Recycling the fibres on tetra pak cartons - Eko paket

Recycling the fibres on tetra pak cartons - Eko paket Recycling the fibres on tetra pak cartons - Eko paket

R e c y c l i n g t h e F i b r e s o n<br />

T e t r a P a k C a r t o n s<br />

Mario Abreu<br />

Tetra Pak Canada Inc.<br />

Dec. 20, 2000


Index<br />

Chapter<br />

Page<br />

I. Introducti<strong>on</strong> 03<br />

II. Why Recycle? 03<br />

III. Fibres 05<br />

Pulp Processing / Mechanical Processes / Semichemical processes /<br />

Chemical processes/ Boards made for Tetra Pak/ Bleaching / Wet<br />

Strength / Multi-ply boards<br />

IV. Waste paper recycling 09<br />

Pulping/ Screening/ Centrifugal Cleaning/ Refining/ Washing /<br />

Systems<br />

V. <str<strong>on</strong>g>Recycling</str<strong>on</strong>g> cart<strong>on</strong>s 19<br />

TBA, TFA, TWA, TPA/ TR/ TB, TT<br />

Mixed cart<strong>on</strong>s<br />

VI. Existing systems (selecti<strong>on</strong>) 23<br />

Atlantic/ Crown/ Fiskeby/ Klabin/ Orebro/ Papeles Naci<strong>on</strong>ales/ Scott<br />

Feldmuhle/ Turkey trials<br />

VII. Bibliography 33<br />

Annex I. Trials at Black Claws<strong>on</strong> (96) 34<br />

Annex II. Trials at Celleco (98) 39<br />

2


I - Introducti<strong>on</strong><br />

The main purpose of this paper is to give enough knowledge for Tetra Pak employees to<br />

approach paper mills and discuss recyclability of Tetra Pak’s cart<strong>on</strong>s.<br />

In order to achieve this goal, this paper has two main parts. Chapters I to IV focus <strong>on</strong><br />

general papermaking, which aims to show how paper is actually made and recycled, and<br />

is meant to be a reference for Tetra Pak employees working with envir<strong>on</strong>mental affairs.<br />

Chapters V and VI, as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> Annexes I and II, are specifically related to Tetra Pak<br />

cart<strong>on</strong>s and besides being used inside Tetra Pak, <str<strong>on</strong>g>the</str<strong>on</strong>g>y can be provided to paper mill<br />

c<strong>on</strong>tacts as background informati<strong>on</strong>. The message is clear that recycling Tetra Pak’s<br />

cart<strong>on</strong>s is totally based <strong>on</strong> existing technology and machinery.<br />

Technologies for <str<strong>on</strong>g>the</str<strong>on</strong>g> recovery of residuals from <str<strong>on</strong>g>the</str<strong>on</strong>g> papermaking process are not<br />

included here. It can be found, though, <strong>on</strong> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r papers.<br />

II - Why Recycle (Paper) ?<br />

Replacing mechanical pulp, 1,000 kg of waste paper will preserve approximately 2 m 3 of<br />

wood, or some 150 m 2 of forest. Replacing chemical pulp, 1,000 kg of waste paper<br />

preserve approximately 4 m 3 of wood, or some 300 m 2 of forest.<br />

World-wide, over 95 milli<strong>on</strong> (1996 data) t<strong>on</strong>s of paper are recovered each year, but this<br />

is still just <strong>on</strong>e third of all total fibre used. According to <str<strong>on</strong>g>the</str<strong>on</strong>g> American Forest and Paper<br />

Associati<strong>on</strong>, in <str<strong>on</strong>g>the</str<strong>on</strong>g> US in 1987, some 50% of all paper products produced were<br />

landfilled, and just over 20% were recovered. In 1997, landfilling was under 30% and<br />

recovering over 40%.<br />

Figure 1.Comparis<strong>on</strong> am<strong>on</strong>g papers recovered for recycling and landfilled. (Source AFPA, 2000)<br />

3


In 1998, Canada c<strong>on</strong>sumed 4.7 milli<strong>on</strong> t<strong>on</strong>s of waste paper, from which 2.2 milli<strong>on</strong> were<br />

imported. Although recycling capacity has doubled in that country between 1990 and<br />

1998, still <strong>on</strong>ly 22% of <str<strong>on</strong>g>the</str<strong>on</strong>g> papers made in Canada are made from recycled <str<strong>on</strong>g>fibres</str<strong>on</strong>g>.<br />

Paper <str<strong>on</strong>g>fibres</str<strong>on</strong>g> can be <str<strong>on</strong>g>the</str<strong>on</strong>g>oretically recycled 6 to 7 times. Therefore a 1,000 kg of virgin<br />

pulp <str<strong>on</strong>g>fibres</str<strong>on</strong>g> can generate up to 6,000 or 7,000 kg of various kinds of paper, through<br />

successive recovery and recycling operati<strong>on</strong>s. Fibres will loose some of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir properties<br />

every time <str<strong>on</strong>g>the</str<strong>on</strong>g>y are recycled, as <str<strong>on</strong>g>the</str<strong>on</strong>g>y are repeatedly subject to pulping, refining, drying<br />

and so <strong>on</strong>, leading to lower value papers. Blending recycled and virgin <str<strong>on</strong>g>fibres</str<strong>on</strong>g> is an opti<strong>on</strong><br />

and an opportunity for paper mills to develop market niches.<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r relevant factor to be c<strong>on</strong>sidered is energy. The producti<strong>on</strong> of paper from trees<br />

is energy intensive. Values change a lot due to producti<strong>on</strong> ranges, types of trees, types<br />

of processes, types of papers etc, but figures from 26 to 45 GJ are well accepted as a<br />

total energy c<strong>on</strong>sumpti<strong>on</strong> (heat and work) per t<strong>on</strong> of paper manufactured from trees.<br />

C<strong>on</strong>sidering paper made from recycled paper, comparable numbers would be 7 to 15, or<br />

approximately 3 to 4 times less energy c<strong>on</strong>suming.<br />

In a big c<strong>on</strong>servati<strong>on</strong> effort, paper mills in <str<strong>on</strong>g>the</str<strong>on</strong>g> US are currently using recovered old<br />

corrugated c<strong>on</strong>tainers (OCC) to manufacture over 50% of all new paperboards in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

market. Old newsprint (ONP) is <strong>on</strong>ly approximately 17% of <str<strong>on</strong>g>the</str<strong>on</strong>g> supply for new<br />

newspaper. Only 10% of high-grade <str<strong>on</strong>g>fibres</str<strong>on</strong>g> are recovered for <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacturing of high<br />

quality deinked papers.<br />

Anyway, <str<strong>on</strong>g>the</str<strong>on</strong>g> demand for recycled <str<strong>on</strong>g>fibres</str<strong>on</strong>g> will increase for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> of highest<br />

quality papers in <str<strong>on</strong>g>the</str<strong>on</strong>g> future. The regulati<strong>on</strong>s for papers with increasing levels of postc<strong>on</strong>sumer<br />

c<strong>on</strong>tent will increase paper manufacturer’s c<strong>on</strong>cern for <str<strong>on</strong>g>the</str<strong>on</strong>g> implementati<strong>on</strong> of<br />

high quality systems and processes, while <str<strong>on</strong>g>the</str<strong>on</strong>g>ir suppliers will have to develop smoo<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

(and more effective, at same time) mechanical and chemical processes. Recycled <str<strong>on</strong>g>fibres</str<strong>on</strong>g><br />

are generally weaker than virgin <str<strong>on</strong>g>fibres</str<strong>on</strong>g>; <str<strong>on</strong>g>the</str<strong>on</strong>g>y have decreased b<strong>on</strong>ding capabilities, higher<br />

amounts of fines and fibriles and require streng<str<strong>on</strong>g>the</str<strong>on</strong>g>ning adhesives.<br />

Data from 1995 states that <strong>on</strong>ly 30% of all trees cut in <str<strong>on</strong>g>the</str<strong>on</strong>g> US were used for paper<br />

manufacturing, whereas 45% were used for lumber products and 20% as fuel. 55% of<br />

all wood used for papermaking, however, was comprised of chips and sawmill dust and<br />

residuals, which are waste products for <str<strong>on</strong>g>the</str<strong>on</strong>g> lumber industry. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> paper<br />

industry is not <strong>on</strong>ly promoting recycling, but also trying to cut less trees as possible and<br />

doing so reducing <str<strong>on</strong>g>the</str<strong>on</strong>g>ir footprint <strong>on</strong> Earth.<br />

1,000 kg of paper recovered will save approximately 2.5 m 3 (equivalent to 2,500 litres)<br />

of landfill.<br />

Tetra Pak cart<strong>on</strong>s were minded to save more than <str<strong>on</strong>g>the</str<strong>on</strong>g>y cost. Making paper from Tetra<br />

Pak cart<strong>on</strong>s is just ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r way of saving natural resources.<br />

4


III - Fibres<br />

Pulp Processing<br />

The process of papermaking from wood can be d<strong>on</strong>e in a large amount of different<br />

ways. These processes though are normally under 3 independent classes: chemical,<br />

semichemical (or chemimechanical) and mechanical, and identified by <str<strong>on</strong>g>the</str<strong>on</strong>g> way <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>fibres</str<strong>on</strong>g><br />

are extracted from <str<strong>on</strong>g>the</str<strong>on</strong>g> trees, if this coarse language can be used for very complex<br />

systems. The original mechanical process is to extract <str<strong>on</strong>g>fibres</str<strong>on</strong>g> by attriti<strong>on</strong>. Temperature<br />

can be used to easy <str<strong>on</strong>g>the</str<strong>on</strong>g> process. Or chemicals can be used to make it even easier, when<br />

we have a chemimechanical or semichemical process. Or chemicals can be <str<strong>on</strong>g>the</str<strong>on</strong>g> main<br />

reacti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> process is called chemical. It’s obvious that as much chemicals<br />

you use for separati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>fibres</str<strong>on</strong>g>, more of <str<strong>on</strong>g>the</str<strong>on</strong>g> resins that hold <str<strong>on</strong>g>the</str<strong>on</strong>g> fibre toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r are<br />

lost, as <str<strong>on</strong>g>the</str<strong>on</strong>g>y are attacked by <str<strong>on</strong>g>the</str<strong>on</strong>g> chemistry and <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> yield goes down, at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

same time that <str<strong>on</strong>g>the</str<strong>on</strong>g> final quality goes up.<br />

The chemistry of wood cells is <str<strong>on</strong>g>the</str<strong>on</strong>g> subject of series of books and impossible to<br />

summarise in this paper. It is important, however, to understand that final properties of<br />

paper such as brightness, strength, tear strength, el<strong>on</strong>gati<strong>on</strong>, stiffness, hygroinstability,<br />

sheet c<strong>on</strong>solidati<strong>on</strong>, freeness etc. are related to both <str<strong>on</strong>g>the</str<strong>on</strong>g> origin of <str<strong>on</strong>g>the</str<strong>on</strong>g> fibre (tree<br />

species) and to <str<strong>on</strong>g>the</str<strong>on</strong>g> way <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>fibres</str<strong>on</strong>g> were “obtained” from <str<strong>on</strong>g>the</str<strong>on</strong>g> trees.<br />

Mechanical processes<br />

Fibres are extracted from cut trees by attriti<strong>on</strong>, generally by <str<strong>on</strong>g>the</str<strong>on</strong>g> acti<strong>on</strong> of a st<strong>on</strong>e<br />

spinning against wood, under a c<strong>on</strong>tinuous flow of water. The original process, usually<br />

called SGWP or just GP (st<strong>on</strong>e groundwood pulp) was improved by <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong> of<br />

pressure, by heating, or both, generating process like TRMP (<str<strong>on</strong>g>the</str<strong>on</strong>g>rmorefiner mechanical<br />

pulp) and TMP (<str<strong>on</strong>g>the</str<strong>on</strong>g>rmomechanical pulp).<br />

The yield of <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical processes (amount of pulp generated divided by amount of<br />

wood processed) is generally between 95 and 98%.<br />

Figure 2. Cut and debarked tress being attacked by a st<strong>on</strong>e<br />

5


Semichemical or chemimechanical processes<br />

There are several ways to process wood doing a chemical treatment prior to<br />

mechanically extract <str<strong>on</strong>g>fibres</str<strong>on</strong>g>. Those processes have names such as CMP<br />

(chemimechanical pulp); CTMP (chemi<str<strong>on</strong>g>the</str<strong>on</strong>g>rmomechanical pulp); CRMP (chemirefined<br />

mechanical pulp) and so <strong>on</strong>. Processes such as NSSC (neutral sulfite semichemical pulp)<br />

are usually called semichemical, mostly because <str<strong>on</strong>g>the</str<strong>on</strong>g> properties of <str<strong>on</strong>g>the</str<strong>on</strong>g> pulp vary from<br />

those menti<strong>on</strong>ed before, which are called chemimechanical by some authors.<br />

The chemical pre-treatment removes part of <str<strong>on</strong>g>the</str<strong>on</strong>g> lignin and of <str<strong>on</strong>g>the</str<strong>on</strong>g> hemi-cellulose,<br />

reducing <str<strong>on</strong>g>the</str<strong>on</strong>g> b<strong>on</strong>ding of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>fibres</str<strong>on</strong>g>, thus facilitating <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical extracti<strong>on</strong>.<br />

Yields of such processes vary from 65 to 92%.<br />

Chemical processes<br />

Are those where an aqueous alkali soluti<strong>on</strong> is used to process vegetable pulp<br />

<str<strong>on</strong>g>fibres</str<strong>on</strong>g>. The most used process is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e called sulfate, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> use of NaSO4,<br />

which is reduced to NaS, <str<strong>on</strong>g>the</str<strong>on</strong>g> “digesting” element. The sulfate (or Kraft) process<br />

can handle a wide range of different types of woods and allow pulp to be<br />

bleachable to a very high degree.<br />

Chemical processes require large systems for <str<strong>on</strong>g>the</str<strong>on</strong>g> recovery of <str<strong>on</strong>g>the</str<strong>on</strong>g> chemicals from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

called liquors and treatment of waste.<br />

Some advantages of this process are: can handle several wood species without<br />

significant changes; higher capacity; high achievable fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r bleaching and high fibre<br />

quality.<br />

Yield of such processes, however, is very low, in <str<strong>on</strong>g>the</str<strong>on</strong>g> range of 40 to 65%.<br />

100%<br />

Groundwood<br />

CTMP Sulfite<br />

NSSC<br />

Unbleached Sulfate<br />

Bleached Sulfate<br />

3<br />

75%<br />

50%<br />

25%<br />

0%<br />

2<br />

1<br />

0<br />

Yield (%)<br />

x10^6 fibers /gram<br />

Figure 3. Comparis<strong>on</strong> of pulp processing, <strong>on</strong> yield and density<br />

6


Processes used for manufacturing board for Tetra Pak<br />

Fibres used for Tetra Pak’s cardboard are normally from two different processes, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

kraft (chemical) process, due to high quality of <str<strong>on</strong>g>the</str<strong>on</strong>g> fibre and <str<strong>on</strong>g>the</str<strong>on</strong>g> CTMP<br />

(chemitermomechanical) process, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> stiffness and yield delivered.<br />

CTMP is produced by modest chemical impregnati<strong>on</strong>, performed during <str<strong>on</strong>g>the</str<strong>on</strong>g> steaming<br />

stage to explore b<strong>on</strong>ding properties.<br />

Kraft pulps are very good for recycling operati<strong>on</strong>s, and <strong>on</strong>ce Tetra Pak cart<strong>on</strong>s are made<br />

of virgin kraft, <str<strong>on</strong>g>the</str<strong>on</strong>g>y are a reliable source of high quality sec<strong>on</strong>dary <str<strong>on</strong>g>fibres</str<strong>on</strong>g>.<br />

<str<strong>on</strong>g>Recycling</str<strong>on</strong>g> CTMP affects negatively <str<strong>on</strong>g>the</str<strong>on</strong>g> water retenti<strong>on</strong> capacity. This can be<br />

noticed at <str<strong>on</strong>g>the</str<strong>on</strong>g> very first time <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>fibres</str<strong>on</strong>g> are recycled, and <str<strong>on</strong>g>the</str<strong>on</strong>g> loss can be close to<br />

50%. B<strong>on</strong>ding potential is also affected when CTMP <str<strong>on</strong>g>fibres</str<strong>on</strong>g> are recycled.<br />

Hardwood CTMP is a good raw material for tissue papers, due to its c<strong>on</strong>siderable<br />

stiffness properties associated to high water retenti<strong>on</strong> capacity, although not for<br />

high quality tissue, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> lack of whiteness. However, recycled CTMP will<br />

not be c<strong>on</strong>sidered a good raw material for tissue, as <str<strong>on</strong>g>the</str<strong>on</strong>g> water retenti<strong>on</strong> capacity<br />

goes down, freeness goes up, b<strong>on</strong>ding is decreased and <str<strong>on</strong>g>the</str<strong>on</strong>g> lignin has a trend to<br />

go yellowish <str<strong>on</strong>g>the</str<strong>on</strong>g> more exposed to light it is.<br />

Bleaching<br />

As menti<strong>on</strong>ed before, chemical processes are <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>es most suitable for bleaching,<br />

although it’s possible to bleach all kinds of pulp. In spite of being <str<strong>on</strong>g>the</str<strong>on</strong>g> most bleachable,<br />

unbleached chemical pulp is darker than <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs are. Once c<strong>on</strong>sidered <str<strong>on</strong>g>the</str<strong>on</strong>g> best<br />

bleaching agent, Chlorine is been banned from <str<strong>on</strong>g>the</str<strong>on</strong>g> pulp mills due to envir<strong>on</strong>mental<br />

c<strong>on</strong>cerns. Nowadays several pulp mills do <str<strong>on</strong>g>the</str<strong>on</strong>g> bleaching as successive reacti<strong>on</strong>s am<strong>on</strong>g<br />

<str<strong>on</strong>g>fibres</str<strong>on</strong>g> and chemical elements, mainly NaOH, H 2 O 2 , O 2 and O 3 .<br />

Boards manufactured for Tetra Pak usually have multi-layers of paper, being at least <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

outer <strong>on</strong>e manufactured from bleached <str<strong>on</strong>g>fibres</str<strong>on</strong>g>. For some markets, such as North<br />

America, most cart<strong>on</strong>s are made from 100% bleached <str<strong>on</strong>g>fibres</str<strong>on</strong>g>. Tetra Rex® cart<strong>on</strong>s are<br />

also generally manufactured <strong>on</strong>ly from bleached <str<strong>on</strong>g>fibres</str<strong>on</strong>g>.<br />

Wet strength<br />

Properties of paper can be modified by <str<strong>on</strong>g>the</str<strong>on</strong>g> use of chemicals during <str<strong>on</strong>g>the</str<strong>on</strong>g> actual paper<br />

manufacturing as well.<br />

Normal paper is characterised by an almost complete loss of strength when wet.<br />

Polyaminoacid epichlorohydrin, urea-formaldehyde and melamine resins are<br />

commercially available, from several chemical industries, under different trade names, to<br />

7


increase paper resistance to wet envir<strong>on</strong>ments. Fibres are treated with those chemicals<br />

during papermaking under manufacturer’s technology and background, but <str<strong>on</strong>g>the</str<strong>on</strong>g> final<br />

cure generally takes place <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> machine dryers, which provides additi<strong>on</strong>al b<strong>on</strong>ding to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>fibres</str<strong>on</strong>g>. Wet strength resins are used in paperboard to allow it to be used in damp<br />

and wet service c<strong>on</strong>diti<strong>on</strong>s. Besides beverage c<strong>on</strong>tainers, wet-strength resins are used<br />

for packaging fruits, meats and vegetables. These resins make <str<strong>on</strong>g>the</str<strong>on</strong>g> board very difficult to<br />

repulp and are undesirable from an envir<strong>on</strong>mental aspect.<br />

Meanwhile, enhancing tensile and tear of <str<strong>on</strong>g>the</str<strong>on</strong>g> board under wet c<strong>on</strong>diti<strong>on</strong>s, wet strength<br />

resins provide integrity under moist and wet service c<strong>on</strong>diti<strong>on</strong>s existing when cart<strong>on</strong>s<br />

are refrigerated or cooled. To aid repulping, caustic soda is <str<strong>on</strong>g>the</str<strong>on</strong>g> most effective media,<br />

while hypoclorite and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r oxidants can help, mainly when <str<strong>on</strong>g>the</str<strong>on</strong>g> board is totally<br />

bleached. Hypoclorite is however not well seen, for envir<strong>on</strong>ment, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> presence of<br />

chlorine. Caustic soda causes <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>fibres</str<strong>on</strong>g> to swell and promote release of ink and wetstrength<br />

added resins.<br />

Researches using o<str<strong>on</strong>g>the</str<strong>on</strong>g>r kinds of chemicals have been d<strong>on</strong>e, where peroxyacid showed<br />

to aid pulping tremendously for wet-strength c<strong>on</strong>taining boards, while ec<strong>on</strong>omics being<br />

a relevant factor to be c<strong>on</strong>sidered <strong>on</strong> site. Peroxyacid, which is chlorine-free, should<br />

enable a high-c<strong>on</strong>sistency pulper to deal with gable top cart<strong>on</strong>s at neutral pH and low<br />

temperature, achieving high yields.<br />

New wet strength resins have been developed that, while providing adequate wet<br />

strength to board, still produces a product that can be mixed into <str<strong>on</strong>g>the</str<strong>on</strong>g> old corrugated<br />

c<strong>on</strong>tainer stream, at a maximum 30%, and allow same repulping of 100% OCC. So far,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re are no reports of <str<strong>on</strong>g>the</str<strong>on</strong>g>se resins being used <strong>on</strong> boards for Tetra Pak.<br />

Multi-ply boards.<br />

The greatest advantage of a multi-ply board c<strong>on</strong>structi<strong>on</strong> is stiffness. Inner plies gives<br />

bulk to <str<strong>on</strong>g>the</str<strong>on</strong>g> board, thus increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> distance and <str<strong>on</strong>g>the</str<strong>on</strong>g>refore <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> top<br />

and back liners to achieve high stiffness properties. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r advantage is <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility<br />

of using lower quality <str<strong>on</strong>g>fibres</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> middle layers, <strong>on</strong>ce <str<strong>on</strong>g>the</str<strong>on</strong>g>y are not visible from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

outside.<br />

Most of <str<strong>on</strong>g>the</str<strong>on</strong>g> boards manufactured for Tetra Pak are multi-plies. Even <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>es called<br />

“duplex boards” are generally multi-ply, like <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e manufactured by Klabin, in Brazil.<br />

Klabin makes a triplex board for <str<strong>on</strong>g>the</str<strong>on</strong>g> manufacturing of aseptic packages, where bottom<br />

and middle layers are unbleached softwood pulps and <str<strong>on</strong>g>the</str<strong>on</strong>g> top layer is a mixture of<br />

bleached softwood and hardwood pulps. All bleaching d<strong>on</strong>e at <str<strong>on</strong>g>the</str<strong>on</strong>g> Klabin mill is TCF<br />

(total chlorine free). Above <str<strong>on</strong>g>the</str<strong>on</strong>g> top layer, a dual sizing is applied, where alum, starch<br />

and some o<str<strong>on</strong>g>the</str<strong>on</strong>g>r chemistry are applied to improve printability and water resistance.<br />

Klabin also manufacturers a two-ply board which is used for Tetra Rex®, with a mixture<br />

of bleached softwood and hardwood pulps in both plies. Approximately 1,3% of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

weight of a triplex Klabin board c<strong>on</strong>sist of chemical inputs. Most hardwood <str<strong>on</strong>g>fibres</str<strong>on</strong>g> for<br />

Klabin come from pine, while softwood <str<strong>on</strong>g>fibres</str<strong>on</strong>g> come from eucalyptus trees.<br />

8


Assi-Domän, located in Sweden, manufactures a four-ply board for Tetra Pak’s aseptic<br />

cart<strong>on</strong>s. The bottom layer is made from unbleached hardwood pulp <str<strong>on</strong>g>fibres</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g> two<br />

middle layers are made from a mixture of unbleached <str<strong>on</strong>g>fibres</str<strong>on</strong>g> and CTMP <str<strong>on</strong>g>fibres</str<strong>on</strong>g> and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

top layer <strong>on</strong>ly bleached <str<strong>on</strong>g>fibres</str<strong>on</strong>g>. The coating is d<strong>on</strong>e over <str<strong>on</strong>g>the</str<strong>on</strong>g> top ply and includes CaCO 3 ,<br />

TiO 2 and latex. All <str<strong>on</strong>g>fibres</str<strong>on</strong>g> are made under chemical process at Assi-Domän, whose forests<br />

are FSC certified, such as Klabin’s, except for CTMP <str<strong>on</strong>g>fibres</str<strong>on</strong>g>, which are purchased from<br />

STORA. Assi-Domän also has a TCF bleaching process. Most <str<strong>on</strong>g>fibres</str<strong>on</strong>g> used by ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r Assi-<br />

Domain or STORA comes from pine, spruce and birch.<br />

Lately, more and more boards are manufactured for Tetra Pak using CTMP <str<strong>on</strong>g>fibres</str<strong>on</strong>g>, and to<br />

understand why, it is important to understand <str<strong>on</strong>g>the</str<strong>on</strong>g> relative c<strong>on</strong>tributi<strong>on</strong> of each individual<br />

internal ply <strong>on</strong> a multi-ply board. If <strong>on</strong>ly kraft <str<strong>on</strong>g>fibres</str<strong>on</strong>g> are used in a six-layer board, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

relative c<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> final delivered stiffness will be, approximately:<br />

39%<br />

45%<br />

4%<br />

1%<br />

3%<br />

8%<br />

Top Layer<br />

1st Middle Layer<br />

2nd Middle Layer<br />

3rd Middle layer<br />

4th Middle Layer<br />

Back Layer<br />

Figure 4. C<strong>on</strong>tributi<strong>on</strong> <strong>on</strong> stiffness by layer in a multi-layer board.<br />

As <str<strong>on</strong>g>the</str<strong>on</strong>g> figure shows, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> inner layers is approximately 16% for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

total stiffness of <str<strong>on</strong>g>the</str<strong>on</strong>g> board. For stiffness, <str<strong>on</strong>g>the</str<strong>on</strong>g> board can be compared to a c<strong>on</strong>crete wall,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> thicker it is, <str<strong>on</strong>g>the</str<strong>on</strong>g> str<strong>on</strong>ger. The use of CTMP <str<strong>on</strong>g>fibres</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> middle layers of <str<strong>on</strong>g>the</str<strong>on</strong>g> board<br />

allows it to perform better for stiffness, at same time reducing <str<strong>on</strong>g>the</str<strong>on</strong>g> necessity of bulk and<br />

enabling board manufacturers to offer Tetra Pak a finer and lighter board, which<br />

performs as a thicker and heavier <strong>on</strong>e of sulphate <strong>on</strong>ly <str<strong>on</strong>g>fibres</str<strong>on</strong>g>.<br />

IV - Waste paper recycling<br />

Pulping<br />

If <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a mill recycling papers, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a pulper <str<strong>on</strong>g>the</str<strong>on</strong>g>re. Every rule has excepti<strong>on</strong>s and<br />

as excepti<strong>on</strong>s justify <str<strong>on</strong>g>the</str<strong>on</strong>g> rules, <strong>on</strong>e can find very few plants that rely <strong>on</strong> different<br />

machinery for recycling paper.<br />

9


The pulping (also cited as repulping) purposes are:<br />

Produce a pumpable suspensi<strong>on</strong> of cellulose <str<strong>on</strong>g>fibres</str<strong>on</strong>g> into water<br />

Release <str<strong>on</strong>g>fibres</str<strong>on</strong>g> from c<strong>on</strong>taminants and inks<br />

Perform a chemical mixing (if chemicals are needed)<br />

Reduce ink particles<br />

The first commercial installati<strong>on</strong> of a pulper was back at late 30’s. Before that, a more<br />

smashing equipment called Hollander beater was used. The Hollander was invented <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> 18 th century and allowed <str<strong>on</strong>g>the</str<strong>on</strong>g> setting of <str<strong>on</strong>g>the</str<strong>on</strong>g> recycled paper industry. Pulpers<br />

increased <str<strong>on</strong>g>the</str<strong>on</strong>g> efficiency and have underg<strong>on</strong>e many changes during <str<strong>on</strong>g>the</str<strong>on</strong>g> last decades,<br />

including <str<strong>on</strong>g>the</str<strong>on</strong>g> development of a number of equipment for c<strong>on</strong>taminati<strong>on</strong> removal. Black<br />

Claws<strong>on</strong> patented <str<strong>on</strong>g>the</str<strong>on</strong>g> name Hydrapulper in <str<strong>on</strong>g>the</str<strong>on</strong>g> 50’s, which is world-wide spread<br />

nowadays as a syn<strong>on</strong>ym for pulper.<br />

In order to provide more informati<strong>on</strong> about pulping systems available in <str<strong>on</strong>g>the</str<strong>on</strong>g> market, it’s<br />

interesting to split systems by <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sistency at which stock is pulped and also by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

working regime.<br />

C<strong>on</strong>sistency:<br />

Low-c<strong>on</strong>sistency pulpers run stock up to 6%.<br />

Medium-c<strong>on</strong>sistency pulpers run stock from 8 to 11%.<br />

High-c<strong>on</strong>sistency pulpers run stock from 12 to 18%.<br />

Operating process:<br />

Batch pulpers, means a load is pulped, <str<strong>on</strong>g>the</str<strong>on</strong>g>n discharged, and <str<strong>on</strong>g>the</str<strong>on</strong>g>n ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r load is<br />

pulped and so <strong>on</strong>.<br />

C<strong>on</strong>tinuous pulpers, means loads are c<strong>on</strong>tinuously fed into <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper, while stock is<br />

c<strong>on</strong>tinuously extracted as well.<br />

C<strong>on</strong>sistency, operating process, pulping time, grade of waste paper and energy<br />

c<strong>on</strong>sumpti<strong>on</strong> are related variables and every paper mill rely <strong>on</strong> experience to determine<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> best combinati<strong>on</strong> to use<br />

1. Batch pulpers, at low-c<strong>on</strong>sistency<br />

Basic process, which pulpers were originally created for. Loads are fed into <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper,<br />

with water, to a certain desired c<strong>on</strong>sistency. At <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom of <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper <str<strong>on</strong>g>the</str<strong>on</strong>g>re are a<br />

rotor and a drilled plate.<br />

The pulper is filled with water and a load of paper is dropped into <str<strong>on</strong>g>the</str<strong>on</strong>g> vat, while <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rotor is already spinning. The rotor will provide <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical forces that will turn <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stuff into a soluti<strong>on</strong>. After a certain period of time, normally 10 to 30 minutes, <str<strong>on</strong>g>the</str<strong>on</strong>g> stock<br />

is extracted through <str<strong>on</strong>g>the</str<strong>on</strong>g> drilled plate, which prevents coarse c<strong>on</strong>taminants such as<br />

plastic sheets to leave <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper with <str<strong>on</strong>g>the</str<strong>on</strong>g> stock.<br />

Very simple process generally associated to small producti<strong>on</strong>, low cost system for low<br />

value final product.<br />

2. Batch pulpers, at high-c<strong>on</strong>sistency<br />

New kinds of rotor were developed in <str<strong>on</strong>g>the</str<strong>on</strong>g> last 30 years, enabling pulping to be d<strong>on</strong>e at<br />

higher c<strong>on</strong>sistencies. The main advantage of higher c<strong>on</strong>sistencies is <str<strong>on</strong>g>the</str<strong>on</strong>g> great increase<br />

of hydraulic forces inside <str<strong>on</strong>g>the</str<strong>on</strong>g> vat, promoting a gentle pulping acti<strong>on</strong> d<strong>on</strong>e fibre-to-fibre,<br />

instead of rotor-to-fibre. Fibre strength properties improve as pulping c<strong>on</strong>sistencies go<br />

10


higher. Low-c<strong>on</strong>sistency rotors cut <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>fibres</str<strong>on</strong>g> a lot, compromising some of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

properties, while high-c<strong>on</strong>sistency rotors were designed with n<strong>on</strong>-cutting edges. It is<br />

proved that this acti<strong>on</strong> am<strong>on</strong>g <str<strong>on</strong>g>fibres</str<strong>on</strong>g> is much more powerful to detach ink particles from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>fibres</str<strong>on</strong>g>, which led several deinking plants to choose high c<strong>on</strong>sistency pulping. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

obvious advantage is <str<strong>on</strong>g>the</str<strong>on</strong>g> augment of producti<strong>on</strong>, <strong>on</strong>ce some three times more <str<strong>on</strong>g>fibres</str<strong>on</strong>g> can<br />

be processed comparing to a low-c<strong>on</strong>sistency pulper of same size.<br />

It is said <str<strong>on</strong>g>the</str<strong>on</strong>g> high-c<strong>on</strong>sistency batch pulping is <str<strong>on</strong>g>the</str<strong>on</strong>g> best for difficult grades of paper,<br />

even wet-strength.<br />

High-c<strong>on</strong>sistency batch pulpers may have an extracti<strong>on</strong> plate under <str<strong>on</strong>g>the</str<strong>on</strong>g> rotor or not.<br />

Those who d<strong>on</strong>’t, require an additi<strong>on</strong>al piece of machinery, a detrasher, also normally<br />

called Poire (trademark of <str<strong>on</strong>g>the</str<strong>on</strong>g> first <strong>on</strong>e developed, created by Lamort), which pumps out<br />

all stock and retain c<strong>on</strong>taminants.<br />

Figure 5. High-c<strong>on</strong>sistency pulping, with a detrasher<br />

Batch pulpers, at medium-c<strong>on</strong>sistency<br />

Hybrid rotors were created, trying to ga<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> advantages of both processes of high<br />

and low c<strong>on</strong>sistency, in <strong>on</strong>ly <strong>on</strong>e. Of course, disadvantages are ga<str<strong>on</strong>g>the</str<strong>on</strong>g>red as well. The<br />

most important feature is a combinati<strong>on</strong> of rotor-to-fibre and fibre-to-fibre acti<strong>on</strong>s,<br />

which is especially interesting for wet-strength papers or wax-coated boards. Lowc<strong>on</strong>sistency<br />

pulpers can normally be retrofitted by replacing <str<strong>on</strong>g>the</str<strong>on</strong>g> rotor by a mid-c<strong>on</strong> rotor<br />

(and generally <str<strong>on</strong>g>the</str<strong>on</strong>g> motor as well, for <strong>on</strong>e more powerful) providing an increase of<br />

producti<strong>on</strong>, without significant mechanical changes. These pulpers always have drilled<br />

plates under <str<strong>on</strong>g>the</str<strong>on</strong>g> rotor and d<strong>on</strong>’t require a detrasher.<br />

C<strong>on</strong>tinuous pulpers, low-c<strong>on</strong>sistency<br />

Since pulpers have to be cleaned, every now and <str<strong>on</strong>g>the</str<strong>on</strong>g>n, it was impossible to run pulpers<br />

c<strong>on</strong>tinuously without <str<strong>on</strong>g>the</str<strong>on</strong>g> inventi<strong>on</strong> of detrashers, which work in batch cycles, removing<br />

water, <str<strong>on</strong>g>fibres</str<strong>on</strong>g> and c<strong>on</strong>taminants from <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper and <str<strong>on</strong>g>the</str<strong>on</strong>g>n dumping <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>taminants<br />

away from <str<strong>on</strong>g>the</str<strong>on</strong>g> system, allowing <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper to keep running. For large producti<strong>on</strong>s, drum<br />

washers are installed after <str<strong>on</strong>g>the</str<strong>on</strong>g> detrashers, washing <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>taminants and recovering as<br />

much <str<strong>on</strong>g>fibres</str<strong>on</strong>g> as possible.<br />

11


C<strong>on</strong>tinuous pulpers are calculated by <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> of how l<strong>on</strong>g it takes for<br />

defibering papers, which is <str<strong>on</strong>g>the</str<strong>on</strong>g>oretically <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio between <str<strong>on</strong>g>the</str<strong>on</strong>g> volume of <str<strong>on</strong>g>the</str<strong>on</strong>g> vat<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> flow at <str<strong>on</strong>g>the</str<strong>on</strong>g> accepts chamber.<br />

Figure 6. C<strong>on</strong>tinuous pulping<br />

Detrashers (for c<strong>on</strong>tinuous pulpers):<br />

Detrashers can be compared as small pulpers, which will receive most of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>taminati<strong>on</strong> from inside <str<strong>on</strong>g>the</str<strong>on</strong>g> main pulper, accept <str<strong>on</strong>g>the</str<strong>on</strong>g> good stock through its own<br />

perforated plate and <str<strong>on</strong>g>the</str<strong>on</strong>g>n be cleaned. The process is batch and generally automated.<br />

During <str<strong>on</strong>g>the</str<strong>on</strong>g> “extracti<strong>on</strong>” stage, stock is freely flowing from <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper to <str<strong>on</strong>g>the</str<strong>on</strong>g> detrasher<br />

and <strong>on</strong>ce accepted through <str<strong>on</strong>g>the</str<strong>on</strong>g> detrasher it flows for fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r processing. During <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

“washing” stage, stock stops flowing from <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper and water is injected at <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

detrasher for washing <str<strong>on</strong>g>the</str<strong>on</strong>g> plastics and accepting as much <str<strong>on</strong>g>fibres</str<strong>on</strong>g> as possible. Then <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> “dumping” stage, where <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>taminants are released form <str<strong>on</strong>g>the</str<strong>on</strong>g> detrasher ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

to a bin or to a drum washer for a final fibre recovery.<br />

Drum washers:<br />

A perforated rotating cylinder receives <str<strong>on</strong>g>the</str<strong>on</strong>g> rejects from <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper or from <str<strong>on</strong>g>the</str<strong>on</strong>g> detrasher.<br />

Showers help washing those rejects and recovering <str<strong>on</strong>g>fibres</str<strong>on</strong>g>. Rejects are dumped for<br />

fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r processing, while <str<strong>on</strong>g>the</str<strong>on</strong>g> white water is reused.<br />

12


Figures 7 and 8. Drum washer (sketch and picture)<br />

C<strong>on</strong>tinuous pulpers, high-c<strong>on</strong>sistency<br />

Drum pulpers were designed to perform gently as high-c<strong>on</strong>sistency rotors do, while<br />

delivering a superior capacity. A rotating drum internally divided in a defiberizing and a<br />

screening secti<strong>on</strong>. Both secti<strong>on</strong>s have series of baffles and lifters to reduce bales and<br />

loose furnish into a fibre and water slurry. A whole set of showers and pumps help <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

process and allows <str<strong>on</strong>g>the</str<strong>on</strong>g> final stock and rejects to be discharged.<br />

Bales and loosen papers are fed into <str<strong>on</strong>g>the</str<strong>on</strong>g> defiberizing secti<strong>on</strong>, where <str<strong>on</strong>g>the</str<strong>on</strong>g>y are chemically<br />

wet (water and caustic soda). Through <str<strong>on</strong>g>the</str<strong>on</strong>g> combinati<strong>on</strong> of baffles, lifters and rotati<strong>on</strong>,<br />

furnish is dropped several times while travelling through <str<strong>on</strong>g>the</str<strong>on</strong>g> secti<strong>on</strong>. Effective shearing<br />

forces fiberize papers with minimum degradati<strong>on</strong> of c<strong>on</strong>taminants. From <str<strong>on</strong>g>the</str<strong>on</strong>g> defiberizing<br />

secti<strong>on</strong>, <str<strong>on</strong>g>fibres</str<strong>on</strong>g> are transferred to <str<strong>on</strong>g>the</str<strong>on</strong>g> screening secti<strong>on</strong>, where <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sistency is<br />

gradually dropped and stock is accepted through <str<strong>on</strong>g>the</str<strong>on</strong>g> holes (typically 7mm). Rejects are<br />

all materials not accepted at <str<strong>on</strong>g>the</str<strong>on</strong>g> screening secti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> drum repulper.<br />

Figures 9 and 10. Drum pulper, sketch and working principle<br />

For liquid packaging repulping, a shredder must be installed at <str<strong>on</strong>g>the</str<strong>on</strong>g> inlet secti<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

drum repulper, o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise <str<strong>on</strong>g>the</str<strong>on</strong>g> laminated boards will be hardly defiberized, and high<br />

temperatures are higher pH are used. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r inc<strong>on</strong>venience of drum pulpers is its cost,<br />

much higher than <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs kinds of pulper menti<strong>on</strong>ed before.<br />

13


After <str<strong>on</strong>g>the</str<strong>on</strong>g> defibering has occurred inside <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper, <str<strong>on</strong>g>the</str<strong>on</strong>g> stream of water and<br />

<str<strong>on</strong>g>fibres</str<strong>on</strong>g> (stock) has to be cleaned, as c<strong>on</strong>taminati<strong>on</strong> is expect when you deal with<br />

post-c<strong>on</strong>sumer and even post-industrial waste paper. The way to clean <str<strong>on</strong>g>the</str<strong>on</strong>g> stock<br />

is ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r by density (sorting materials which density is different than that of<br />

water (1) and pulp (near 1) or by size.<br />

Screening<br />

Pressurised screens are used to clean stock by removing debris that larger in at least<br />

<strong>on</strong>e dimensi<strong>on</strong> than papermaking <str<strong>on</strong>g>fibres</str<strong>on</strong>g>. High quality papers will demand a large<br />

number of screens (series and various stages) with minimum openings. The first<br />

screens in <str<strong>on</strong>g>the</str<strong>on</strong>g> system are called coarse screens and generally have holes (1 to 3mm)<br />

and are followed by o<str<strong>on</strong>g>the</str<strong>on</strong>g>r pressure screens with slots (0.1 to 0.4mm) called fine<br />

screens. Pressure screens are built in a number of sizes and are sized by <str<strong>on</strong>g>the</str<strong>on</strong>g> flow and<br />

quality required.<br />

Stock (water and <str<strong>on</strong>g>fibres</str<strong>on</strong>g>) is pumped into <str<strong>on</strong>g>the</str<strong>on</strong>g> machine and forced to pass through <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

holes or slots. For this hydraulic system to run, a differential pressure is always kept<br />

between inlet/outlet, to avoid <str<strong>on</strong>g>fibres</str<strong>on</strong>g> to form a mat over <str<strong>on</strong>g>the</str<strong>on</strong>g> screen and c<strong>on</strong>sequently<br />

blind <str<strong>on</strong>g>the</str<strong>on</strong>g> openings of <str<strong>on</strong>g>the</str<strong>on</strong>g> drilled/slotted screen. Some stock is c<strong>on</strong>tinuously rejected,<br />

carrying most of <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>taminants.<br />

In order to recover <str<strong>on</strong>g>fibres</str<strong>on</strong>g>,<br />

sec<strong>on</strong>dary, tertiary and even<br />

quaternary stages are used,<br />

screening <str<strong>on</strong>g>the</str<strong>on</strong>g> residuals of each<br />

previous stage. Generally all<br />

stages use same type of screen<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir accepts can be redirect<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> system or to <str<strong>on</strong>g>the</str<strong>on</strong>g> stage<br />

before.<br />

Normal types of debris<br />

screenable are plastics,<br />

undefibered paper flakes like<br />

wet-strength papers and<br />

adhesives. Pressurised screens<br />

can be horiz<strong>on</strong>tal or vertical.<br />

Cylindrical screens are always<br />

used, and a rotor cleans <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

openings and maintains <str<strong>on</strong>g>the</str<strong>on</strong>g> flow.<br />

Figure 11. An Ultra-V Pressure Screen<br />

14


Pressure screens are also<br />

used for fracti<strong>on</strong>ati<strong>on</strong>,<br />

which means <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

separati<strong>on</strong> of l<strong>on</strong>g and<br />

short <str<strong>on</strong>g>fibres</str<strong>on</strong>g>. This is very<br />

interesting when a multilayer<br />

paper is<br />

manufactured and different<br />

quality is required for each<br />

layer. Linerboard, for<br />

instance, will benefit of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

use of l<strong>on</strong>g <str<strong>on</strong>g>fibres</str<strong>on</strong>g> at <str<strong>on</strong>g>the</str<strong>on</strong>g> top<br />

ply. Therefore, a screen<br />

can be set for a higher rate<br />

of rejecti<strong>on</strong> than normal<br />

(up to 50%) which will<br />

enable more of <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g<br />

<str<strong>on</strong>g>fibres</str<strong>on</strong>g> to be rejected, while<br />

short <str<strong>on</strong>g>fibres</str<strong>on</strong>g> will most likely<br />

pass through he openings<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> screen.<br />

Figure 12. Comparis<strong>on</strong> am<strong>on</strong>g<br />

screen holes and slots and<br />

c<strong>on</strong>taminants size<br />

Centrifugal cleaning<br />

C<strong>on</strong>taminants such as dust and sand can not be sorted by size. Density is used for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

separati<strong>on</strong> of very small particles, which density is not near 1. Usually centrifugal<br />

cleaners are called <strong>on</strong>ly cleaners and <str<strong>on</strong>g>the</str<strong>on</strong>g>y can be high-density (HD) cleaners; medium<br />

density (MD) cleaners; forward cleaners and reverse cleaners. The working principle is<br />

basically <str<strong>on</strong>g>the</str<strong>on</strong>g> same for all of <str<strong>on</strong>g>the</str<strong>on</strong>g>m.<br />

Stock is fed tangentially close to <str<strong>on</strong>g>the</str<strong>on</strong>g> top of <str<strong>on</strong>g>the</str<strong>on</strong>g> cleaner body. Stock <str<strong>on</strong>g>the</str<strong>on</strong>g>n rotates within<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> cleaner body. The vortex created, as speeds are higher while <str<strong>on</strong>g>the</str<strong>on</strong>g> diameter of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cleaner is diminishing, make heavier particles c<strong>on</strong>centrate at <str<strong>on</strong>g>the</str<strong>on</strong>g> centre of <str<strong>on</strong>g>the</str<strong>on</strong>g> vortex. As<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> volume is restricted, <str<strong>on</strong>g>the</str<strong>on</strong>g> inner area of <str<strong>on</strong>g>the</str<strong>on</strong>g> vortex is forced to move ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r up or<br />

down, and is c<strong>on</strong>ducted out of <str<strong>on</strong>g>the</str<strong>on</strong>g> cleaner body, thus separating <str<strong>on</strong>g>the</str<strong>on</strong>g> heaviest particles<br />

in suspensi<strong>on</strong>.<br />

HD cleaners are low-efficient cleaners, but deal with large volumes and high<br />

c<strong>on</strong>sistency, so <str<strong>on</strong>g>the</str<strong>on</strong>g>y are used just after <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper and will remove metals, glass,<br />

grit and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r heavy stuff, than can damage <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure screens.<br />

15


MD cleaners are sometimes used as an additi<strong>on</strong>al protecti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> slots of fine screens<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>refore installed between coarse and fine screens.<br />

Forward cleaners are generally installed in banks and most are manufactured in PVC.<br />

They will sort particles over 1.0 in density, and are very good for sand removal.<br />

Reverse cleaners perform as<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r cleaners, but here<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> idea is to separate <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

particles <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> outside area<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> vortex, which are<br />

lighter, from <str<strong>on</strong>g>the</str<strong>on</strong>g> stream.<br />

Reverse cleaners were<br />

developed for <str<strong>on</strong>g>the</str<strong>on</strong>g> removal<br />

of wax, paraffin, glues and<br />

o<str<strong>on</strong>g>the</str<strong>on</strong>g>r light c<strong>on</strong>taminati<strong>on</strong>.<br />

Figure 13. A bank of X-Cl<strong>on</strong>es<br />

Normal types of c<strong>on</strong>taminants are:<br />

Type of c<strong>on</strong>taminant Density (kg/dm3) Particle sizes (µm)<br />

Clay 1.8 – 2.6 < 40<br />

Hot melts 0.95 – 1.1 40 to 4000<br />

Ink 1.2 – 1.6 < 400<br />

Latex 0.9 – 1.1 40 to 4000<br />

Metal 6.0 – 9.0 > 4000<br />

Polyethylene 0.9 – 0.97 > 400<br />

Polystyrene 1.04 – 1.1 > 400<br />

Styrofoam 0.3 – 0.5 > 400<br />

Wax 0.9 – 1.0 < 40<br />

Every solid particle inside a cleaner is subjected to four different forces:<br />

Centrifugal, always directed away from <str<strong>on</strong>g>the</str<strong>on</strong>g> centre of <str<strong>on</strong>g>the</str<strong>on</strong>g> cleaner;<br />

Buoyancy, due to pressure gradient, as a result of <str<strong>on</strong>g>the</str<strong>on</strong>g> displacement of <str<strong>on</strong>g>the</str<strong>on</strong>g> equal<br />

volume of fluid;<br />

Drag, toward <str<strong>on</strong>g>the</str<strong>on</strong>g> centre of <str<strong>on</strong>g>the</str<strong>on</strong>g> cleaner, as most of <str<strong>on</strong>g>the</str<strong>on</strong>g> fluid is flowing from <str<strong>on</strong>g>the</str<strong>on</strong>g> outer<br />

vortex to <str<strong>on</strong>g>the</str<strong>on</strong>g> inner vortex;<br />

Lift, as particles are also spinning and tumbling about its own centre of gravity.<br />

Refining<br />

Refiners are used to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> freeness of <str<strong>on</strong>g>the</str<strong>on</strong>g> stock. In o<str<strong>on</strong>g>the</str<strong>on</strong>g>r words, change drainage<br />

characteristics. Also, refining will affect sheet strength, bulk, porosity, smoothness and<br />

16


printing characteristics. Refining is energy c<strong>on</strong>suming and is often d<strong>on</strong>e just as<br />

necessary to permit a good final b<strong>on</strong>ding of <str<strong>on</strong>g>fibres</str<strong>on</strong>g> for <str<strong>on</strong>g>the</str<strong>on</strong>g> paper that will be<br />

manufactured. Refining does not clean <str<strong>on</strong>g>the</str<strong>on</strong>g> stock, although sometimes it reduces <str<strong>on</strong>g>the</str<strong>on</strong>g> size<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>taminants, breaking <str<strong>on</strong>g>the</str<strong>on</strong>g>m to pieces.<br />

Compared to virgin <str<strong>on</strong>g>fibres</str<strong>on</strong>g>, recycled <str<strong>on</strong>g>fibres</str<strong>on</strong>g> generally present: lower freeness, reduced<br />

fibre length, increased amount of fines, lower strength properties, increased opacity,<br />

inferior b<strong>on</strong>ding, less swelling and flexibility, lower water retenti<strong>on</strong> and reduced<br />

fibrillati<strong>on</strong>. Disk or c<strong>on</strong>ical plates are used, presenting a wide range of dimensi<strong>on</strong>s, to<br />

perform mechanical attriti<strong>on</strong>. Intensity and choice of treatment is designed according to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>fibres</str<strong>on</strong>g> to be processed, <str<strong>on</strong>g>the</str<strong>on</strong>g> final product to be made and to <str<strong>on</strong>g>the</str<strong>on</strong>g> kind of refiner used<br />

Washing, Deinking and Dispersi<strong>on</strong><br />

Washers are pieces of equipment that remove dispersed ink, fines and starch from <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stock. They are mainly used in tissue mills, where softness is a desirable feature of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

paper, by removing fillers. It is a typical rinsing process, performed at a wide range of<br />

c<strong>on</strong>sistencies and operating c<strong>on</strong>diti<strong>on</strong>s.<br />

Deinkers are used for ink removal. The most<br />

comm<strong>on</strong> types of deinkers are flotati<strong>on</strong> cells<br />

that use air bubbles dispersed in <str<strong>on</strong>g>the</str<strong>on</strong>g> stock at<br />

low-c<strong>on</strong>sistency. Air bubbles are injected at<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> bottom of <str<strong>on</strong>g>the</str<strong>on</strong>g> equipment, whereas stock<br />

comes from <str<strong>on</strong>g>the</str<strong>on</strong>g> top. On <str<strong>on</strong>g>the</str<strong>on</strong>g>ir way to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

surface, <str<strong>on</strong>g>the</str<strong>on</strong>g> bubbles tend to grab ink<br />

particles, which area is bigger than <str<strong>on</strong>g>the</str<strong>on</strong>g> area<br />

occupied by <str<strong>on</strong>g>fibres</str<strong>on</strong>g>. Both washing and<br />

deinking stages will increase <str<strong>on</strong>g>the</str<strong>on</strong>g> brightness of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> final papers.<br />

Figure 14. A MacCell Flotati<strong>on</strong> cell (operating principle)<br />

Dispergers are designed to shred small particles of ink and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>taminants into<br />

pieces. The goal here is to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> amount of visible particles of c<strong>on</strong>taminati<strong>on</strong>, but<br />

not to effectively remove <str<strong>on</strong>g>the</str<strong>on</strong>g>m from <str<strong>on</strong>g>the</str<strong>on</strong>g> stock.<br />

Systems<br />

A system designed for waste paper treatment is a combinati<strong>on</strong> of equipment listed<br />

above, and is generally tailor-made, or designed according to specific requirements of<br />

each paper mill, to product, performance, cost and manufacturer’s experience.<br />

17


A typical high-class tissue system could be:<br />

High<br />

C<strong>on</strong>sistency<br />

Pulper<br />

Poire<br />

High<br />

Density<br />

Cleaners<br />

Coarse<br />

Pressure<br />

Screen (2<br />

stages)<br />

Drum<br />

Washer<br />

Sec<strong>on</strong>dary<br />

Fine Screen<br />

(2 stages)<br />

Primary<br />

Forward<br />

Cleaners (4<br />

stages)<br />

Primary<br />

Flotati<strong>on</strong><br />

Primary<br />

Fine<br />

Screens (2<br />

stages)<br />

Reverse<br />

Cleaners (2<br />

stages)<br />

Thickener Dispersi<strong>on</strong> Primary<br />

Bleaching<br />

Sec<strong>on</strong>dary<br />

Bleaching<br />

Washing<br />

Sec<strong>on</strong>dary<br />

Forward<br />

Cleaners (3<br />

stages)<br />

Sec<strong>on</strong>dary<br />

Flotati<strong>on</strong><br />

Tertiary<br />

Bleaching<br />

Refining<br />

This sketch looks complex, but still doesn’t show rejects handling, <str<strong>on</strong>g>the</str<strong>on</strong>g> water<br />

system, chemistry system, pumps, steam and so <strong>on</strong>. The most complex <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

waste paper treatment is, <str<strong>on</strong>g>the</str<strong>on</strong>g> highest its capacity to turn cheapest <str<strong>on</strong>g>fibres</str<strong>on</strong>g> into<br />

high value paper products.<br />

18


V - <str<strong>on</strong>g>Recycling</str<strong>on</strong>g> cart<strong>on</strong>s<br />

TBA, TFA, TWA, TPA<br />

Aseptic cart<strong>on</strong>s are easily repulpable in water. They can be recycled virtually by any kind<br />

of pulping process previously described in this document. And <str<strong>on</strong>g>the</str<strong>on</strong>g>y pulp fast, due to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

quality and properties of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>fibres</str<strong>on</strong>g> used. Defibering <str<strong>on</strong>g>the</str<strong>on</strong>g> cart<strong>on</strong>s is not a problem, and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> process happens as water penetrates inside <str<strong>on</strong>g>the</str<strong>on</strong>g> polyethylene layers and is absorbed<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>fibres</str<strong>on</strong>g>. It may require few additi<strong>on</strong>al minutes in batch processes, however, but<br />

defibering is so easy pulping times are very c<strong>on</strong>venti<strong>on</strong>al and well below general<br />

expectati<strong>on</strong>s.<br />

As an excepti<strong>on</strong>, c<strong>on</strong>tinuos pulping at low-c<strong>on</strong>sistency should be avoided whenever<br />

possible. Low residence time for <str<strong>on</strong>g>fibres</str<strong>on</strong>g> inside <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper and <str<strong>on</strong>g>the</str<strong>on</strong>g> difficulty to handle<br />

residuals are <str<strong>on</strong>g>the</str<strong>on</strong>g> main reas<strong>on</strong>s. Also, as polyethylene is lighter than water, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a big<br />

trend to float, jeopardising <str<strong>on</strong>g>the</str<strong>on</strong>g> process after a while. If low-c<strong>on</strong>sistency c<strong>on</strong>tinuous is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly process available, special attenti<strong>on</strong> has to be given to running <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper at a<br />

low level, to increase <str<strong>on</strong>g>the</str<strong>on</strong>g> agitati<strong>on</strong> capacity. Also, detrashing cycle time (if available)<br />

shall be adjusted. Alternatively, blending aseptic cart<strong>on</strong>s with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r sec<strong>on</strong>dary <str<strong>on</strong>g>fibres</str<strong>on</strong>g>,<br />

such as OCC, should enable low-c<strong>on</strong>sistency c<strong>on</strong>tinuous pulping, as reported in a trial in<br />

Australia d<strong>on</strong>e at Amcor Botany Mill, that c<strong>on</strong>cluded: “The trial shows that aseptic<br />

cart<strong>on</strong>s … could be repulped in a c<strong>on</strong>tinuous operati<strong>on</strong> toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with mixed paper<br />

grades at levels up to 5%”.<br />

Despite <str<strong>on</strong>g>the</str<strong>on</strong>g> general percepti<strong>on</strong> that aseptic cart<strong>on</strong>s are hard to pulp, <str<strong>on</strong>g>the</str<strong>on</strong>g> real problem is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> amount of n<strong>on</strong>-wood materials in <str<strong>on</strong>g>the</str<strong>on</strong>g> cart<strong>on</strong>. <str<strong>on</strong>g>Recycling</str<strong>on</strong>g> paper mills are generally not<br />

prepared to deal with more than 5% of c<strong>on</strong>taminati<strong>on</strong> of solids <strong>on</strong> post-c<strong>on</strong>sumer<br />

papers inside <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper, but aseptic cart<strong>on</strong>s can deliver from 25% (TBA 1000ml base)<br />

to some 50% (TFA 500ml). For batch processes, all those residuals have to be taken<br />

away from <str<strong>on</strong>g>the</str<strong>on</strong>g> vat of <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper, before a new batch commences. For c<strong>on</strong>tinuous highc<strong>on</strong>sistency<br />

processes, <str<strong>on</strong>g>the</str<strong>on</strong>g> residuals will be c<strong>on</strong>tinuously dumped, while c<strong>on</strong>tinuous lowc<strong>on</strong>sistency<br />

processes will require that a detrashing system is in place (usually is) and<br />

reset for new timing intervals for purging <str<strong>on</strong>g>the</str<strong>on</strong>g> unit.<br />

The most effective manner to clean batch pulpers is to use a drum washer, directly<br />

piped to <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper vat. Residuals inside <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper can be flushed away into <str<strong>on</strong>g>the</str<strong>on</strong>g> drum<br />

screen, where showers will help washing remaining <str<strong>on</strong>g>fibres</str<strong>on</strong>g> away from <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>taminants<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g>refore allowing those <str<strong>on</strong>g>fibres</str<strong>on</strong>g> and water to be reused in <str<strong>on</strong>g>the</str<strong>on</strong>g> following batch.<br />

As any o<str<strong>on</strong>g>the</str<strong>on</strong>g>r source of <str<strong>on</strong>g>fibres</str<strong>on</strong>g>, heated water will make pulping easier, but is not<br />

mandatory. Important, no chemicals are needed for <str<strong>on</strong>g>the</str<strong>on</strong>g> pulping of aseptic cart<strong>on</strong>s,<br />

despite <str<strong>on</strong>g>the</str<strong>on</strong>g> general percepti<strong>on</strong>. Bringing a new source of <str<strong>on</strong>g>fibres</str<strong>on</strong>g> to a paper mill may<br />

require some attenti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical products already in use at <str<strong>on</strong>g>the</str<strong>on</strong>g> mill. Fibre<br />

flocculants for instance are sometimes used for improving sheet formati<strong>on</strong>, however<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>y tend to agglomerate <str<strong>on</strong>g>the</str<strong>on</strong>g> bleached <str<strong>on</strong>g>fibres</str<strong>on</strong>g> from multi-ply boards and show white<br />

spots <strong>on</strong> paper.<br />

19


Paper products manufactured from recovered aseptic cart<strong>on</strong>s can be of a very good<br />

quality. Around <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper is usually <str<strong>on</strong>g>the</str<strong>on</strong>g> place to spend time in a paper mill until figured<br />

out how to achieve <str<strong>on</strong>g>the</str<strong>on</strong>g> best performance from <str<strong>on</strong>g>the</str<strong>on</strong>g> system. Attenti<strong>on</strong> also has to be paid<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> screening to avoid c<strong>on</strong>taminati<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> final product from pieces of aluminium<br />

and plastic.<br />

Yield may be a c<strong>on</strong>cern to a certain extent. Of course <str<strong>on</strong>g>the</str<strong>on</strong>g> paper mill will not benefit from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> plastic and aluminium and so yield can’t be higher than 75%, as menti<strong>on</strong>ed above,<br />

c<strong>on</strong>sidering all <str<strong>on</strong>g>fibres</str<strong>on</strong>g> are recovered and <str<strong>on</strong>g>the</str<strong>on</strong>g> rejects are very clean. It is very obvious and<br />

intuitive to say that a newspaper or a magazine will deliver a better yield, as seems to<br />

be no unrecoverable material <str<strong>on</strong>g>the</str<strong>on</strong>g>re. What yield does a paper mill achieve using o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

materials?<br />

Numbers below are <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>es guaranteed by equipment suppliers, for new state-of-<str<strong>on</strong>g>the</str<strong>on</strong>g>art<br />

stock preparati<strong>on</strong> systems, designed to remove maximum c<strong>on</strong>taminati<strong>on</strong> while<br />

loosing as few <str<strong>on</strong>g>fibres</str<strong>on</strong>g> as possible. Cheaper systems powered with less technology (<str<strong>on</strong>g>the</str<strong>on</strong>g><br />

majority in <str<strong>on</strong>g>the</str<strong>on</strong>g> market) will ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r deliver more c<strong>on</strong>taminati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> paper with<br />

approximate yield or, most probably, reduce yield by dumping <str<strong>on</strong>g>fibres</str<strong>on</strong>g> with c<strong>on</strong>taminants<br />

to reach quality standards.<br />

Product Raw Material Yield (%)<br />

Newsprint Old Newsprint-ONP (60%) and Old Magazines-OMG (40%) 85-88%<br />

Topliner White Ledger (100%) 74-76%<br />

Fine Paper Mixed Office Waste – MOW (100%) 68-72%<br />

Tissue White Ledger (80%) and Old Magazines-OMG (20%) 62-66%<br />

Cardboard Old Corrugated C<strong>on</strong>tainers – OCC (%) 93-95%<br />

Due to chemistry, unrecoverable <str<strong>on</strong>g>fibres</str<strong>on</strong>g> etc. yields from waste paper are not as high as<br />

percepti<strong>on</strong> could suggest and all those unrecovered materials will have to be handled by<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> water treatment system of <str<strong>on</strong>g>the</str<strong>on</strong>g> paper mill. Replacing o<str<strong>on</strong>g>the</str<strong>on</strong>g>r raw materials with aseptic<br />

cart<strong>on</strong>s a paper mill may be able to maintain its normal producti<strong>on</strong> yield while refreshing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> water treatment system operati<strong>on</strong>.<br />

TR<br />

The bleached <str<strong>on</strong>g>fibres</str<strong>on</strong>g> used for Tetra Rex ® cart<strong>on</strong>s are a very good raw material for tissue<br />

mills and for o<str<strong>on</strong>g>the</str<strong>on</strong>g>r high quality white grades of paper.<br />

TR cart<strong>on</strong>s by <str<strong>on</strong>g>the</str<strong>on</strong>g>mselves are generally suitable for all pulping processes, like aseptic<br />

cart<strong>on</strong>s. Although not having aluminium (except for some HAAD Tetra Rex packages)<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> plastic layers can be easily peeled from <str<strong>on</strong>g>the</str<strong>on</strong>g> board inside <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper.<br />

The chemistry varies depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> board manufacturer and some wet-streng<str<strong>on</strong>g>the</str<strong>on</strong>g>ning<br />

chemistry may be used, enforcing <str<strong>on</strong>g>the</str<strong>on</strong>g> use of chemistry for pulping. If so, medium and<br />

high c<strong>on</strong>sistency pulping is generally desirable, at hot temperature (for faster fibre<br />

impregnati<strong>on</strong> with water) and under a high pH (9 to 12). Temperature can be achieved<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> use of steam and recommendati<strong>on</strong> is around 60 o C. The pH is increased with<br />

caustics. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r chemical products can be used to specifically break <str<strong>on</strong>g>the</str<strong>on</strong>g> wet strength of<br />

20


<str<strong>on</strong>g>the</str<strong>on</strong>g> cart<strong>on</strong>s and when used can reduce pulping time (generally 20 to 40 minutes) and<br />

improve yield.<br />

Gable top packages manufactured by o<str<strong>on</strong>g>the</str<strong>on</strong>g>r companies (IP, for instance) are usually<br />

harder to pulp and not fall under <str<strong>on</strong>g>the</str<strong>on</strong>g> specificati<strong>on</strong>s above.<br />

TB, TT<br />

Without aluminium and with a minimum of wet-strength chemistry added to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>fibres</str<strong>on</strong>g>,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>se cart<strong>on</strong>s are quite easy to pulp and when mixed with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r grades of waste paper<br />

are hardly noticed by a paper mill.<br />

If recovered as a separate stream, <str<strong>on</strong>g>the</str<strong>on</strong>g> great amount of plastic present <strong>on</strong> Tetra Top ®<br />

packages will require same attenti<strong>on</strong> as aseptic cart<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> pulping residuals<br />

Mixed cart<strong>on</strong>s<br />

Most of <str<strong>on</strong>g>the</str<strong>on</strong>g> times, cart<strong>on</strong>s d<strong>on</strong>’t come separate for pulping. All informati<strong>on</strong> above was<br />

c<strong>on</strong>cerning separate streams and is valid to understand what happens when cart<strong>on</strong>s are<br />

mixed. But <str<strong>on</strong>g>the</str<strong>on</strong>g> way cart<strong>on</strong>s are recovered for recycling depend <strong>on</strong> market share,<br />

collecti<strong>on</strong> system and so <strong>on</strong>.<br />

Cart<strong>on</strong>s can also be mixed am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>mselves or with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r grades of waste paper<br />

(sec<strong>on</strong>dary fibre). Of course, cart<strong>on</strong>s manufactured by <str<strong>on</strong>g>the</str<strong>on</strong>g> competitors of Tetra Pak are<br />

also possibly in <str<strong>on</strong>g>the</str<strong>on</strong>g>se mixtures. We know that aseptic cart<strong>on</strong>s manufactured by<br />

Combibloc behave approximately like <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>es made by Tetra Pak. Gable tops from<br />

Internati<strong>on</strong>al Paper, however are way tougher to repulp than TR. The gable top<br />

packages require temperatures over 65 o C, pH of 11-12 and pulping time at highc<strong>on</strong>sistency<br />

is 40 to 60 minutes.<br />

Blends of aseptic cart<strong>on</strong>s and gable tops are probably <str<strong>on</strong>g>the</str<strong>on</strong>g> most usually found mixtures<br />

of beverage cart<strong>on</strong>s available. Pulping TR, Aseptic cart<strong>on</strong>s and Gable Tops toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r is<br />

not desirable, <strong>on</strong>ce pulping c<strong>on</strong>diti<strong>on</strong>s are not <str<strong>on</strong>g>the</str<strong>on</strong>g> same. Therefore <str<strong>on</strong>g>the</str<strong>on</strong>g>re are basically<br />

three c<strong>on</strong>diti<strong>on</strong>s:<br />

Mixtures where aseptic cart<strong>on</strong>s are dominant, with small amounts of <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs (TR<br />

is much more tolerated than GT). In this case, pulping c<strong>on</strong>diti<strong>on</strong>s for aseptic cart<strong>on</strong>s<br />

should be used, and most of GT will not pulp, becoming part of <str<strong>on</strong>g>the</str<strong>on</strong>g> residuals and<br />

reducing yield. This also normally jeopardises <str<strong>on</strong>g>the</str<strong>on</strong>g> reuse of <str<strong>on</strong>g>the</str<strong>on</strong>g> pulping residuals<br />

(polyethylene and aluminium) as <str<strong>on</strong>g>the</str<strong>on</strong>g> GTs will be mixed toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g>m.<br />

Mixtures where GT and TR are dominant, so aseptic cart<strong>on</strong>s become c<strong>on</strong>taminants.<br />

Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> high pH c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> aluminium foils will oxide and granulate,<br />

becoming a major problem as paper c<strong>on</strong>taminati<strong>on</strong>. Also, <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g time required for<br />

pulping will increase <str<strong>on</strong>g>the</str<strong>on</strong>g> shredding of <str<strong>on</strong>g>the</str<strong>on</strong>g> aluminium/poly sandwich, leading to<br />

increasing levels of c<strong>on</strong>taminati<strong>on</strong>. Some recyclers in <str<strong>on</strong>g>the</str<strong>on</strong>g> USA do not tolerate over<br />

5% of aseptic cart<strong>on</strong>s when pulping GT.<br />

21


Mixtures where beverage cart<strong>on</strong>s are blended with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r grades of paper, generally<br />

in amounts below 50%. Pulping c<strong>on</strong>diti<strong>on</strong>s will be determined by a handful of<br />

factors, including paper to be made, grades of o<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>fibres</str<strong>on</strong>g> pulped, type of pulping<br />

process etc. This is probably <str<strong>on</strong>g>the</str<strong>on</strong>g> most comm<strong>on</strong> applicati<strong>on</strong>, as <str<strong>on</strong>g>the</str<strong>on</strong>g> collecti<strong>on</strong> of<br />

beverage cart<strong>on</strong>s is usually smaller than <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> of a paper mill. It is also a<br />

good way to start supplying <str<strong>on</strong>g>fibres</str<strong>on</strong>g> to a paper mill, so <str<strong>on</strong>g>the</str<strong>on</strong>g>y become familiar with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

quality of <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>fibres</str<strong>on</strong>g>.<br />

Trials recently d<strong>on</strong>e by Voith show how blends of cart<strong>on</strong>s behave as a functi<strong>on</strong> of<br />

pulping time. The 1st chart, comparing separate streams at same temperature, shows<br />

no significant improvement <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> defibering of GT cart<strong>on</strong>s, even after 80 min of<br />

pulping. Tetra Rex® cart<strong>on</strong>s, however, achieves same degree of repulping that aseptic<br />

cart<strong>on</strong>s, but after a six times l<strong>on</strong>ger period. Experiences at Atlantic Packaging in Canada<br />

with Gable Top cart<strong>on</strong>s, in a medium c<strong>on</strong>sistency batch pulper at room temperature and<br />

neutral pH showed that defibering was not achieved even after 3 hours of pulping.<br />

Fibre Flakes versus Pulping Time<br />

Full Scale Trial<br />

fibre flakes (Somerville // 0.15 mm) [%]<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Customer trial:<br />

Trial no.:<br />

Series 1 (100 % TBA)<br />

Series 5 (100 % GT)<br />

Series 25 (100 % Tetra Rex)<br />

0 10 20 30 40 50 60 70 80 90<br />

Lund 3<br />

08712<br />

Pulping Time [min]<br />

Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r chart from those trials compare blends of aseptic cart<strong>on</strong>s and gable top cart<strong>on</strong>s,<br />

with separate streams as wells. It is notable how a l<strong>on</strong>g tome residence inside <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pulper compromises <str<strong>on</strong>g>the</str<strong>on</strong>g> pulping of aseptic cart<strong>on</strong>s.<br />

22


Fibre Flakes versus Pulping Time<br />

Full Scale Trial<br />

fibre flakes (Somerville // 0.15 mm) [%]<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Series 1 (100 % TBA)<br />

Series 5 (100 % GT)<br />

Series 6 (50 % GT, 50 % TBA - 80 °C)<br />

Series 10 (50 % GT, 50 % TBA - 40 °C)<br />

Series 16 (75 % TBA + 25 % GT)<br />

0 10 20 30 40 50 60 70 80 90<br />

Customer trial:<br />

Trial no.:<br />

Lund 3<br />

08712<br />

Pulping Time [min]<br />

VI - Existing systems (selecti<strong>on</strong>)<br />

This is a selecti<strong>on</strong> of paper mills currently running cart<strong>on</strong>s manufactured by Tetra Pak.<br />

Upgrades to this paper shall be d<strong>on</strong>e and reports from o<str<strong>on</strong>g>the</str<strong>on</strong>g>r mills are also welcome.<br />

Atlantic Packaging, Scarborough, ON, Canada<br />

This centennial mill was <str<strong>on</strong>g>the</str<strong>on</strong>g> first <strong>on</strong>e in Canada to produce <strong>on</strong>ly 100% recycled papers.<br />

Their tissue operati<strong>on</strong> starts with two 14’ BC mid-c<strong>on</strong> pulpers of same size installed side<br />

by side, each <strong>on</strong>e capable of resp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g> total capacity of <str<strong>on</strong>g>the</str<strong>on</strong>g> inclined wire paper<br />

machine. In <str<strong>on</strong>g>the</str<strong>on</strong>g> year 2000, Atlantic added a Selectpurge 5000 drum washer to <strong>on</strong>e of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir mid-c<strong>on</strong> pulpers, thus<br />

enabling <str<strong>on</strong>g>the</str<strong>on</strong>g> recycling of<br />

aseptic cart<strong>on</strong>s. The<br />

Selectpurge selected for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

operati<strong>on</strong> has 3/8” holes and<br />

for additi<strong>on</strong>al washing c<strong>on</strong>trol,<br />

a variable speed motor was<br />

installed, to allow adjustments<br />

to <str<strong>on</strong>g>the</str<strong>on</strong>g> timing of <str<strong>on</strong>g>the</str<strong>on</strong>g> washing<br />

cycle.<br />

Figure 15: Mid-c<strong>on</strong> pulper<br />

23


As <str<strong>on</strong>g>the</str<strong>on</strong>g>re are twin pulpers in this mill, <str<strong>on</strong>g>the</str<strong>on</strong>g> Selectpurge was installed in <strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g>m, so<br />

Atlantic runs “clean raw materials” that means few residuals inside <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper, <strong>on</strong> pulper<br />

#1 and aseptic cart<strong>on</strong>s or o<str<strong>on</strong>g>the</str<strong>on</strong>g>r materials with high amounts of residuals <strong>on</strong> pulper #2.<br />

Being clean material doesn’t necessarily mean a high yield, as it is normal for mixed<br />

office waste to yield <strong>on</strong>ly 60%, due to high amounts of starch and fines.<br />

Rejects from <str<strong>on</strong>g>the</str<strong>on</strong>g> Selectpurge are c<strong>on</strong>veyered to a baler, that presses and form bales, to<br />

allow l<strong>on</strong>g distance travelling. Results from <str<strong>on</strong>g>the</str<strong>on</strong>g> first bales showed less than 2%<br />

remaining humidity and also very few <str<strong>on</strong>g>fibres</str<strong>on</strong>g>, although not measured. The baler is<br />

horiz<strong>on</strong>tal, with automatic tying system, loading 210 bar with a 178mm cylinder.<br />

Figure 16: Rejects from drum washer<br />

Figure 17: Bales of Poly and Al<br />

Currently, <str<strong>on</strong>g>fibres</str<strong>on</strong>g> extracted from aseptic cart<strong>on</strong>s are been mixed with OMG, ledger and<br />

graphic clippings to manufacture paper towels. The mill can run up to 100% using<br />

aseptic cart<strong>on</strong>s, and paper from 100% aseptic cart<strong>on</strong>s was <strong>on</strong>ce d<strong>on</strong>e, as shown below,<br />

but is not a reality as <str<strong>on</strong>g>the</str<strong>on</strong>g> volumes recovered from post-c<strong>on</strong>sumer collecti<strong>on</strong>s are far<br />

below <str<strong>on</strong>g>the</str<strong>on</strong>g>ir capacity. Atlantic could handle all aseptic cart<strong>on</strong>s sold by Tetra Pak in<br />

Canada in 1999.<br />

After pulped, <str<strong>on</strong>g>fibres</str<strong>on</strong>g> are high-density cleaned and coarse screened with Finch 1.8 mm<br />

coarse screens (<strong>on</strong>e loop for each pulper), when <str<strong>on</strong>g>the</str<strong>on</strong>g>y are blended in a storage chest, for<br />

fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r fine screening (as low as 0.10mm), forward cleaning, washing, deinking,<br />

bleaching and refining.<br />

24


Figure 18: Prototype paper roll made <strong>on</strong>ly from TBA cart<strong>on</strong>s at Atlantic Packaging<br />

Crown Packaging, Burnaby, BC, Canada<br />

Greencoast is <str<strong>on</strong>g>the</str<strong>on</strong>g> name of <str<strong>on</strong>g>the</str<strong>on</strong>g> plant Crown Packaging has in Burnaby. They are<br />

dedicated to making paper from recycled <str<strong>on</strong>g>fibres</str<strong>on</strong>g>. Their main product at that plant is<br />

gypsum, sold to gypsum board manufacturers.<br />

They decided to recycle beverage c<strong>on</strong>tainers using a BC 14’ft mid-c<strong>on</strong> pulper, same as<br />

Atlantic Packaging. Greencoast added a Selectpurge 5000 to <str<strong>on</strong>g>the</str<strong>on</strong>g> system, with holes of<br />

6.2mm. All water from <str<strong>on</strong>g>the</str<strong>on</strong>g> Selectpurge is used to fill <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper for <str<strong>on</strong>g>the</str<strong>on</strong>g> following load.<br />

Figure 19: Rejects from drum washer, after pulping<br />

Greencoast started recycling aseptic cart<strong>on</strong>s as of October 2000, and will add gable tops<br />

six m<strong>on</strong>ths later. For <str<strong>on</strong>g>the</str<strong>on</strong>g> gable tops, <str<strong>on</strong>g>the</str<strong>on</strong>g>y will be using water from a hot water tank, pre<br />

25


mixed with caustics, which will be delivering water at pH 11 to 12 and water from 60 to<br />

75 o C.<br />

In order to have as few <str<strong>on</strong>g>fibres</str<strong>on</strong>g> mixed with <str<strong>on</strong>g>the</str<strong>on</strong>g> rejects as possible, several trials were<br />

performed in order to find <str<strong>on</strong>g>the</str<strong>on</strong>g> best way to handle <str<strong>on</strong>g>the</str<strong>on</strong>g> dump of <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper. The current<br />

cycle used is to extract <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>fibres</str<strong>on</strong>g> through<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> plate for as l<strong>on</strong>g as possible.<br />

More water is <str<strong>on</strong>g>the</str<strong>on</strong>g>n added and when <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

level in <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper is approaching 1/3, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

dump valve is opened to some 20% and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n slowly ramped up to 50%, while <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

water extracted by <str<strong>on</strong>g>the</str<strong>on</strong>g> drum washer is<br />

being fed again in <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper. The whole<br />

process takes approximately 4 minutes and<br />

has delivered so far very “clean” rejects.<br />

Figure 20: Aspect of <str<strong>on</strong>g>the</str<strong>on</strong>g> rejects from drum washer<br />

From <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper, <str<strong>on</strong>g>fibres</str<strong>on</strong>g> (ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r from aseptic cart<strong>on</strong>s or gable tops) will pass through HD<br />

cleaners, 1.4mm Ultra-V coarse screens, medium c<strong>on</strong>sistency cleaners (3, in parallel),<br />

Ultra-V fine screens with 0.25mm slots, 2 stages of BC X-Cl<strong>on</strong>es (60-3-cbt and 6-3-bt)<br />

reverse cleaners and 3 stages Bird forward cleaners (22, 8 & 3), before refining,<br />

dispersi<strong>on</strong> and approach-flow final cleaning.<br />

Fiskeby, Sweden<br />

This Swedish company recycles a mixed waste stream, that includes aseptic and gable<br />

top cart<strong>on</strong>s using a large high c<strong>on</strong>sistency c<strong>on</strong>tinuous drum pulper, from Ahlstrom. From<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> drum pulper, centrifugal cleaners and pressurised screens clean <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>fibres</str<strong>on</strong>g>. Rejects<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper are a blend of different c<strong>on</strong>taminant materials and are landfilled.<br />

Fiskeby has ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r line with a high-c<strong>on</strong>sistency pulper, which <str<strong>on</strong>g>the</str<strong>on</strong>g>y use for gable top<br />

cart<strong>on</strong>s.<br />

The main products manufactured by Fiskeby are packaging boards for food boxes<br />

Figure 21: High c<strong>on</strong>sistency rotor at Fiskeby<br />

26


Klabin Fabricadora de Papel e Celulose, Piracicaba, SP, Brazil<br />

This mill started-up a new linerboard system for boxboard producti<strong>on</strong>, early in 1999.<br />

Their brand new system was designed to handle and blend two separate processing<br />

lines, 250 metric t<strong>on</strong>s per day of OCC and 50 metric t<strong>on</strong>s per day of Tetra Pak aseptic<br />

cart<strong>on</strong>s, from ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r post-c<strong>on</strong>sumer or post-industrial source. The OCC line has<br />

c<strong>on</strong>tinuous pulping, fracti<strong>on</strong>ati<strong>on</strong> and several screening and cleaning steps.<br />

Figures 22 and 23: Pulping aseptic cart<strong>on</strong>s <strong>on</strong> a high-c<strong>on</strong>sistency pulper<br />

The line that is dedicated for recycling Tetra Pak cart<strong>on</strong>s is comprised of <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

steps:<br />

High-c<strong>on</strong>sistency pulping: batch pulping <strong>on</strong> a 12-foot diameter Hi-C<strong>on</strong> Pulper, no<br />

chemicals are added and pulping time is around 21 minutes. Total batch time is slightly<br />

over 32 minutes. Capacity for this pulper is almost 100 t<strong>on</strong>s a day. The pulper has<br />

drilled plate underneath <str<strong>on</strong>g>the</str<strong>on</strong>g> rotor, with 9.5 mm holes, for fibre/water extracti<strong>on</strong>. There<br />

is no automated c<strong>on</strong>sistency c<strong>on</strong>trol, but 12% to 15% is <str<strong>on</strong>g>the</str<strong>on</strong>g> desired range of operati<strong>on</strong>.<br />

Drum washer: A Selectpurge 4500<br />

was installed beside <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper,<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> residuals are dumped at<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> end of each batch. The drum<br />

screen has <str<strong>on</strong>g>the</str<strong>on</strong>g> same size of holes as<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> pulper (9.5 mm) and <str<strong>on</strong>g>the</str<strong>on</strong>g> washing<br />

water is reused for filling up <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pulper every new batch.<br />

Figure 24: Drum washer<br />

HD Cleaner: A Liquid Cycl<strong>on</strong>e #10 with automated reject dumping is used for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

removal of heavy c<strong>on</strong>taminants that eventually will come from <str<strong>on</strong>g>the</str<strong>on</strong>g> waste stream. Typical<br />

c<strong>on</strong>taminants are sand and plastic pieces like PET bottle’s closures.<br />

27


Coarse Screen: Two pressurised Mini-Screens model 50 running in parallel are used at<br />

this cleaning step. Holes of 1.6 mm were chosen for <str<strong>on</strong>g>the</str<strong>on</strong>g> perforated screens and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rejects are sorted <strong>on</strong> an open<br />

vibratory screen, to ensure<br />

maximum fibre recovery.<br />

Fine Screen: A pressurised model<br />

50 Mini-Screen with slots of 0.2 mm<br />

was chosen to remove small pieces<br />

of plastic (and / or aluminium) that<br />

shall be shredded inside <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper.<br />

Rejects are also sorted in an open<br />

vibratory screen.<br />

Figure 25: Pressurised Screens<br />

Forward cleaners: Centrifugal cleaners<br />

were added to remove particles more<br />

dense than water, such as small flakes<br />

of aluminium, which were too small to<br />

be screened. Three stages of 3-inches<br />

Ultra Cl<strong>on</strong>es were used, <str<strong>on</strong>g>the</str<strong>on</strong>g> last <strong>on</strong>e<br />

being equipped with tips for maximum<br />

fibre saving. A total of 46 individual<br />

cleaners are installed, being 34 active.<br />

Figure 26: Forward Cleaners – 3 stages – 3<br />

inches bottles<br />

From <str<strong>on</strong>g>the</str<strong>on</strong>g> cleaners, accepted stock is thickened up to 4.5% in a 60x48 Free-Flow and<br />

sent to refiners. Refining is d<strong>on</strong>e accordingly to <str<strong>on</strong>g>the</str<strong>on</strong>g> final product and Klabin’s proper<br />

expertise. The <str<strong>on</strong>g>fibres</str<strong>on</strong>g> from <str<strong>on</strong>g>the</str<strong>on</strong>g> system are mainly used <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> top ply of <str<strong>on</strong>g>the</str<strong>on</strong>g> linerboard,<br />

due to its quality and cleanliness.<br />

Measurements d<strong>on</strong>e by Klabin indicated that <strong>on</strong>ly 0.5% of <str<strong>on</strong>g>fibres</str<strong>on</strong>g> were lost with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

residual plastic and aluminium (500 grams of <str<strong>on</strong>g>fibres</str<strong>on</strong>g> per 1000 kg of residuals). The mill<br />

state-of-<str<strong>on</strong>g>the</str<strong>on</strong>g>-art water treatment plant ensures this plant totally recycles all waters used<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> process, generating no water effluent.<br />

Currently, Klabin sells a product called <strong>Eko</strong>liner Out, grade 5 or 10, which is<br />

manufactured with recovered <str<strong>on</strong>g>fibres</str<strong>on</strong>g> from Tetra Pak cart<strong>on</strong>s, c<strong>on</strong>taining a minimum of<br />

ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r 5% or 10% of <str<strong>on</strong>g>the</str<strong>on</strong>g>se <str<strong>on</strong>g>fibres</str<strong>on</strong>g>.<br />

28


Figure 27: Kraftliner jumbo roll –<br />

approx. weight 4000 kg<br />

System flow diagram:<br />

CARTONS<br />

PULPER<br />

COARSE<br />

SCREEN<br />

FINE<br />

SCREEN<br />

Fiber + water<br />

HD CLEANER<br />

Polyethylene + aluminium + water<br />

FORWARD<br />

CLEANER<br />

PAPER<br />

PRODUCTION<br />

DRUM WASHER<br />

PLASTIC<br />

PROCESSING<br />

29


Klabin is also a supplier of board for Tetra Pak, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly <strong>on</strong>e in South America. They<br />

supply duplex boards for aseptic cart<strong>on</strong>s and also bleached boards for Tetra Rex®<br />

cart<strong>on</strong>s. Klabin is and <strong>on</strong>e of <str<strong>on</strong>g>the</str<strong>on</strong>g> very few American pulp and paper industries to have<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir forests certified by <str<strong>on</strong>g>the</str<strong>on</strong>g> FSC (Forest Stewardship Council).<br />

Orebro Kart<strong>on</strong>gbruk, Sweden<br />

Orebro Kart<strong>on</strong>gbruk bel<strong>on</strong>gs to <str<strong>on</strong>g>the</str<strong>on</strong>g> Gypsum Divisi<strong>on</strong> of Lafarge Platres, a major player in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Gypsum board business world-wide. Orebro Kart<strong>on</strong>gbruk supplies 100% of <str<strong>on</strong>g>the</str<strong>on</strong>g>ir<br />

producti<strong>on</strong> to Lafarge for gypsum manufacturing.<br />

The plant has a capacity of 45000 pbl (plasterboard liner), c<strong>on</strong>suming 60000 t<strong>on</strong>s of<br />

recycled <str<strong>on</strong>g>fibres</str<strong>on</strong>g> per year. They have a multi-cylinder machine and <str<strong>on</strong>g>the</str<strong>on</strong>g> board is made<br />

from 100% mixed waste papers, including some average 20 to 25% of post-c<strong>on</strong>sumer<br />

beverage cart<strong>on</strong>s,<br />

from Sweden and<br />

Germany. OK has<br />

a high c<strong>on</strong>sistency<br />

pulper running at<br />

18% c<strong>on</strong>sistency,<br />

operated at 45<br />

degrees Celsius.<br />

No chemicals<br />

added. Pulping<br />

time is 18 to 20<br />

minutes.<br />

Figure 28: hanged high c<strong>on</strong>sistency rotor pulping mixed waste<br />

Orebro has a Valmet trommel, near <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper, where <str<strong>on</strong>g>the</str<strong>on</strong>g>y dump <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper load when<br />

20% of <str<strong>on</strong>g>the</str<strong>on</strong>g> volume of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> pulper is reached.<br />

Trommel has 8mm<br />

holes while <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

extracti<strong>on</strong> plate inside<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> pulper has 15mm.<br />

After pulping <str<strong>on</strong>g>the</str<strong>on</strong>g>y<br />

have c<strong>on</strong>venti<strong>on</strong>al<br />

cleaning systems,<br />

including 0.25mm fine<br />

screens and also<br />

fracti<strong>on</strong>ati<strong>on</strong> with<br />

0.15mm screens.<br />

Figure 29: Valmet drum washer and Celli high c<strong>on</strong>sistency pulper<br />

30


For <str<strong>on</strong>g>the</str<strong>on</strong>g> white top layer, OK uses mainly beverage cart<strong>on</strong>s (post-industrial scraps from<br />

competitors), mostly gable top, bleached wet-strength sulphate pulp, that is pulped at<br />

high-c<strong>on</strong>sistency as well, under hot temperature and high pH (caustics added).<br />

Residuals from <str<strong>on</strong>g>the</str<strong>on</strong>g> pulping operati<strong>on</strong> are processed in a fluid bed boiler for energy<br />

recoverage, energy that ultimately is used at <str<strong>on</strong>g>the</str<strong>on</strong>g> paper mill producti<strong>on</strong>.<br />

Papeles Naci<strong>on</strong>ales, Pereira, Colombia<br />

(From a report by Fernando Neves)<br />

Papeles Naci<strong>on</strong>ales is a paper mill located about 200 Km from Bogotá. This factory<br />

produces recycled tissue paper using 50% Old corrugated c<strong>on</strong>tainers (OCC), 25%<br />

Catalog Paper (CP) and 25% Old Newsprint (ONP). Their total producti<strong>on</strong> is 175<br />

t<strong>on</strong>/day. Pulping is d<strong>on</strong>e in a High c<strong>on</strong>sistency pulper (~ 15%) with Helico rotor,<br />

manufactured by Lamort. The <str<strong>on</strong>g>fibres</str<strong>on</strong>g> and rejects pass through a poire (detrasher) after<br />

repulping. The pulp goes direct to <str<strong>on</strong>g>the</str<strong>on</strong>g> pulp tank and <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> waste (polyethylene and<br />

aluminium) is collected in a c<strong>on</strong>tainer, located under <str<strong>on</strong>g>the</str<strong>on</strong>g> poire.<br />

Figure 30: Poire installati<strong>on</strong><br />

Figure 31: Rejects from pulping<br />

No problem was detected in <str<strong>on</strong>g>the</str<strong>on</strong>g> paper producti<strong>on</strong> or in <str<strong>on</strong>g>the</str<strong>on</strong>g> paper properties. The paper<br />

quality was c<strong>on</strong>sidered very good and <str<strong>on</strong>g>the</str<strong>on</strong>g> visual aspects were good as well. The photo<br />

below shows that polyethylene and aluminium (toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>taminants from<br />

waste paper) were discharged quite clean (few <str<strong>on</strong>g>fibres</str<strong>on</strong>g>).<br />

There is ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r pulper that can be used to repulp TBA at 100%. This equipment is a<br />

low c<strong>on</strong>sistency pulper with lateral discharge and perforated plate. It is feasible to install<br />

a drum washer.<br />

Papeles Naci<strong>on</strong>ales can use up to 7% of aseptic cart<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper, but in order to<br />

have a safety operati<strong>on</strong> it was agreed to work with <strong>on</strong>ly 5%.<br />

Papeles Naci<strong>on</strong>ales can c<strong>on</strong>sume 150 t<strong>on</strong> per m<strong>on</strong>th that represents 27 % of <str<strong>on</strong>g>the</str<strong>on</strong>g> Tetra<br />

Pak Colombia total producti<strong>on</strong>.<br />

31


Scott-Feldmuhle GmbH, Germany<br />

This tissue plant has a 3.25 diameter drum repulper, extended length, that reportedly<br />

runs 180 admtpd of office waste and liquid packaging boards. Office waste is 50 to 60%<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> blend, <str<strong>on</strong>g>the</str<strong>on</strong>g> balance being liquid packaging boards. Pulping time is 30 minutes in<br />

average, pH up to 10, temperatures from 40 to 60 degrees Celsius. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r steps of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

stock preparati<strong>on</strong> include high-density cleaning, coarse screening, forward cleaning, fine<br />

screening, dispersi<strong>on</strong>, flotati<strong>on</strong> and washing. Reported liquid packaging boards include<br />

aseptic cart<strong>on</strong>s and those multi-layered featuring CTMP.<br />

Unit Mixed Waste Office Papers Liquid Packaging<br />

Pulping Time min 20 25 40<br />

Freeness ml 160 390 425<br />

Fines ( 220 µm PPM 2084 4550 1440<br />

Dirt 20-220 µm PPM 18070 9784 695<br />

Yield % 99.5 99.7 68.9<br />

Reject c<strong>on</strong>sistency % 24.9 24.5 22<br />

Table 1: Laboratory results for drum repulpers, from European household mixed waste, office papers and<br />

mixed liquid packaging c<strong>on</strong>taining sulphate and CTMP <str<strong>on</strong>g>fibres</str<strong>on</strong>g>. (Ahsltrom Kamyr)<br />

Trials <strong>on</strong> paper mills in Turkey<br />

(From a report by Fernando v<strong>on</strong> Zuben)<br />

Ankara Paper Mill has an old paper machine producing 42 g/m 2 dyed red fruit wrapping<br />

paper. Their producti<strong>on</strong> is 20 t<strong>on</strong> per day mainly from Mixed Office Waste (MOW), using<br />

a low c<strong>on</strong>sistency 10 m 3 batch pulper. Fibres are extracted through a perforated plate<br />

underneath <str<strong>on</strong>g>the</str<strong>on</strong>g> rotor. Rejects are separated by using a trap device in <str<strong>on</strong>g>the</str<strong>on</strong>g> top of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

pulper as shown below.<br />

Figure 32: Cleaning <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper<br />

32


The normal repulping time for MOW is around 60 minutes and for TBA <strong>on</strong>ly 20 minutes.<br />

It means saving time and energy while improving quality by replacing some MOW (short<br />

fibre) for TBA (l<strong>on</strong>g fibre). Pulp quality has shown no c<strong>on</strong>taminati<strong>on</strong> of plastic or<br />

aluminium meaning <str<strong>on</strong>g>the</str<strong>on</strong>g> cleaning process, without any modificati<strong>on</strong>, worked quite well.<br />

Selkasan Paper Mill is located 50 km far from Tetra Pak c<strong>on</strong>verting plant in Izmir and is<br />

capable to produce 180 t<strong>on</strong> per day of corrugated medium using OCC as raw material.<br />

They have <strong>on</strong>e c<strong>on</strong>tinuous pulper and two high c<strong>on</strong>sistency pulpers from Lamort. One of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n (12 m 3 ) is not in use and can be easily adapted to recycle TBA material. The<br />

repulping time for OCC is 20 minutes and <str<strong>on</strong>g>the</str<strong>on</strong>g> total cycle time around 40 minutes.<br />

Dentas Paper Mill is located in Denizil and make 100 t<strong>on</strong>s per day of Kraft liner and<br />

medium paper based <strong>on</strong> OCC and also produce corrugated boxes <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> same site. They<br />

have two Voith c<strong>on</strong>tinuous pulpers and <strong>on</strong>e medium c<strong>on</strong>sistency pulper of 22 m 3 . With a<br />

drum washer <str<strong>on</strong>g>the</str<strong>on</strong>g>y could use up to 50 t<strong>on</strong>s per day of TBA as a raw material.<br />

VII - Bibliography<br />

1. Abreu, M. <str<strong>on</strong>g>Recycling</str<strong>on</strong>g> of Tetra Pak Aseptic Cart<strong>on</strong>s. Tetra Pak Canada Inc., Markham,<br />

2000.<br />

2. Darlingt<strong>on</strong>, W. B., Lanier, W. G., G<strong>on</strong>stad, J.A., McMillen, T.L. Development of a<br />

Repulpable Wet Strength Board. <str<strong>on</strong>g>Recycling</str<strong>on</strong>g> Symposium. TAPPI Press, Atlanta. 1996.<br />

Pg. 91.<br />

3. Ford, Philip A. Recycled Fibre – Its Use And Effect In Fine Papermaking. <str<strong>on</strong>g>Recycling</str<strong>on</strong>g><br />

Symposium. TAPPI Press, Atlanta. 1995. Pg. 355.<br />

4. Houst<strong>on</strong>, J., Babb, C., Homans, J. Pulping Wet-strength Milk Cart<strong>on</strong>s. <str<strong>on</strong>g>Recycling</str<strong>on</strong>g><br />

Symposium. TAPPI Press, Atlanta, 1995. Pg. 403.<br />

5. Koffinke, Dick. Drum Repulping System For Liquid Packaging. <str<strong>on</strong>g>Recycling</str<strong>on</strong>g> Symposium.<br />

TAPPI Press, Atlanta. 1996. Pg. 375.<br />

6. Law, K., Valade, J., Quan, J. Effects of recycling <strong>on</strong> papermaking properties of<br />

mechanical and high yield pulps: pt. I: Hardwood pulps. Tappi Journal volume 79,<br />

no. 3, pg. 167. TAPPI Press, Atlanta. March 1996.<br />

7. Libby, C. E. ET all. Pulp and Paper Science and Technology. Volume II, Paper.<br />

McGraw-Hill, New York. 1962.<br />

8. Phillip, P., ET all. Celulose e Papel, Volumes I and II. IPT - Instituto de Pesquisas<br />

Tecnológicas do Estado de São Paulo, São Paulo, 1988.<br />

9. Spangenberg, R. J., ET all. Sec<strong>on</strong>dary Fibre <str<strong>on</strong>g>Recycling</str<strong>on</strong>g>. TAPPI Press, Atlanta. 1993.<br />

10. V<strong>on</strong> Zuben, F. <str<strong>on</strong>g>Recycling</str<strong>on</strong>g> of Tetra Pak Cart<strong>on</strong>s. Tetra Pak Ltda. Brazil, 1997.<br />

33


ANNEX I – Report <strong>on</strong> Black Claws<strong>on</strong>’s trials in 1996<br />

Upgrading cart<strong>on</strong> Stock<br />

By: Colin S. Bowser<br />

The Black Claws<strong>on</strong> Company<br />

Shartle Divisi<strong>on</strong> –Technology Center – Middletown, Ohio<br />

Report 37033<br />

June 21, 1996<br />

Objective:<br />

The objective of <str<strong>on</strong>g>the</str<strong>on</strong>g> trial was to dem<strong>on</strong>strate <str<strong>on</strong>g>the</str<strong>on</strong>g> upgrading of a poly and foil covered<br />

cart<strong>on</strong> stock using sec<strong>on</strong>dary fibre processing technology.<br />

Summary:<br />

Th client supplied two bales of post-c<strong>on</strong>sumer milk and juice cart<strong>on</strong> stock and <strong>on</strong>e bale<br />

of shredded post-industrial stock as furnish for trials. Two separate 8-foot Hi-C<strong>on</strong><br />

Hydrapulper batches were pulped for two different trials. A blend of <str<strong>on</strong>g>the</str<strong>on</strong>g> shredded and<br />

unshredded was used for each. The pulped stock was extracted through an under rotor<br />

bedplate having 3/8 inch holes. Residual plastics retained in <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper after extracti<strong>on</strong><br />

was diluted and fed to <str<strong>on</strong>g>the</str<strong>on</strong>g> Selectpurge for washing and dewatering.<br />

Coarse and fine screening were dem<strong>on</strong>strated <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> stock from <str<strong>on</strong>g>the</str<strong>on</strong>g> initial pulper batch<br />

with a model 100 Ultra-V pressure screen. A 0.062” UP screen cylinder was used to<br />

dem<strong>on</strong>strate coarse screening. Fine screening of <str<strong>on</strong>g>the</str<strong>on</strong>g> coarse screen accepts was<br />

c<strong>on</strong>ducted with a 0.008” PSP cylinder screen. The accept stream from <str<strong>on</strong>g>the</str<strong>on</strong>g> fine screen<br />

was collected for fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r processing.<br />

Fine screening was followed by through flow centrifugal cleaning with a single 3” X-<br />

Cl<strong>on</strong>e to remove low specific gravity c<strong>on</strong>taminants. Accept stock from <str<strong>on</strong>g>the</str<strong>on</strong>g> X-Cl<strong>on</strong>e was<br />

forward centrifugal cleaned through a 3” Ultra-Cl<strong>on</strong>e to remove high specific gravity<br />

c<strong>on</strong>taminants. This c<strong>on</strong>cluded <str<strong>on</strong>g>the</str<strong>on</strong>g> trial <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> first pulper batch.<br />

The sec<strong>on</strong>d pulper batch was coarse screened as <str<strong>on</strong>g>the</str<strong>on</strong>g> first. Coarse screen accepts were<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n washed and thickened using a model 100 DNT washer and Fiberc<strong>on</strong>e Press in<br />

sequence. The press thick stock was collected in Gaylord boxes.<br />

Samples were collected from all equipment dem<strong>on</strong>strati<strong>on</strong>s. Tests performed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

samples included c<strong>on</strong>sistency, freeness, dirt, brightness, strength tests and beater<br />

curves. The test results, complete equipment operating data and observati<strong>on</strong><br />

handsheets are included in this report.<br />

34


Hydrapulper:<br />

Pulping for each trial was c<strong>on</strong>ducted in an 8’ diameter Hydrapulper fitted with a 40”<br />

diameter Hi-C<strong>on</strong> rotor. Batch <strong>on</strong>e c<strong>on</strong>sisted of a blend of 610 air-dry pounds unshredded<br />

and 290 air-dry pounds shredded poly and foil covered cart<strong>on</strong> stock. These were added<br />

to 900 gall<strong>on</strong>s of water at 70 o F. Batch two was a blend of 601 air dry pounds<br />

unshredded and 282 air dry pounds shredded poly and foil covered cart<strong>on</strong> stock. These<br />

were added to 700 gall<strong>on</strong>s of water at 70 o F. Both batches were pulped approximately<br />

35 minutes and extracted through a 3/8” drilled hole bedplate. Residual plastics and foil<br />

retained in <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper after extracti<strong>on</strong> were diluted and fed to <str<strong>on</strong>g>the</str<strong>on</strong>g> Selectpurge for<br />

washing and dewatering. Due to large sheets of plastic in <str<strong>on</strong>g>the</str<strong>on</strong>g> initial pulper batch <str<strong>on</strong>g>the</str<strong>on</strong>g>re<br />

was difficulty feeding <str<strong>on</strong>g>the</str<strong>on</strong>g> plastics through <str<strong>on</strong>g>the</str<strong>on</strong>g> small diameter pipes in <str<strong>on</strong>g>the</str<strong>on</strong>g> pilot plant.<br />

The sec<strong>on</strong>d batch, having no large sheets of plastic, was easily processed through <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Selectpurge.<br />

Batch #1 #2<br />

Date April 29, 1996 May 2, 1996<br />

Rotor Diam. / type 40” – Hi-C<strong>on</strong> 40” – Hi-C<strong>on</strong><br />

Rotor Speed 290 rpm 290 rpm<br />

Bedplate holes 3/8” 3/8”<br />

C<strong>on</strong>nected hp 200 200<br />

Furnish – unshredded/ shredded 610 lb / 290 lb 601 lb/ 282 lb<br />

Water volume 900 gal 700 gal<br />

Water temperature 70 o F 70 o F<br />

Chemicals used N<strong>on</strong>e N<strong>on</strong>e<br />

Sample time 35 min 35 min<br />

Stock c<strong>on</strong>sistency 13.3% 14.37%<br />

Residuals left (air dried) - 205 lb (23.2% by weight)<br />

Aspect of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

residuals after<br />

pulping.<br />

35


Coarse Screening: The initial pulper batch was diluted to 2.63% c<strong>on</strong>sistency in<br />

preparati<strong>on</strong> for coarse screening. Coarse screening was accomplished using a Model 100<br />

Ultra-V Screen fitted with a 0.062” UP screen cylinder. Screening was d<strong>on</strong>e in a closed<br />

loop with accept and reject flows returning to <str<strong>on</strong>g>the</str<strong>on</strong>g> fed tank. Once parameters stabilised,<br />

samples were collected and <str<strong>on</strong>g>the</str<strong>on</strong>g> accept flow was diverted to a holding tank while rejects<br />

were sewered. Screen accepts were <str<strong>on</strong>g>the</str<strong>on</strong>g>n fine screened.<br />

The sec<strong>on</strong>d pulper batch was coarse screened in <str<strong>on</strong>g>the</str<strong>on</strong>g> same manner as <str<strong>on</strong>g>the</str<strong>on</strong>g> first, however<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> feed c<strong>on</strong>sistency was 1.99%. Coarse screen accepts were collected in a holding tank<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g>n washed. Coarse rejects were sewered.<br />

Batch #1 #2<br />

Cylinder hole / type<br />

0.062” / UP<br />

Rotor type / foils number<br />

Drum – 3 foils<br />

Rotor Speed 645 rpm 650 rpm<br />

C<strong>on</strong>sumed hp 31 19<br />

C<strong>on</strong>nected hp 100 100<br />

Freeness (feed) 529 CSF 630 CSF<br />

Freeness (accept) 540 CSF 601 CSF<br />

Freeness (rejects) 586 CSF 687 CSF<br />

Flow rate (feed) 650 gpm 505 gpm<br />

C<strong>on</strong>sistency (feed) 2.64% 1.99%<br />

Hydraulic reject rate 20.8% 20.0%<br />

Fine Screening: A model 100 Ultra-V Pressure screen fitted with an 0.008” PSP slotted<br />

cylinder and LowPower Rotor accomplished <str<strong>on</strong>g>the</str<strong>on</strong>g> fine screening. Coarse screen accepts<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> first trial were diluted to 1.46% c<strong>on</strong>sistency for fine screening. The screen was<br />

operated in a closed loop. Samples of <str<strong>on</strong>g>the</str<strong>on</strong>g> feed, accept and reject streams were collected<br />

for testing. The accept flow was <str<strong>on</strong>g>the</str<strong>on</strong>g>n diverted to a holding tank and <str<strong>on</strong>g>the</str<strong>on</strong>g> rejects were<br />

sewered. Fine screen accepts were <str<strong>on</strong>g>the</str<strong>on</strong>g>n prepared for cleaning.<br />

Batch #1<br />

Cylinder slot / type<br />

0.008” / PSP<br />

Rotor type / foils number<br />

LP 1 – 3 foils<br />

Rotor Speed<br />

780 rpm<br />

C<strong>on</strong>sumed hp 26<br />

C<strong>on</strong>nected hp 100<br />

Freeness (feed)<br />

503 CSF<br />

Freeness (accept)<br />

476 CSF<br />

Freeness (rejects)<br />

570 CSF<br />

Flow rate (feed)<br />

630 gpm<br />

C<strong>on</strong>sistency (feed) 1.46%<br />

Hydraulic reject rate 20.6%<br />

36


Centrifugal cleaning: Fine screen accepts were diluted to 0.87% c<strong>on</strong>sistency and heated<br />

to 120 o F. The stock slurry was <str<strong>on</strong>g>the</str<strong>on</strong>g>n pumped to a single 3” X-Cl<strong>on</strong>e cleaner. The X-Cl<strong>on</strong>e<br />

was operated at an inlet pressure of 26 psi with a differential pressure of 15 psi between<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> feed and accept screens. X-Cl<strong>on</strong>e accepts were collected in a holding tank and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

rejects were sewered. Samples were taken for laboratory analysis. X-Cl<strong>on</strong>e accepts were<br />

pumped to a single 3” Ultra-Cl<strong>on</strong>e cleaner. The Ultra-Cl<strong>on</strong>e was operated at an inlet<br />

pressure of 35 psi with a differential pressure of 20 psi between <str<strong>on</strong>g>the</str<strong>on</strong>g> feed and accept<br />

streams. Samples were collected with stable operating c<strong>on</strong>diti<strong>on</strong>s. This c<strong>on</strong>cluded <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

trial <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> initial pulper batch.<br />

Batch #1 #1<br />

Cleaner type X-Cl<strong>on</strong>e Ultra-Cl<strong>on</strong>e<br />

Cleaner Size 3” 3”<br />

Feed pressure 26 psi 35 psi<br />

Accept pressure 11 psi 15 psi<br />

Delta P 15 psi 20 psi<br />

Freeness (feed) 516 CSF 523 CSF<br />

Freeness (accept) 524 CSF 437 CSF<br />

Freeness (rejects) - 610 CSF<br />

Flow rate (feed) 44 gpm 50 gpm<br />

C<strong>on</strong>sistency (feed) 0.87% 0.97%<br />

Hydraulic reject rate 9.77% 12.3%<br />

Washing: A Model 100 DNT Washer with a Trio Tech 114 wire operated at 3,000 ft/min<br />

was used to wash <str<strong>on</strong>g>the</str<strong>on</strong>g> coarse screen accept from <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d trial. The stock was fed at<br />

280 gall<strong>on</strong>s per minute at 1.86% feed c<strong>on</strong>sistency. DNT thick stock was fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

thickened in a Fiberc<strong>on</strong>e Press and <str<strong>on</strong>g>the</str<strong>on</strong>g> DNT filtrate was sewered. The Fiberc<strong>on</strong>e Press<br />

thickened <str<strong>on</strong>g>the</str<strong>on</strong>g> stock to 26%. The press thick stock was collected in Gaylord boxes. The<br />

press filtrate was sewered. Samples were taken around <str<strong>on</strong>g>the</str<strong>on</strong>g> washer and <str<strong>on</strong>g>the</str<strong>on</strong>g> press.<br />

Batch #2<br />

C<strong>on</strong>nected hp 100<br />

Freeness (feed)<br />

592 CSF<br />

Freeness (accept)<br />

702 CSF<br />

Freeness (rejects) -<br />

Flow rate (feed)<br />

280 gpm<br />

C<strong>on</strong>sistency (feed) 1.86 %<br />

C<strong>on</strong>sistency (accept) 10.42 %<br />

C<strong>on</strong>sistency (reject) 0.14 %<br />

Hydraulic reject rate 83.3 %<br />

37


Dirt Count and Brightness Results – Batch #1<br />

PPM<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

46.5<br />

Coarse Screen<br />

1.6mm<br />

30.8<br />

Fine Screen<br />

0.2mm<br />

Accepted stock<br />

19.9<br />

Through-flow<br />

cleaners 3"<br />

6.4<br />

Forward<br />

cleaners 3"<br />

From <str<strong>on</strong>g>the</str<strong>on</strong>g> same samples, paper sheets were made from cleaned <str<strong>on</strong>g>fibres</str<strong>on</strong>g> and sent to Miami<br />

University in Oxford, Ohio, which reports are shown <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> charts below.<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Freeness (CSF)<br />

Tensile Index (N.m/g)<br />

0 5 10 15<br />

Beating time (min)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Tear Index (mN.m2/g) Burst Index (kPa.m2/g)<br />

Breaking Length (km)<br />

0 5 10 15<br />

Beating time (min)<br />

Note: Please c<strong>on</strong>tact <str<strong>on</strong>g>the</str<strong>on</strong>g> author at mario.abreu@<strong>tetra</strong><strong>pak</strong>.com if you need copies of detailed reports from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Miami University and copies of handsheets from <str<strong>on</strong>g>the</str<strong>on</strong>g>se trials.<br />

38


ANNEX II – Report <strong>on</strong> Celleco’s trials in 1998<br />

Tetra Pak Cart<strong>on</strong> Systems AB, Lund, Sweden<br />

and<br />

Alfa Laval Celleco Inc., Lawrenceville, GA<br />

Repulping Characteristics Of Italian OCC Mixed With TBA<br />

OBJECTIVE: To test <str<strong>on</strong>g>the</str<strong>on</strong>g> repulping properties of Italian OCC when combined with limited<br />

quantities of Tetra Brik® Aseptic Packaging.<br />

Test Date: April 13-17, 1998<br />

Release Date: June 22, 1998<br />

Written By: Brian Alt<strong>on</strong><br />

Laboratory Report: # 98 317<br />

EXECUTIVE SUMMARY<br />

OBJECTIVE<br />

The objective of <str<strong>on</strong>g>the</str<strong>on</strong>g> present study was to examine <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se of OCC when repulped<br />

with pre- and post-c<strong>on</strong>sumer Tetra Brik® Aseptic (TBA) packaging.<br />

MATERIALS TESTED<br />

1. Pre-c<strong>on</strong>sumer Tetra Brik® Aseptic packaging obtained from Tetra Pak training center in<br />

Italy.<br />

2. Post-c<strong>on</strong>sumer Tetra Brik® Aseptic packaging obtained from pilot scale collecti<strong>on</strong><br />

programs in Italy<br />

3. OCC material received from <str<strong>on</strong>g>the</str<strong>on</strong>g> paper mill Cartiera Dell’ania S.p.A in Italy.<br />

CONCLUSIONS<br />

1. The additi<strong>on</strong> of TBA to <str<strong>on</strong>g>the</str<strong>on</strong>g> OCC material improved <str<strong>on</strong>g>the</str<strong>on</strong>g> physical properties of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

resulting repulped mixture, as well as increasing brightness and lowering dirt<br />

counts.<br />

2. L<strong>on</strong>ger pulping time improved <str<strong>on</strong>g>the</str<strong>on</strong>g> physical properties of each mixture but had a<br />

negative effect <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> dirt count of <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting material.<br />

3. Increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> percentage of TBA in <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper batches fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r improved <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

physical properties of <str<strong>on</strong>g>the</str<strong>on</strong>g> final product, but also increased dirt counts in <str<strong>on</strong>g>the</str<strong>on</strong>g> final<br />

product.<br />

39


BACKGROUND<br />

European countries have been recycling OCC for many years. As a result, present-day<br />

OCC in Europe c<strong>on</strong>sists of shorter <str<strong>on</strong>g>fibres</str<strong>on</strong>g> than its American counterpart, hence creating a<br />

weaker final product. This study was developed to determine if Tetra Brik® Aseptic<br />

packaging material could be added to <str<strong>on</strong>g>the</str<strong>on</strong>g> pulping batches to increase <str<strong>on</strong>g>the</str<strong>on</strong>g> strength of<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> final product without a detrimental effect <strong>on</strong> its cleanliness.<br />

TEST PROCEDURES<br />

Pulper batches c<strong>on</strong>sisting of 1000 lb. of material (<str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> individual<br />

pulper batches is outlined in Table 1 <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> next page) were placed in <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper and<br />

water was added to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sistency to approximately 13% BD c<strong>on</strong>sistency. Each<br />

pulper batch was pulped for <str<strong>on</strong>g>the</str<strong>on</strong>g> time indicated in Table 1, <str<strong>on</strong>g>the</str<strong>on</strong>g>n was discharged to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

dump chest. Any debris remaining above <str<strong>on</strong>g>the</str<strong>on</strong>g> extracti<strong>on</strong> plate was discharged to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

trommel (drum) screen, from which <str<strong>on</strong>g>the</str<strong>on</strong>g> accepts also went into <str<strong>on</strong>g>the</str<strong>on</strong>g> dump chest.<br />

The dump chest was <str<strong>on</strong>g>the</str<strong>on</strong>g>n diluted to approximately 1.8% and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tents transferred to<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> coarse screen feed tank. The coarse screen accepts went forward to <str<strong>on</strong>g>the</str<strong>on</strong>g> cleaner<br />

feed tank while <str<strong>on</strong>g>the</str<strong>on</strong>g> rejects were sewered. The cleaners were operated in recirculati<strong>on</strong><br />

mode until samples were taken (<str<strong>on</strong>g>the</str<strong>on</strong>g> accepts were double-sampled so that <strong>on</strong>e sample<br />

could be sent to an external lab for physical properties testing), and <str<strong>on</strong>g>the</str<strong>on</strong>g> feed tank was<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n drained. All tanks in <str<strong>on</strong>g>the</str<strong>on</strong>g> process were drained and hosed out, and <str<strong>on</strong>g>the</str<strong>on</strong>g> next pulper<br />

batch was placed in <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper for testing. Due to process limitati<strong>on</strong>s, pulper batches<br />

were not initiated until <str<strong>on</strong>g>the</str<strong>on</strong>g> majority of <str<strong>on</strong>g>the</str<strong>on</strong>g> stock from <str<strong>on</strong>g>the</str<strong>on</strong>g> preceding test has been<br />

removed from <str<strong>on</strong>g>the</str<strong>on</strong>g> system. This procedure was repeated until all six tests were<br />

complete. At <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>clusi<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> sixth test, <strong>on</strong>e pulper batch was made up which<br />

c<strong>on</strong>sisted <strong>on</strong>ly of TBA. Only <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper was used for this test (Test 7), and <str<strong>on</strong>g>the</str<strong>on</strong>g> sample<br />

that was taken was sent with <str<strong>on</strong>g>the</str<strong>on</strong>g> six cleaner accept samples to <str<strong>on</strong>g>the</str<strong>on</strong>g> external testing lab<br />

(IPST) for physical properties testing. At IPST, <str<strong>on</strong>g>the</str<strong>on</strong>g> Test 7 sample was screened, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

refined. Both <str<strong>on</strong>g>the</str<strong>on</strong>g> unrefined and refined post-screening pulps were subjected to physical<br />

properties testing, <str<strong>on</strong>g>the</str<strong>on</strong>g> results of which appear later in this report as T7 and T7-1300,<br />

respectively. All results for Tests 1-6 refer to analysis performed up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> cleaner<br />

accept samples.<br />

For analysis and reporting purposes, <str<strong>on</strong>g>the</str<strong>on</strong>g> accepts samples from <str<strong>on</strong>g>the</str<strong>on</strong>g> CLP700LD cleaners<br />

(#1P ACC) were c<strong>on</strong>sidered <str<strong>on</strong>g>the</str<strong>on</strong>g> final product. All results refer to <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis performed<br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>se samples, unless o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise noted. As <str<strong>on</strong>g>the</str<strong>on</strong>g> Alfa Laval Celleco laboratory does not<br />

have <str<strong>on</strong>g>the</str<strong>on</strong>g> capacity to perform physical properties testing, an extra set of each of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cleaner accept samples were taken during <str<strong>on</strong>g>the</str<strong>on</strong>g> trial and sent to IPST, who performed <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

physical properties tests. Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> analyses were performed as follows: ALC performed<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sistency (T240); Somerville (UM242); CSF (T227); ash (T211); Kajaani and<br />

sticky/plastic counts (Celleco standard methods). IPST performed <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis for<br />

brightness (T452); tear (T414); tensile, stretch, TEA, modulus, tensile index, and<br />

breaking length (T494); dirt count (T213, T437); and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own ash testing (T-211). All<br />

test numbers in paren<str<strong>on</strong>g>the</str<strong>on</strong>g>ses refer to TAPPI test methods.<br />

40


Table 1<br />

Pulper Test 1 Pulper Test 2 Pulper Test 3<br />

% CNS: 15 % CNS: 15 % CNS: 15<br />

Temp: Ambient Temp: Ambient Temp: Ambient<br />

Time: 15 min Time: 15 min Time: 30 min<br />

Chemical: N<strong>on</strong>e Chemical: N<strong>on</strong>e Chemical: N<strong>on</strong>e<br />

Hole size: 6 mm Hole size: 6 mm Hole size: 6 mm<br />

OCC 100% OCC 85% OCC 85%<br />

TBA* 0% TBA* 15% TBA* 15%<br />

Pulper Test 4 Pulper Test 5 Pulper Test 6<br />

% CNS: 15 % CNS: 15 % CNS: 15<br />

Temp: Ambient Temp: Ambient Temp: Ambient<br />

Time: 30 min Time: 15 min Time: 15 min<br />

Chemical: N<strong>on</strong>e Chemical: N<strong>on</strong>e Chemical: N<strong>on</strong>e<br />

Hole size: 6 mm Hole size: 6 mm Hole size: 6 mm<br />

OCC 100% OCC 75% OCC 50%<br />

TBA* 0% TBA* 25% TBA* 50%<br />

*The material called “TBA” c<strong>on</strong>sists of equal parts of pre- and post-c<strong>on</strong>sumer Tetra<br />

Brik® Aseptic packaging.<br />

Process Specificati<strong>on</strong>s<br />

Trommel Screen Coarse Screen 1 (CS1) #1P cleaner header<br />

Hole Size: 8 mm Rotor: Tapershear Cleaner type: 700LD<br />

Shower 75.7 lpm Clearance: 0.32 mm Cleaner #: 3<br />

Drum speed: 12 rpm Tip Speed: 70 Feed psig: 29 psig<br />

Drum dia.: 947.74 mm Basket type: Hole Accept psig: 8 psig<br />

Drum length: 2438.4 mm Basket size: 1.4 mm % RRv (HWR): 8<br />

Accept lpm: 1211.2 % RRv (LWR): 15<br />

Reject lpm: 204.39<br />

Diluti<strong>on</strong> lpm: 68.13<br />

RESULTS (Physical Properties)<br />

Test Tear Tensile Stretch TEA Modulus CSF Ash †<br />

mN KN/m % J/m 2 N/mm ml %<br />

1 656 2.48208 1.94 32.53581 304.89642 243 10.45<br />

2 738 2.49958 2.12 36.83071 295.31259 274 9.4<br />

3 718 2.69706 2.2 42.57083 316.12332 298 10.17<br />

4 721 2.54572 1.98 35.31547 311.39061 304 9.92<br />

5 756 2.73039 2.12 40.88524 336.2633 347 8.82<br />

41


6 760 2.77789 2.08 41.24317 345.05747 367 7.67<br />

7 673 2.14292 1.42 21.47151 326.43168 * *<br />

7-1300 891 3.59327 2.56 63.24187 390.28271 * *<br />

RESULTS (C<strong>on</strong>taminati<strong>on</strong> Levels)<br />

Test CNS Somerville Kajaani Stickies Plastics PPM Brightness<br />

% % debris Mm count count mm 2 /m 2 %<br />

1 0.74 0.42 1.31 57 46 34.21 29.56<br />

2 0.79 0.62 1.37 91 71 23.66 32.13<br />

3 0.8 0.42 1.4 67 52 25.7 32.58<br />

4 0.82 0.45 1.36 87 41 43.14 30.42<br />

5 0.85 0.58 1.43 62 67 37.2 33.64<br />

6 0.84 0.56 1.44 59 118 40.85 33.11<br />

7 * * * * * 13.98 41.19<br />

7-1300 * * * * * ** 37.53<br />

* These analyses were performed at <str<strong>on</strong>g>the</str<strong>on</strong>g> ALC lab, which did not analyze samples T7 or T7-<br />

1300.<br />

**Dirt counts were not performed after refining of <str<strong>on</strong>g>the</str<strong>on</strong>g> T7 sample.<br />

† Ash testing was performed at both <str<strong>on</strong>g>the</str<strong>on</strong>g> ALC lab and at IPST. Comparis<strong>on</strong> of <str<strong>on</strong>g>the</str<strong>on</strong>g> values<br />

revealed that <str<strong>on</strong>g>the</str<strong>on</strong>g> IPST numbers were significantly lower than <str<strong>on</strong>g>the</str<strong>on</strong>g> ALC numbers. This<br />

discrepancy was resolved by <str<strong>on</strong>g>the</str<strong>on</strong>g> revelati<strong>on</strong> that IPST performed <str<strong>on</strong>g>the</str<strong>on</strong>g>ir ash testing from<br />

handsheets, whereas <str<strong>on</strong>g>the</str<strong>on</strong>g> ALC lab used c<strong>on</strong>sistency pads with ashless filter paper, which<br />

would retain more ash than a handsheet mold. The ALC numbers are reported here.<br />

The IPST numbers appear with <str<strong>on</strong>g>the</str<strong>on</strong>g> raw data at <str<strong>on</strong>g>the</str<strong>on</strong>g> end of this report.<br />

Power Draw<br />

Test Initial 30 sec Final<br />

1 115 N/A 117<br />

2 160 130 120<br />

3 160 130 120<br />

4 160 130 116<br />

5 170 150 131<br />

6 170 150 130<br />

42


Test Breaking Tensile Tear E-Modulus<br />

length Index Index (MPa)<br />

km N.m/g mN.m 2 /g N/mm 2<br />

1 3811 37,4 9,9 2595<br />

2 3846 37,7 11,1 2039<br />

3 4152 40,7 10,8 2468<br />

4 3883 38,1 10,8 2087<br />

5 4139 40,6 11,2 2585<br />

6 4247 41,6 11,4 2585<br />

7 3294 32,3 10,1 2499<br />

7-1300 5412 53,1 13,2 3412<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

CSF (ml)<br />

TEA (J/m2)<br />

Tear (mN)<br />

Tensile (kN/m)<br />

10%<br />

0%<br />

100% OCC 15% TBA 25% TBA 50% TBA<br />

Increase <strong>on</strong> properties due to blending OCC with <str<strong>on</strong>g>fibres</str<strong>on</strong>g> from TBA cart<strong>on</strong>s<br />

DISCUSSION<br />

As can be seen from <str<strong>on</strong>g>the</str<strong>on</strong>g> table of physical properties results, <str<strong>on</strong>g>the</str<strong>on</strong>g> additi<strong>on</strong> of TBA to <str<strong>on</strong>g>the</str<strong>on</strong>g> OCC<br />

had a positive effect <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> strength of <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting final product. In fact, greater<br />

percentages of TBA in <str<strong>on</strong>g>the</str<strong>on</strong>g> mixture improved sheet strength even fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Increasing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

amount of TBA also had a positive impact <strong>on</strong> sheet appearance in terms of brightness gain<br />

and lowered dirt counts. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> tests c<strong>on</strong>taining 25% and 50% TBA by weight had<br />

elevated dirt counts compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> 15% batches.<br />

On <str<strong>on</strong>g>the</str<strong>on</strong>g> whole, <str<strong>on</strong>g>the</str<strong>on</strong>g> thirty-minute pulper batches had better physical properties than <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

fifteen-minute batch of <str<strong>on</strong>g>the</str<strong>on</strong>g> same mixture. C<strong>on</strong>versely, <str<strong>on</strong>g>the</str<strong>on</strong>g> dirt counts were higher after<br />

thirty minutes of pulping than after fifteen for a given batch compositi<strong>on</strong>, though <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

brightness did not change appreciably.<br />

43


Allowing for material variance between pulper batches, <str<strong>on</strong>g>the</str<strong>on</strong>g> sticky c<strong>on</strong>taminant levels were<br />

relatively c<strong>on</strong>stant throughout all tests, while <str<strong>on</strong>g>the</str<strong>on</strong>g> level of plastic c<strong>on</strong>taminants in <str<strong>on</strong>g>the</str<strong>on</strong>g> final<br />

product was higher in those batches c<strong>on</strong>taining TBA, and was roughly proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

percentage of TBA in <str<strong>on</strong>g>the</str<strong>on</strong>g> mixture. Average fibre length also increased as <str<strong>on</strong>g>the</str<strong>on</strong>g> amount of<br />

TBA present in <str<strong>on</strong>g>the</str<strong>on</strong>g> pulper batch increased, and slurry freeness rose accordingly. Ash levels<br />

were seen to be lower in those mixtures c<strong>on</strong>taining TBA. The Somerville debris levels in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> final product increased when TBA was added, but were lowered by increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> time<br />

of pulping.<br />

Pulper amp draw was greater for those batches c<strong>on</strong>taining TBA, and batches with greater<br />

percentages of TBA drew higher amp loads than those with lower percentages of TBA.<br />

The low initial amp reading of <str<strong>on</strong>g>the</str<strong>on</strong>g> first pulper is a result of a large porti<strong>on</strong> of material that<br />

had not fully engaged <str<strong>on</strong>g>the</str<strong>on</strong>g> rotor at <str<strong>on</strong>g>the</str<strong>on</strong>g> time of <str<strong>on</strong>g>the</str<strong>on</strong>g> initial amp reading. After this porti<strong>on</strong> of<br />

material engaged <str<strong>on</strong>g>the</str<strong>on</strong>g> rotor, <str<strong>on</strong>g>the</str<strong>on</strong>g> amp reading rose, but due to <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <str<strong>on</strong>g>the</str<strong>on</strong>g> remainder<br />

of <str<strong>on</strong>g>the</str<strong>on</strong>g> material had underg<strong>on</strong>e some pulping, this amp value remained as it was recorded.<br />

44

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!