19.11.2014 Views

Math 252 Practice Questions for Test 2

Math 252 Practice Questions for Test 2

Math 252 Practice Questions for Test 2

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1. Consider the differential equation<br />

<strong>Math</strong> <strong>252</strong><br />

<strong>Practice</strong> <strong>Questions</strong> <strong>for</strong> <strong>Test</strong> 2<br />

x 2 y ′′ − 3x y ′ + k y = 0, (x > 0).<br />

Find the general solution if (a) k = −5, (b) k = 4, (c) k = 13.<br />

Answers:<br />

(a) y = c 1 x 5 + c 2 x −1<br />

(b) y = c 1 x 2 + c 2 x 2 ln x<br />

(c) y = x 2 (c 1 cos(3 ln x) + c 2 sin(3 ln x))<br />

2. Find the <strong>for</strong>m of a particular solution y p in the following. (Leave your answers with undetermined<br />

coefficients.)<br />

(a) y ′′ + 4y = 5x + sin(2x)<br />

(b) y ′′ − 2y ′ + y = 3x 2 + 5xe x<br />

(c) y ′′ + 2y ′ + 5y = 3e −x + 4e −x sin(2x) − 2 cos(3x)<br />

Answers:<br />

(a) y p = Ax + B + Cx cos(2x) + Dx sin(2x)<br />

(b) y p = Ax 2 + Bx + C + x 2 (Dx + E)e x<br />

(c) y p = Ae −x + xe −x [B cos(2x) + C sin(2x)] + D cos(3x) + E sin(3x)<br />

3. Find the solution of the initial-value problem<br />

y ′′ − 4xy ′ + (4x 2 − 2)y = 0, y(0) = 1, y ′ (0) = 2<br />

given that y 1 = e x2<br />

is a solution of the equation.<br />

Answer: y = e x2 + 2xe x2<br />

4. Use the method of undetermined coefficients to find the general solution of<br />

y ′′ + y ′ − 6y = 4e 3x + 5 cos(2x).<br />

Answer: y = c 1 e −3x + c 2 e 2x + 2 3 e3x − 25<br />

52 cos(2x) + 5<br />

52 sin(2x)<br />

5. Use the method of undetermined coefficients to find the general solution of<br />

y ′′ − 5y ′ + 6y = x + 2 + 3e 2x .<br />

Answer: y = c 1 e 3x + c 2 e 2x + x 6 + 17<br />

36 − 3xe2x<br />

6. Solve<br />

y ′′ + 4y = sec(2x).<br />

Answer: y = c 1 cos(2x) + c 2 sin(2x) + 1 2 x sin(2x) + 1 4<br />

cos(2x) ln|cos(2x)|<br />

7. Use the method of variation of parameters to find the general solution of<br />

x 2 y ′′ − 2xy ′ + 2y = x 4 e −x .<br />

Simplify your answer.<br />

Answer: y = c 1 x 2 + c 2 x + xe −x (x + 2)


<strong>Math</strong> <strong>252</strong> <strong>Practice</strong> <strong>Questions</strong> <strong>for</strong> <strong>Test</strong> 2 Page 2 of 2<br />

8. Find the solution of the initial-value problem<br />

Answer: y = 2x + x ln x + x(ln x) 2<br />

x 2 y ′′ − xy ′ + y = 2x, y(1) = 2, y ′ (1) = 3.<br />

9. A mass of 2 kg is attached to a spring whose spring constant is 3 N/m. The medium offers a damping<br />

<strong>for</strong>ce of magnitude 5 times the instantaneous velocity.<br />

(a) Determine the steady-state position of the mass if it is driven by an external <strong>for</strong>ce (in Newton) of<br />

magnitude F (t) = 4 cos(2t) + 3 sin(2t).<br />

(b) Express your answer in (a) in the <strong>for</strong>m x(t) = A sin(ωt + φ).<br />

Answers:<br />

(a) x p (t) = − 2 5 cos(2t) + 1 5 sin(2t)<br />

(b) x p (t) = √ 5<br />

5<br />

sin(2t − 1.107)<br />

10. A 1 kg mass is attached to a spring with spring constant 2 N/m and a damping device with β = 3<br />

N/(m/s).<br />

(a) Find the displacement x(t) of the mass if it is released 50 cm below equilibrium with no initial<br />

velocity.<br />

(b) A <strong>for</strong>ce (in Newton) of the <strong>for</strong>m F (t) = F 0 cos t is applied to the system. Find the positive value of<br />

F 0 so that the amplitude of the steady-state solution equals 1 m.<br />

Answers:<br />

(a) x(t) = e −t − 0.5e −2t<br />

(b) F 0 = √ 10<br />

11. A mass of 1 kg is attached to a spring whose spring constant is 5 N/m. The medium offers a damping<br />

<strong>for</strong>ce of magnitude 4 times the instantaneous velocity.<br />

(a) Find the displacement x(t) of the mass if it is released 50 cm below equilibrium with an initial<br />

downward velocity of 1 m/s.<br />

(b) Find all times t > 0 when the mass passes through equilibrium position.<br />

Answers:<br />

(a) x(t) = e −2t (2 sin t + 1 2<br />

cos t)<br />

(b) t = nπ − 0.245, <strong>for</strong> all n = 1, 2, 3 . . .<br />

12. Find the first five nonzero terms of a power series solution of the initial-value problem<br />

For which values of x does the series converge?<br />

y ′′ − x 2 y ′ + 3y = 0, y(0) = 2, y ′ (0) = −1.<br />

Answer: y = 2 − x − 3x 2 + 1 2 x3 + 2 3 x4 + · · · . The series converges <strong>for</strong> all x since there is no singular<br />

point.<br />

13. Solve the differential equation: y ′′ + x 2 y ′ + xy.<br />

Answer: y = c 1 (1 − 1 6 x3 + 1<br />

45 x6 − · · · ) + c 2 (x − 1 6 x4 + 5<br />

<strong>252</strong> x7 − · · · )<br />

14. Solve the differential equation: y ′′ + e x y = 0.<br />

Answer: y = c 1 (1 − x2<br />

2 − x3<br />

6 + · · · ) + c 2(x − x3<br />

6 − x4<br />

12 + · · · )

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!