21.11.2014 Views

Polymeric materials for solar thermal collectors – a feasibility study

Polymeric materials for solar thermal collectors – a feasibility study

Polymeric materials for solar thermal collectors – a feasibility study

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Polymeric</strong> <strong>materials</strong> <strong>for</strong> <strong>solar</strong> <strong>thermal</strong> <strong>collectors</strong><br />

– a <strong>feasibility</strong> <strong>study</strong><br />

Michael Köhl, Hannes Franke, Eva Stricker,<br />

Karl-Anders Weiß<br />

Fraunhofer-Institut für<br />

Solare Energiesysteme ISE<br />

ESTEC 2007<br />

Freiburg, 20.06.2007


Growing markets <strong>for</strong> <strong>solar</strong> <strong>thermal</strong> <strong>collectors</strong><br />

Improved public sympathy <strong>for</strong> renewable energies<br />

• Worldwide growth of market<br />

• Classical collector with copper absorber:<br />

• ~16,5 kg copper per 1MWh/year needed<br />

• to reach 1% of human energy consumption:<br />

22mill tons of copper needed: > total yearly production<br />

=> Alternative technologies needed<br />

⇒ <strong>Polymeric</strong> <strong>materials</strong> <strong>for</strong> absorbers and <strong>collectors</strong><br />

⇒ International cooperation: IEA SHCP<br />

KAW 20.6.2007<br />

2


Polymers – features and challenges<br />

• Light-weight <strong>materials</strong><br />

• Great freedom in design<br />

• Low cost processing technologies<br />

- Low intrinsic <strong>thermal</strong> conductivity<br />

- Limited weatherability<br />

=> Additives needed to improve stability and processability<br />

KAW 20.6.2007<br />

3


Polymers – material classes<br />

Per<strong>for</strong>mance<br />

KAW 20.6.2007<br />

4


Processing<br />

• Extrusion<br />

• Continuous<br />

• Restricted freedom of design<br />

• Co-extrusion possible<br />

• Injection moulding<br />

• Discontinuous, one step manufacturing<br />

• Highest mould costs<br />

• Low costs at high quantities<br />

• Thermo<strong>for</strong>ming<br />

• Low mould and machine costs<br />

• Flexible manufacturing<br />

KAW 20.6.2007<br />

5


Simulation of fluid dynamics and temperature distribution<br />

• Finite Elements<br />

• COMSOL Multiphysics (FEMLAB)<br />

• 3D<br />

• Simulation of half tubes<br />

• Simulation of extrudable geometries<br />

• => Comparison of designs<br />

KAW 20.6.2007<br />

6


Geometry of Collector<br />

KAW 20.6.2007<br />

7


Parameters <strong>for</strong> simulation<br />

• Low flow collector<br />

• Fluid:<br />

• Polymer:<br />

• External temp:<br />

water<br />

PPO<br />

290K<br />

• Heat input: 800 W/m² (No calculation of absorption)<br />

KAW 20.6.2007<br />

8


Calculated geometries<br />

KAW 20.6.2007<br />

9


Example 1: geometry A<br />

Flow velocity<br />

Temperature distribution<br />

KAW 20.6.2007<br />

10


Example 2: geometry G<br />

Flow velocity<br />

Temperature distribution<br />

KAW 20.6.2007<br />

11


Example 3: geometry D<br />

Flow velocity<br />

Temperature distribution<br />

KAW 20.6.2007<br />

12


Temperature distribution and mechanical stress<br />

<strong>Polymeric</strong> plate with Al-layer and absorber coating<br />

Temperature distribution and de<strong>for</strong>mation<br />

Stress-distribution<br />

KAW 20.6.2007<br />

13


Conclusions<br />

• FEM-simulation seems to be a suitable tool <strong>for</strong> optimisation of the<br />

absorber design<br />

• Parallel calculation of fluid dynamics, temperature distribution and<br />

mechanics offers the simultaneous consideration of different impact<br />

factors like flow-rate, pressure, temperature, degradation<br />

• Mechanical strain resulting from pressure gradients, temperature<br />

gradients can be calculated besides flow-velocity and temperature<br />

distribution<br />

• Results could be validated with CFD-simulations<br />

• First results <strong>for</strong> the optimization of the absorber geometry could be<br />

achieved<br />

KAW 20.6.2007<br />

14


Outlook / Problems<br />

• International cooperation allows cooperative research and exploitation:<br />

IEA SHCP Task39<br />

•Material parameters <strong>for</strong> simulation are needed from industry<br />

• Complexity of total collector and meshing of thin layers (example 2:<br />

~43.600 elements, 600.000 degrees of freedom)<br />

• Parallel calculation of fluid dynamics, temperature distribution and<br />

mechanics<br />

• Implementation and comparison of optical properties of different<br />

absorber layers<br />

• Optimization of geometry to improve heat transfer<br />

KAW 20.6.2007<br />

15


Thank<br />

You<br />

<strong>for</strong><br />

Your<br />

Attention!<br />

KAW 20.6.2007<br />

16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!