality.<br />

Bust#3--??? The biggest danger--- overwhelm<strong>in</strong>g complexity;<br />

change driven by technology breakthroughs, social drivers. A<br />

very real danger of not meet<strong>in</strong>g the expectations.


Difficult Initial Initial Conditions Conditions<br />

For a long time not recognized as the key <strong>in</strong>tellectual<br />

discipl<strong>in</strong>e<br />

<br />

- complexity of problems the same as <strong>in</strong> <strong>in</strong>tegrated circuits,<br />

healthcare, transportation, and many other complex network<br />

systems.<br />

Hard to attract the best young m<strong>in</strong>ds<br />

- fund<strong>in</strong>g and <strong>in</strong>stitutional encouragement lack<strong>in</strong>g<br />

- electric power <strong>in</strong>dustry has not offered the most excit<strong>in</strong>g jobs<br />

- non-competitive salaries<br />

``The only <strong>in</strong>dustry <strong>in</strong> which it is impossible to do<br />

<strong>in</strong>novation’’ (quote from a major venture capitalist)<br />

Mov<strong>in</strong>g forward--Requires patience and<br />

perseverance


Transformational Social Changes:<br />

Natural Socio-Ecological <strong>Energy</strong> <strong>Systems</strong><br />

(SEES) <strong>in</strong>teract<strong>in</strong>g with the man-made<br />

<strong>in</strong>frastructures<br />

Recent framework for characteriz<strong>in</strong>g<br />

natural SESs ; core- and second-level<br />

variables [1]<br />

Man-made <strong>in</strong>frastructure design problem:<br />

Make any given natural SEES as susta<strong>in</strong>able<br />

as possible [2]


Some New Problem Pos<strong>in</strong>g Challenges<br />

Def<strong>in</strong>e core sub-system variables of an SEES<br />

Def<strong>in</strong>e second- (and deeper)-level variables key to<br />

answer<strong>in</strong>g questions of <strong>in</strong>terest<br />

Establish measures (qualitative and quantitative) of<br />

second- and deeper-level variables<br />

Use these to determ<strong>in</strong>e key factors for assess<strong>in</strong>g the<br />

likelihood of the given SEES to be susta<strong>in</strong>able and for<br />

policy design


Core and Second-Level Variables [1]


“Smart Grid” electric power grid and<br />

ICT for susta<strong>in</strong>able energy SES [2]<br />

<strong>Energy</strong> SES<br />

• Resource<br />

system (RS)<br />

• Generation<br />

Man-made<br />

Grid<br />

• Physical<br />

network<br />

Man-made<br />

ICT<br />

• Sensors<br />

• Communica


L<strong>in</strong>k<strong>in</strong>g physical design and ICT<br />

Characteristics of second-order variables <strong>in</strong> the natural<br />

energy SESs critically affected by the man-made<br />

<strong>in</strong>frastructure design<br />

The role of deeper-level variables for design<strong>in</strong>g<br />

susta<strong>in</strong>able electric energy systems [3]<br />

Ma<strong>in</strong> objective of a “Smart Grid” Design--- Design the<br />

physical power grid, ICT and governance policies to<br />

match desired attributes of the core SES energy subsystems<br />

If/when done right, this <strong>in</strong>duces susta<strong>in</strong>able<br />

properties of the second-level variables; no blue-pr<strong>in</strong>t<br />

approach


Transformational changes <strong>in</strong> the objectives of<br />

Today’s T&D Grid<br />

Tomorrow’s T&D Grid<br />

Deliver supply to meet given demand<br />

Deliver power to support supply and<br />

demand schedules <strong>in</strong> which both supply<br />

and demand have costs assigned<br />

Deliver power assum<strong>in</strong>g a predef<strong>in</strong>ed tariff Deliver electricity at QoS determ<strong>in</strong>ed by<br />

the customers will<strong>in</strong>gness to pay<br />

Deliver power subject to predef<strong>in</strong>ed CO 2<br />

constra<strong>in</strong>t<br />

Deliver supply and demand subject to<br />

transmission congestion<br />

Deliver power def<strong>in</strong>ed by users’<br />

will<strong>in</strong>gness to pay for CO 2<br />

Schedule supply, demand and transmission<br />

capacity (supply, demand and transmission<br />

costs assigned); transmission at value<br />

Use storage to balance fast vary<strong>in</strong>g<br />

supply and demand<br />

Build new transmission l<strong>in</strong>es for forecast<br />

demand<br />

Build storage accord<strong>in</strong>g to customers<br />

will<strong>in</strong>gness to pay for be<strong>in</strong>g connected to a<br />

stable grid<br />

Build new transmission l<strong>in</strong>es to serve<br />

customers accord<strong>in</strong>g to their ex ante<br />

(longer-term) contracts for service


THE MOST DIFFICULT QUESTIONS<br />

Establish sufficiently accurate (but not too complex)<br />

model<strong>in</strong>g framework which captures <strong>in</strong>ter-dependencies<br />

between energy SES, physical grid, ICT and governance<br />

system<br />

The key objective: Match attributes of core variables <strong>in</strong> the<br />

composite energy SES; do it by careful model-based<br />

design of physical grid, ICT and governance system for a<br />

specific type of energy SES


Fully regulated bulk electric energy system


Hybrid <strong>Electric</strong> <strong>Energy</strong> System


ICT design to monitor and control <strong>in</strong>teraction variables


Match<strong>in</strong>g Temporal Characteristics - 50% W<strong>in</strong>d Integration<br />

15


Future electric energy systems programs<br />

Must educate the next generation work force<br />

Must do so <strong>in</strong> the context of, and centered <strong>in</strong>,<br />

<strong>Electric</strong>al and Computer Eng<strong>in</strong>eer<strong>in</strong>g (ECE)<br />

Must <strong>in</strong>tegrate ECE with other academic discipl<strong>in</strong>es<br />

Must also address non-technical issues (policy,<br />

economics)<br />

Recent awareness of an educational void, and a<br />

sense of urgency to <strong>in</strong>novate and <strong>in</strong>tegrate<br />

electric energy systems education, <strong>in</strong>to exist<strong>in</strong>g


Transformational changes <strong>in</strong> educat<strong>in</strong>g<br />

Reth<strong>in</strong>k how to plan, rebuild and operate an<br />

<strong>in</strong>frastructure which has been turned upside-down<br />

from what it used to be<br />

Leaders must understand <br />

3ϕ physics (the basic foundations)<br />

Model<strong>in</strong>g of complex systems (architecturedependent<br />

models, components and their<br />

<strong>in</strong>teractions, performance objectives)<br />

Dependence of models on sensors and<br />

actuators; design for desired system<br />

performance (def<strong>in</strong>ed by economic policy and<br />

eng<strong>in</strong>eer<strong>in</strong>g specifications)<br />

Numerical methods and algorithms


Objectives for modern electric energy systems<br />

Not only a novel education, but multi-discipl<strong>in</strong>ary<br />

coverage across ECE and beyond<br />

Provide conceptual problem formulations<br />

(understand how models, sens<strong>in</strong>g, control and<br />

communication are different for sample systems: 1)<br />

old centralized <strong>in</strong>frastructure; (2) deregulated<br />

<strong>in</strong>dustry; and, (3) <strong>in</strong>dustry with lots of distributed<br />

sensors, controllers, <strong>in</strong>termittent generation,<br />

demand-side.)<br />

Introduce novel simulators/graphics/visualization<br />

to teach these concepts.


Modern <strong>Electric</strong> <strong>Energy</strong> <strong>Systems</strong> at at Carnegie<br />

Lots of fun; the number of graduate students is high and<br />

grow<strong>in</strong>g; the number of students tak<strong>in</strong>g classes is high<br />

and grow<strong>in</strong>g. Grass-root pressure from students.<br />

Students genu<strong>in</strong>ely <strong>in</strong>terested <strong>in</strong> careers <strong>in</strong> future energy<br />

systems (drawn to the area to serve mank<strong>in</strong>d while still<br />

do<strong>in</strong>g eng<strong>in</strong>eer<strong>in</strong>g)<br />

Emphasis on systems formulation (<strong>in</strong>stead of on<br />

component physics); smart grid as an enabler.<br />

Much novel model<strong>in</strong>g for “translat<strong>in</strong>g” a physical and<br />

bus<strong>in</strong>ess system and its objectives <strong>in</strong>to the language of<br />

systems, control, sensors, signal process<strong>in</strong>g, computer<br />

science and IT; power electronics-enabled control.<br />

Team-teach<strong>in</strong>g with bus<strong>in</strong>ess and public policy faculty.<br />

<strong>Energy</strong> Master’s Program across Eng<strong>in</strong>eer<strong>in</strong>g, Science<br />

and Technology http://neon.materials.cmu.edu/<br />

energy/<br />

A GREAT ECE DEPARTMENT HEAD MAKES ALL THE


<strong>Electric</strong> <strong>Energy</strong> <strong>Systems</strong> Group (EESG) http://<br />

www.eesg.ece.cmu.edu<br />

A multi-discipl<strong>in</strong>ary group of researchers from<br />

across Carnegie Mellon with common <strong>in</strong>terest<br />

<strong>in</strong> electric energy.<br />

Truly <strong>in</strong>tegrated education and research<br />

Interests range across technical, policy,<br />

sens<strong>in</strong>g, communications, comput<strong>in</strong>g and<br />

much more; emphasis on systems aspects of<br />

the chang<strong>in</strong>g <strong>in</strong>dustry, model-based<br />

simulations and decision mak<strong>in</strong>g/control for<br />

predictable performance.<br />

Home of the new SRC Smart Grid Research<br />

Center<br />

http://www.ece.cmu.edu/news/story/2010/07/<br />

carnegie_mellon_to/


DYMONDS-enabled Physical Grid [4]


A sample of subjects currently offered <strong>in</strong><br />

18-418 <strong>Electric</strong> <strong>Energy</strong> Process<strong>in</strong>g: Fundamentals and<br />

Applications<br />

18-875/19-633/45-855/45-856 Eng<strong>in</strong>eer<strong>in</strong>g and<br />

Economics Problems <strong>in</strong> Future <strong>Electric</strong> <strong>Energy</strong> <strong>Systems</strong><br />

18-618 Smart Grids and Future <strong>Electric</strong> <strong>Energy</strong> <strong>Systems</strong><br />

18-777 Large-scale Dynamic <strong>Systems</strong><br />

Courses taught with an eye on regulatory, technological<br />

changes, and the implications of these on problem<br />

pos<strong>in</strong>g and possible solutions.<br />

Courses emphasize commonalities across different<br />

electric energy systems (power systems-power<br />

distribution to homes; shipboards, aircrafts and cars.<br />

In house software development to support the<br />

curriculum – (Graphical) Interactive Power <strong>Systems</strong><br />

Simulator ((G)IPSYS).<br />

Many courses outside ECE


Clos<strong>in</strong>g Remarks<br />

There exists now a highly unusual w<strong>in</strong>dow of<br />

opportunity to <strong>in</strong>troduce modern electric energy<br />

research and education programs<br />

Obvious societal needs<br />

CMU is a great environment<br />

Boundaries across discipl<strong>in</strong>es fluid<br />

Very strong discipl<strong>in</strong>es needed for develop<strong>in</strong>g embedded<br />

<strong>in</strong>telligence (CS, security, sensor networks, signal<br />

process<strong>in</strong>g)<br />

We will waste this rare opportunity without a full<br />

understand<strong>in</strong>g of the potential of embedd<strong>in</strong>g ITenabled<br />

<strong>in</strong>telligence with<strong>in</strong> complex physical energy<br />

systems


References<br />

[1] El<strong>in</strong>or Ostrom, et al, A General Framework for<br />

Analyz<strong>in</strong>g Susta<strong>in</strong>ability of social-Ecological <strong>Systems</strong>,<br />

Science 325, 419 (2009).<br />

[2] <strong>Ilic</strong>, M, et al, A Decision Mak<strong>in</strong>g Framework and<br />

Simulator for Susta<strong>in</strong>able <strong>Electric</strong> <strong>Energy</strong> <strong>Systems</strong>, The<br />

IEEE Trans. On Susta<strong>in</strong>able <strong>Energy</strong>, TSTE-00011-2010<br />

(January 2011).<br />

[3] <strong>Ilic</strong>, M., dynamic Monitor<strong>in</strong>g and Decision <strong>Systems</strong><br />

for Susta<strong>in</strong>able Services, Proc. of IEEE, January 2011.<br />

[4] ERi SRC Smart Grid Research Center at Carnegie<br />

Mellon University,<br />

http://www.ece.cmu.edu/news/story/2010/07/<br />

carnegie_mellon_to/

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!