19.11.2014 Views

Quantum states of neutrons in the earth's gravitational field

Quantum states of neutrons in the earth's gravitational field

Quantum states of neutrons in the earth's gravitational field

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Institute Laue-Langev<strong>in</strong>, Grenoble<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


Institute Laue-Langev<strong>in</strong>, Grenoble<br />

The biggest worldwide research reactor<br />

France, Germany, England, Italy, Swiss,<br />

Autrish, Russia, Spa<strong>in</strong>, Chekh. Rep.<br />

Dom<strong>in</strong>ant part <strong>of</strong> all World research <strong>in</strong> <strong>the</strong><br />

<strong>field</strong> <strong>of</strong> fundamental physics <strong>of</strong> particles and<br />

<strong>field</strong>s with <strong>neutrons</strong><br />

Grenoble<br />

“2.5” out <strong>of</strong> 7 European<br />

Research Centers<br />

(EUROFORUM):<br />

ILL, ESRF, ½ EMBL<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


Plan <strong>of</strong> this presentation<br />

1. Short Introduction: Ultra Cold Neutrons - UCN.<br />

First experiment <strong>of</strong> storage <strong>of</strong> UCN <strong>in</strong> 1968 <strong>in</strong> Jo<strong>in</strong>t Institute for Nuclear Research <strong>in</strong> Dubna:<br />

V.I.Luschikov, Yu.N.Pokotilovski, A.V.Strelkov and F.L.Shapiro (1969). JETP Letters 9: 40-45.<br />

09.06.05<br />

INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


Plan <strong>of</strong> this presentation<br />

2. <strong>Quantum</strong> <strong>states</strong> <strong>of</strong> <strong>neutrons</strong> <strong>in</strong> <strong>the</strong> Earth’s <strong>gravitational</strong> <strong>field</strong> above a<br />

mirror.<br />

- General analytical solution <strong>of</strong> <strong>the</strong> Schröd<strong>in</strong>ger equation for an object <strong>in</strong> a <strong>gravitational</strong><br />

<strong>field</strong> above a mirror is given <strong>in</strong> textbooks on quantum mechanics.<br />

- An experiment with UCN was proposed <strong>in</strong> 1976 : V.I.Luschikov (1977), Physics Today: 42-<br />

51; V.I.Luschikov and A.I.Frank (1978), JETP Letters 28(9): 559-561.<br />

09.06.05<br />

INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


Plan <strong>of</strong> this presentation<br />

3. Experimental results.<br />

- Observation and study: H.Abele, S.Bäßler, H.G.Börner, A.M.Gagarski, V.V.Nesvizhevsky,<br />

A.K.Petukhov, K.V.Protasov, A.V.Strelkov, A.Yu.Voron<strong>in</strong>, A.Westphal et al : Nature 415: 297-299<br />

(2002); Physical Review D 87: 102002 (2003); Europ.Phys.Journ. C 40(4):479-491 (2005).<br />

Institute Laue-Langev<strong>in</strong>, Grenoble, France;<br />

Petersburg Nuclear Physics Institute, Gatch<strong>in</strong>a, Russia;<br />

Laboratory <strong>of</strong> Sub-Atomic Physics and Cosmology, Grenoble, France;<br />

Lebedev Institute, Moscow, Russia;<br />

Ma<strong>in</strong>z University, Germany;<br />

Heidelberg University, Germany;<br />

DESI, Hamburg, Germany;<br />

University Joseph-Furrier, Grenoble, France;<br />

Jo<strong>in</strong>t Institute for Nuclear research, Dubna, Russia<br />

09.06.05<br />

INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


Plan <strong>of</strong> this presentation<br />

4. Prospects and applications.<br />

- Search for additional (sp<strong>in</strong>-<strong>in</strong>dependent or sp<strong>in</strong>-dependent) short-range forces at <strong>the</strong><br />

distances <strong>of</strong> 1nm - 10µm<br />

- Improvement <strong>of</strong> <strong>the</strong> upper limit for <strong>the</strong> neutron electric charge<br />

- Verification <strong>of</strong> some extensions <strong>of</strong> <strong>the</strong> quantum mechanics, such <strong>the</strong> fundamental loss <strong>of</strong><br />

quantum phase coherence due to <strong>in</strong>teraction <strong>of</strong> quantum systems with <strong>gravitational</strong> <strong>field</strong> (with <strong>the</strong><br />

observation time <strong>of</strong> up to 10 3 s), or logarithmic terms <strong>in</strong> <strong>the</strong> Schröd<strong>in</strong>ger equation.<br />

surface<br />

- This method provides a rare opportunity to measure distribution <strong>of</strong> hydrogen above/below<br />

- This phenomenon allows to solve <strong>the</strong> problem <strong>of</strong> neutron-tight valve for UCN traps<br />

- It provides a convenient tool to study such phenomena as neutron localization (Andersentype),<br />

or <strong>in</strong>teraction <strong>of</strong> waves with rough surfaces.<br />

09.06.05<br />

INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


1. Effective Fermi-potential and storage <strong>of</strong> UCN <strong>in</strong> traps<br />

Nuclei <strong>in</strong> matter<br />

Usually:<br />

~99.99 % - elastic reflection<br />

~10 -4 - <strong>in</strong>elastic reflection at<br />

phonons to <strong>the</strong> <strong>the</strong>rmal energy<br />

range<br />

~10 -5 - <strong>in</strong>elastic reflection at surface<br />

nanoparticles to <strong>the</strong> UCN energy<br />

range<br />

~10 -5 - absorption<br />

Neutron<br />

UCN<br />

V<br />

E<br />

H<br />

UCN<br />

UCN<br />

Earth '<br />

<strong>field</strong> s<br />

UCN<br />

T ~ 1mK<br />

~ (1÷<br />

6) m / s<br />

~10<br />

−7<br />

~ 1m<br />

eV<br />

09.06.05<br />

INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


1. UCN production<br />

UCN (Ultra Cold Neutrons) – s<strong>of</strong>t fraction <strong>of</strong> spectrum <strong>of</strong> cold or <strong>the</strong>rmal <strong>neutrons</strong><br />

Uranium + water + <strong>neutrons</strong> + light<br />

Very low background !<br />

Curved neutron guide<br />

to extract UCN<br />

Liquid-deuterium<br />

source <strong>of</strong> cold<br />

<strong>neutrons</strong><br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


1. UCN production<br />

New reactor <strong>in</strong> 1995 !<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


2. <strong>Quantum</strong> <strong>states</strong> <strong>of</strong> <strong>neutrons</strong> <strong>in</strong> <strong>the</strong> <strong>gravitational</strong> <strong>field</strong><br />

Nature 415, 297-299<br />

(17 January 2002)<br />

Valery V. Nesvizhevsky * , Hans G. Börner * ,<br />

Alexander K.Petoukhov * ‡ , Hartmut Abele † , Stefan<br />

Baeßler † , Frank J.Rue ß † , Thilo Stöferle † , Alexander<br />

Westphal † , Alexei M. Gagarski ‡ , Guennady A.<br />

Petrov ‡ & Alexander V. Strelkov §<br />

* Institute Laue-Langev<strong>in</strong>, Grenoble, France;<br />

† University <strong>of</strong> Heidelberg, Germany;<br />

‡ Petersburg Nuclear Physics Institute, Gatch<strong>in</strong>a,<br />

Russia;<br />

§ Jo<strong>in</strong>t Institute for Nuclear Research, Dubna, Russia.<br />

09.06.05<br />

INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


2. How to observe any quantum <strong>states</strong> <strong>of</strong> matter <strong>in</strong><br />

a <strong>gravitational</strong> <strong>field</strong> ?<br />

Neutron above a mirror <strong>in</strong> <strong>the</strong><br />

Earth’s <strong>gravitational</strong> <strong>field</strong><br />

1) Electric neutrality (usually any <strong>gravitational</strong><br />

<strong>in</strong>teraction <strong>in</strong> laboratory conditions is much weaker<br />

that o<strong>the</strong>r <strong>in</strong>teractions)<br />

2) Long lifetime<br />

3) Small mass<br />

⎛ h<br />

⎜∆E<br />

≈<br />

⎝ ∆τ<br />

⎛ h ⎞<br />

⎜∆v<br />

⋅∆x<br />

≈ ⎟<br />

⎝ m ⎠<br />

4) Energy (temperature) <strong>of</strong> UCN is extremely small<br />

and not equal to <strong>the</strong> <strong>in</strong>stallation temperature<br />

⎞<br />

⎟<br />

⎠<br />

<strong>Quantum</strong> state energy <strong>in</strong> <strong>the</strong> Bohr-<br />

Sommerfeld approximation :<br />

E<br />

n<br />

≈<br />

3<br />

⎛ 9 ⋅m<br />

⎜<br />

⎝ 8<br />

n<br />

⎞<br />

⎟⋅<br />

⎠<br />

⎛<br />

⎜π<br />

⎝<br />

⋅h<br />

⋅ g<br />

⎛<br />

⋅⎜n<br />

−<br />

⎝<br />

1<br />

4<br />

⎞⎞<br />

⎟⎟<br />

⎠⎠<br />

2<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


2. Probability to observe a neutron above a mirror<br />

Height above a mirror<br />

<strong>in</strong> microns<br />

The precise solution <strong>of</strong> <strong>the</strong><br />

correspond<strong>in</strong>g Schröd<strong>in</strong>ger<br />

equation<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


2. Probability to observe a neutron above a mirror<br />

How <strong>the</strong><br />

experiment with<br />

<strong>neutrons</strong> is related<br />

to <strong>the</strong> fall<strong>in</strong>g down<br />

<strong>of</strong> an apple <strong>in</strong> <strong>the</strong><br />

<strong>gravitational</strong> <strong>field</strong> ?<br />

Higher probability to observe<br />

<strong>neutrons</strong> (an apple) at some<br />

heights and zero probability –<br />

for a pure quantum state – to<br />

observe <strong>the</strong>m somewhere <strong>in</strong><br />

between<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


2. Probability to observe a neutron above a mirror<br />

Neutrons spend longer<br />

time at <strong>the</strong> top <strong>of</strong> its<br />

“trajectory” and <strong>the</strong> spac<strong>in</strong>g<br />

between <strong>the</strong> maxima is<br />

bigger at <strong>the</strong> top as well<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


2. General scheme <strong>of</strong> <strong>the</strong> experiment<br />

V horizont ~4-15 m/s<br />

V vertic ~2 cm/s<br />

∆E<br />

≈<br />

h<br />

∆τ<br />

Selection <strong>of</strong> vertical and horizontal velocity components<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


2. «Table-top experiment»<br />

Some parameters <strong>of</strong> <strong>the</strong><br />

experimental <strong>in</strong>stallation and<br />

characteristic parameters <strong>of</strong><br />

<strong>the</strong> phenomenon:<br />

10 9<br />

8<br />

Shutter<br />

control<br />

-Effective temperature <strong>of</strong><br />

<strong>neutrons</strong> is ~20 nK<br />

1<br />

3<br />

5<br />

6<br />

7<br />

4<br />

11<br />

Amplifier<br />

Amplifier<br />

ADC<br />

DAC<br />

COMPUTER<br />

-Background suppression is<br />

a factor <strong>of</strong> ~10 8 -10 9<br />

-Absolute horizontal level<strong>in</strong>g<br />

precision is ~10 -6 rad<br />

-Parallelism <strong>of</strong> <strong>the</strong> bottom<br />

mirror and <strong>the</strong><br />

absorber/scatterer is ~10 -6<br />

2<br />

1. Neutron guide<br />

2. Anti-vibration table<br />

3. Polished granite stone<br />

4. Piezo translators<br />

5. Vacuum chamber<br />

6. Mirrors and absorber<br />

7. Detector<br />

8. Anti-magnetic shield<strong>in</strong>g<br />

9. Input collimator<br />

10. Neutron shutter<br />

11. Incl<strong>in</strong>ometers<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


2. Measurement<br />

∆v<br />

⋅∆x<br />

≈<br />

h<br />

m<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


2. Measurement<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


2. Measurement<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


2. Measurement<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


2. Measurement<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


2. Measurement<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


2. Measurement<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


3. Calibration <strong>of</strong> distances<br />

The distance between a mirror and a scatterer/absorber<br />

is measured us<strong>in</strong>g <strong>the</strong> capacitors method<br />

Calibration :<br />

Long-focus microscope<br />

Calibrated wires-spacers<br />

Mechanical devices (“comparators”)<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


3. Test <strong>of</strong> <strong>the</strong> mirrors quality<br />

Why ?<br />

Non-specular reflections would cause false non-transparency <strong>of</strong> <strong>the</strong> slit mirror/scatterer<br />

Neutron trajectories<br />

mirror<br />

mirror<br />

Collimator<br />

Neutron<br />

detector<br />

General scheme to verify <strong>the</strong> quality <strong>of</strong> our mirrors<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


3. Test <strong>of</strong> <strong>the</strong> mirrors quality<br />

F ( ∆z)<br />

= α ⋅ ∆z<br />

⋅ (1 −<br />

L⋅ϕ<br />

/ ∆z<br />

K n . s.<br />

)<br />

mirror −3<br />

K n . s.<br />

< 8⋅10<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky<br />

µm


3. Surface <strong>of</strong> scatterers<br />

3.0µm<br />

3.0µm<br />

3.0µm<br />

3.0µm<br />

Image<br />

1<br />

2<br />

3<br />

4<br />

Hauteur maxi.<br />

1.9<br />

1.95<br />

2.1<br />

1.85<br />

Distance moyenne<br />

5.0<br />

4.6<br />

5.64<br />

4.4<br />

3.0µm<br />

3.0µm<br />

Study <strong>of</strong> scatterer’s surfaces us<strong>in</strong>g an<br />

atomic force microscope or optical<br />

microscope<br />

3.0µm<br />

3.0µm<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


3. Measurement <strong>of</strong> neutron horizontal velocity components<br />

V hor<br />

=<br />

L ⋅<br />

g<br />

2 ⋅ ∆l<br />

Scatterer/absorber<br />

Collimators<br />

τ<br />

L<br />

=<br />

V<br />

g ⋅τ<br />

∆l<br />

=<br />

L 2<br />

hor<br />

Neutron trajectories<br />

2<br />

L<br />

Bottom mirror<br />

General scheme to select horizontal velocity components and<br />

to measure <strong>the</strong>ir spectrum<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


3. Measurement <strong>of</strong> neutron horizontal velocity components<br />

Average horizontal velocity<br />

component along <strong>the</strong> neutron<br />

beam axis is ~6.5 m/s for <strong>the</strong><br />

broad <strong>in</strong>itial spectrum<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


3. Theoretical description<br />

The model <strong>of</strong> tunnel<strong>in</strong>g through <strong>gravitational</strong> barrier<br />

ξ >> 1<br />

3<br />

4<br />

2<br />

D ( ξ)<br />

≈ Exp[<br />

− ⋅ξ ], Γn<br />

( ξ ) = ωn<br />

⋅ D(<br />

ξ)<br />

3<br />

ω<br />

n<br />

≈<br />

n+<br />

( E<br />

1<br />

− En) / h<br />

⎧1,<br />

ξ < 0<br />

⎪<br />

D(<br />

ξ ) = ⎨<br />

⎪An<br />

⋅ Exp[<br />

−<br />

⎩<br />

4<br />

3<br />

⋅ξ<br />

3<br />

2<br />

], ξ<br />

> 0<br />

P n<br />

( ξ ) Exp(<br />

−Γ ( ξ ) ⋅τ<br />

)<br />

=<br />

n<br />

P ( ξ )<br />

n<br />

= Exp(<br />

−Γ ( ξ ) ⋅<br />

n<br />

L<br />

V<br />

hor<br />

)<br />

⎛ ⎛<br />

⎜ ⎜ L<br />

F( ∆z,<br />

V ∑⎜<br />

hor ) = βn<br />

⋅ Exp⎜−α<br />

⋅<br />

⎜<br />

n<br />

⎜ V<br />

⎝ ⎝<br />

hor<br />

⋅C<br />

2<br />

n<br />

⎛<br />

⎜<br />

⋅ Exp⎜−<br />

⎜<br />

⎝<br />

4 ⎛ ∆z<br />

− z<br />

⋅⎜<br />

3<br />

⎝ z0<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky<br />

n<br />

⎞<br />

⎟<br />

⎠<br />

3<br />

2<br />

⎞⎞⎞<br />

⎟⎟⎟<br />

⎟⎟⎟<br />

⎟ ⎟<br />

⎟<br />

⎠<br />

⎠⎠


Probability to observe neutron<br />

versus height<br />

3. Theoretical description<br />

Penetrability <strong>of</strong> <strong>the</strong> <strong>gravitational</strong> barrier<br />

Height above <strong>the</strong> classical turn<strong>in</strong>g<br />

po<strong>in</strong>t for any quantum state<br />

µm<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


3. Results<br />

Narrow spectrum; s<strong>of</strong>t fraction; comparison to <strong>the</strong> <strong>the</strong>oretical model<br />

z<br />

exp<br />

2<br />

= 21.3 ± 2.2syst ± 0.7stat,<br />

µ<br />

m<br />

z<br />

exp<br />

1<br />

= 12.2 ± 1.8syst ± 0.7stat<br />

, µ<br />

m<br />

z<br />

z<br />

teor<br />

1<br />

teor<br />

2<br />

= 13.7µ<br />

m<br />

= 24.0µ<br />

m<br />

µmµm<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


2. Results<br />

Narrow spectrum; s<strong>of</strong>t fraction; comparison to <strong>the</strong> <strong>the</strong>oretical model<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


3. Results<br />

The penetrat<strong>in</strong>g neutron flux versus <strong>the</strong> horizontal velocity component<br />

Expected :<br />

0.2 µm/ms<br />

Measured :<br />

0.16±0.04 µm/ms<br />

µm<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


3. Measurements with a position-sensitive detector<br />

Position-sensitive detector<br />

with <strong>the</strong> spatial resolution<br />

<strong>of</strong> 1-2 µm<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


3. An example <strong>of</strong> such a position-sensitive detector<br />

DX<br />

15 mm<br />

120 mm<br />

Picture <strong>of</strong> developed detector with tracks<br />

Fission<br />

fragment<br />

UCN<br />

<strong>neutrons</strong><br />

Plastic<br />

Supermirror coat<strong>in</strong>g<br />

Uranium-235<br />

~0.2 µm ~0.5 µm<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


3. Measurements with such a position-sensitive detector<br />

Prelim<strong>in</strong>ary results <strong>of</strong> measurement <strong>of</strong><br />

density <strong>of</strong> neutron stand<strong>in</strong>g wave above a<br />

mirror us<strong>in</strong>g a position-sensitive detector<br />

with <strong>the</strong> spatial resolution <strong>of</strong> ~ 1.5 µm<br />

A few lowest quantum <strong>states</strong><br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


3. Measurements with such a position-sensitive detector<br />

Pure quantum <strong>states</strong><br />

1st quantum state<br />

4th quantum state<br />

0 10 20 30 40 50<br />

Z, micron<br />

0 10 20 30 40 50<br />

Z, micron<br />

2nd quantum state<br />

0 10 20 30 40 50<br />

Z, micron<br />

3rd quantum state<br />

0 10 20 30 40 50<br />

Z, micron<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


3. Measurements with such a position-sensitive detector<br />

Pure quantum <strong>states</strong><br />

st <strong>in</strong>itial One quantum quantum state state , negative before <strong>the</strong> step15<br />

microns<br />

β<br />

nk<br />

( ∆z<br />

) = ψ ( z + ∆z<br />

) ⋅ψ<br />

( z)<br />

⋅ dz<br />

step<br />

∞<br />

∫<br />

−∞<br />

n<br />

step<br />

Z, micron<br />

0 10 20 30 40 50<br />

step<br />

+2 <strong>in</strong>itialTwo quantum <strong>states</strong> , before negative<strong>the</strong> step 15 microns<br />

Z, micron<br />

0 10 20 30 40 50<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


3. Measurements with such a position-sensitive detector<br />

3<br />

4<br />

1<br />

2<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


3. Measurements with such a position-sensitive detector<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


3. Measurements with such a position-sensitive detector<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


4. Resonance transitions between quantum <strong>states</strong><br />

How to excite such a<br />

resonance transition :<br />

- Oscillations <strong>of</strong> a bottom mirror – due to nuclear forces;<br />

- Oscillations <strong>of</strong> a mass – due to <strong>gravitational</strong> forces;<br />

- Oscillations <strong>of</strong> electro-magnetic forces …<br />

<strong>Quantum</strong> trap<br />

Resonance<br />

transition<br />

Probability <strong>of</strong><br />

transition<br />

E<br />

i<br />

− E<br />

j<br />

= h ⋅w<br />

ν ≈ 260Hz<br />

21<br />

ij<br />

δE<br />

E<br />

≈<br />

m<strong>in</strong><br />

10 −18<br />

δE<br />

2<br />

m<strong>in</strong><br />

− E<br />

1<br />

eV<br />

≈ 10 −<br />

6<br />

Frequency <strong>of</strong> perturbation, Hz<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


4. Resonance transitions between quantum <strong>states</strong><br />

Estimation <strong>of</strong> <strong>the</strong> lifetime <strong>of</strong> a neutron quantum state<br />

Scatterer<br />

Scatterer<br />

Neutron beam<br />

Mirror<br />

Neutron<br />

detector<br />

Scheme <strong>of</strong> an experiment to estimate <strong>the</strong> lifetime <strong>of</strong> <strong>neutrons</strong> <strong>in</strong><br />

<strong>the</strong> quantum <strong>states</strong><br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


4. Applications <strong>in</strong> fundamental physics<br />

Additional short-range forces<br />

Why additional forces?<br />

-Light particles<br />

-Additional spatial dimensions<br />

( − / λ)<br />

V ( z)<br />

= −V0 ⋅ Exp z<br />

V0 = 2 ⋅π<br />

⋅ G ⋅αG<br />

⋅ m⋅<br />

ρm<br />

⋅ λ<br />

2<br />

G ⋅ m1<br />

⋅ m2<br />

V ( r ) = − ⋅<br />

G<br />

−<br />

12<br />

r<br />

( 1+<br />

α ⋅ exp( r / ))<br />

12<br />

λ<br />

12<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


Non-existence <strong>of</strong> additional bound state:<br />

(attractive <strong>in</strong>teraction)<br />

Shift <strong>of</strong> <strong>the</strong> characteristic size <strong>of</strong> <strong>the</strong><br />

neutron wave function :<br />

a G<br />

4. Applications <strong>in</strong> fundamental physics<br />

Additional short-range forces<br />

V<br />

2<br />

0<br />

⋅ m ⋅ λ < . 72<br />

Boundary for additional<br />

short-range forces<br />

0 ⋅ h<br />

2<br />

V.V. N. and K.V.P. Class.<br />

<strong>Quantum</strong> Grav. 21 4557–<br />

4566 (2004)<br />

Neutron<br />

experiments<br />

M=3<br />

Casimir<br />

forces,<br />

M=2<br />

Macroscopic<br />

measurements <strong>of</strong><br />

<strong>gravitational</strong> forces<br />

M=2<br />

1 nm 10 µm<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky<br />

?, m


Why <strong>neutrons</strong> ?<br />

-Due to <strong>the</strong>ir electric<br />

neutrality: small false<br />

effects<br />

a G<br />

-Wavelength <strong>in</strong> <strong>the</strong> range<br />

from 1 ? (<strong>the</strong>rmal<br />

<strong>neutrons</strong>) to 10 µm<br />

(quantum <strong>states</strong> <strong>in</strong> <strong>the</strong><br />

<strong>gravitational</strong> <strong>field</strong>)<br />

-Significant methodical<br />

progress <strong>in</strong> this <strong>field</strong><br />

allows us to carry out<br />

precision experiments<br />

4. Applications <strong>in</strong> fundamental physics<br />

Additional short-range forces<br />

1 nm 10 µm<br />

“Conservative” perspectives:<br />

-high-density coat<strong>in</strong>gs (tungsten, gold) –<br />

factor 4-5<br />

-Precision measurement <strong>of</strong> <strong>the</strong> wavefunctions<br />

shape – factor 10 2 at 10 µm<br />

-Resonance transitions between quantum<br />

<strong>states</strong> – factor 10 3 -10 5 at 10 µm<br />

-Dedicated experiments with very cold<br />

<strong>neutrons</strong> – factor 10 2 -10 4 at 1 nm<br />

09.06.05 INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky<br />

?, m


4. More examples<br />

- Neutrons <strong>in</strong> neutron guides<br />

- Particles/atoms <strong>in</strong> <strong>the</strong> top turn<strong>in</strong>g po<strong>in</strong>t <strong>of</strong> <strong>the</strong>ir classical trajectory<br />

<strong>in</strong> <strong>the</strong> <strong>gravitational</strong> <strong>field</strong>: atomic/neutron founta<strong>in</strong>s<br />

09.06.05<br />

INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky


4. Scales <strong>of</strong> temperature and energy <strong>in</strong> neutron physics<br />

Ultra cold<br />

nanoparticles<br />

???????? ???<br />

Cold<br />

moderators<br />

Reactor<br />

moderators<br />

20 nK<br />

10 -3 ?<br />

10 1 10 3<br />

10 -12 10 -7 10 -3 10 -1 10 7 Neutron energy, eV<br />

VUCN<br />

Fission<br />

<strong>Quantum</strong> <strong>states</strong> <strong>of</strong> <strong>neutrons</strong> <strong>in</strong> <strong>the</strong><br />

Earth’s <strong>gravitational</strong> <strong>field</strong><br />

09.06.05<br />

INSTITUT MAX VON LAUE - PAUL LANGEVIN<br />

V.V.Nesvizhevsky

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!