19.11.2014 Views

Recent Experiments in Quantum Information with Trapped Ions

Recent Experiments in Quantum Information with Trapped Ions

Recent Experiments in Quantum Information with Trapped Ions

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

<strong>Recent</strong> <strong>Experiments</strong><br />

<strong>in</strong> <strong>Quantum</strong> <strong>Information</strong> <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

T. Coudreau<br />

Introduction<br />

Teleportation<br />

T. Coudreau<br />

thomas.coudreau@univ-paris-diderot<br />

Cat states<br />

High fidelity<br />

gate<br />

Conclusion<br />

Laboratoire Matériaux et Phénomènes Quantiques<br />

Université Paris Diderot – Paris 7 et CNRS, Paris, France<br />

http://mpq.univ-paris-diderot.fr/spip.php?rubrique29<br />

MAPPI 2008 – Les Houches


Three levels of understand<strong>in</strong>g<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

Level 1 : Manipulation of qubits via s<strong>in</strong>gle and two qubit<br />

gates;<br />

Level 2 : Manipulation of ion qubits via quantum gates;<br />

T. Coudreau<br />

Introduction<br />

Teleportation<br />

Cat states<br />

High fidelity<br />

gate<br />

Conclusion<br />

Level 3 : Manipulation of <strong>in</strong>ternal (energy levels) and<br />

external (phonon modes) variables <strong>with</strong> lasers and e.m.<br />

fields.<br />

All three levels are important:<br />

quantum gates have been orig<strong>in</strong>ally devised <strong>with</strong>out a<br />

specific physical system <strong>in</strong> m<strong>in</strong>d;<br />

not tak<strong>in</strong>g <strong>in</strong>to account the physical system is deemed<br />

<strong>in</strong> the end to failure as specific problems & solutions<br />

arise;<br />

2


3<br />

Outl<strong>in</strong>e<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

T. Coudreau<br />

Teleportation<br />

Transfer of an unknown quantum state from a site A to<br />

a site B.<br />

Experiment performed <strong>in</strong> Innsbruck <strong>in</strong> 2004 (and ...)<br />

Introduction<br />

Teleportation<br />

Cat states<br />

High fidelity<br />

gate<br />

Conclusion<br />

Cat states<br />

Generation of a highly non classical state<br />

Experiment performed <strong>in</strong> Boulder <strong>in</strong> 2005 (and ...)<br />

Towards fault tolerant computation<br />

High fidelity gate<br />

Experiment performed <strong>in</strong> Innsbruck <strong>in</strong> 2008


Some references<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

Pr<strong>in</strong>ciple<br />

G. Bennet et al., Teleport<strong>in</strong>g an unknown quantum state via dual<br />

classical and E<strong>in</strong>ste<strong>in</strong>-Podolsky-Rosen channels, Phys. Rev. Lett.<br />

70, 1895 (1993);<br />

T. Coudreau<br />

Introduction<br />

Teleportation<br />

Cat states<br />

High fidelity<br />

gate<br />

Conclusion<br />

Photonic realizations<br />

“Conditional” : D. Bouwmeester et al., Experimental quantum<br />

teleportation, Nature 390, 575 (1997);<br />

“Unconditional” : A. Furusawa et al., Unconditional quantum<br />

teleportation, Science 282, 706 (1998)<br />

Ion realizations<br />

M Riebe et al., Determ<strong>in</strong>istic quantum teleportation <strong>with</strong> atoms,<br />

Nature 429, 734 (2004);<br />

M.D. Barrett et al., Determ<strong>in</strong>istic quantum teleportation of atomic<br />

qubits, Nature 429, 737 (2004).<br />

4


Pr<strong>in</strong>ciple - level 1<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

T. Coudreau<br />

Introduction<br />

Teleportation<br />

Cat states<br />

High fidelity<br />

gate<br />

Conclusion<br />

Goal<br />

Transmit an unknown quantum state from a place A (Alice)<br />

to a place B (Bob) : ∣ ∣ ∣φ<br />

〉<br />

= α|0〉 + β|1〉<br />

Method<br />

Alice and Bob share an entangled state of two particles<br />

Alice mixes her particle <strong>with</strong> the one to teleport and<br />

makes an appropriate measurement;<br />

Depend<strong>in</strong>g on the outcomes of the measurements, Bob<br />

makes an appropriate transformation on his particle<br />

Prerequisites<br />

No-clon<strong>in</strong>g theorem : the unknown state is destroyed<br />

Special relativity : classical <strong>in</strong>formation is sent<br />

5


6<br />

Detailed pr<strong>in</strong>ciple - level 2<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

Entangled state<br />

Alice and Bob share an entangled state : ∣ ∣ ∣ψ<br />

〉 =<br />

|0〉 a |1〉 b +|1〉 a |0〉 b √2 ;<br />

T. Coudreau<br />

Introduction<br />

Teleportation<br />

Cat states<br />

High fidelity<br />

gate<br />

Conclusion<br />

Mix<strong>in</strong>g the states<br />

Alice performs change of basis from the Bell-state basis to a<br />

measurable basis (CNOT + Hadamard gates);<br />

Measurement<br />

Alice measures the state of her ions via fluorescence<br />

Bob’s operation<br />

Bob changes his state depend<strong>in</strong>g on Alice’s results


7<br />

Detailed operation - level 3<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

T. Coudreau<br />

Introduction<br />

Teleportation<br />

Cat states<br />

High fidelity<br />

gate<br />

Conclusion<br />

The system<br />

Optical qubits : |1〉 = |S1/2,m = −1/2〉,<br />

|0〉 = |D5/2,m = −1/2〉<br />

<strong>Ions</strong> are stored <strong>in</strong> a l<strong>in</strong>ear Paul trap (ω = 2π × 1.2 MHz)<br />

S<strong>in</strong>gle qubit gates are performed by a resonant laser at<br />

729 nm<br />

Two qubit gates are operated via the motional modes;


8<br />

Detailed operation - level 3<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

T. Coudreau<br />

Introduction<br />

Teleportation<br />

Cat states<br />

High fidelity<br />

gate<br />

Conclusion<br />

Bell state measurement<br />

Instead of a standard measurement (CNOT +<br />

Hadamard gate), the experiment was performed us<strong>in</strong>g<br />

CZ + phase gates;<br />

Fluorescence is observed by sh<strong>in</strong><strong>in</strong>g laser light<br />

resonant <strong>with</strong> the S → P transition (397 nm) : S states<br />

fluoresce, D states do not;<br />

In order for the measurement result to be directly<br />

exploitable, one must use a photo multiplier tube : s<strong>in</strong>ce<br />

it can not dist<strong>in</strong>guish between |SD〉 and |DS〉, one of<br />

the ions is put <strong>in</strong> a “dark” state, i.e. D5/2, m = -5/2 ;


9<br />

Time table<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

T. Coudreau<br />

Introduction<br />

Teleportation<br />

Cat states<br />

High fidelity<br />

gate<br />

Conclusion


10<br />

The “real” experimental implementation<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

T. Coudreau<br />

Introduction<br />

Teleportation<br />

Cat states<br />

High fidelity<br />

gate<br />

Conclusion


11<br />

Experimental fidelity<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

T. Coudreau<br />

Introduction<br />

Teleportation<br />

Cat states<br />

High fidelity<br />

gate<br />

Conclusion


Some references<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

T. Coudreau<br />

Introduction<br />

Teleportation<br />

Cat states<br />

Photonic realizations<br />

S<strong>in</strong>gle photons <strong>in</strong> a cavity : Observ<strong>in</strong>g the Progressive<br />

Decoherence of the “Meter” <strong>in</strong> a <strong>Quantum</strong><br />

Measurement, M. Brune et al., Phys. Rev. Lett. 77,<br />

4887 (1996)<br />

Free e.m. fields : Generat<strong>in</strong>g Optical Schröd<strong>in</strong>ger<br />

Kittens for <strong>Quantum</strong> <strong>Information</strong> Process<strong>in</strong>g, A.<br />

Ourjoumtsev et al., Science 312, 83 (2006)<br />

High fidelity<br />

gate<br />

Conclusion<br />

Ion realizations<br />

Creation of a six-atom ‘Schröd<strong>in</strong>ger cat’ state, D.<br />

Leibfried et al., Nature 438, 639 (2005)<br />

Scalable multiparticle entanglement of trapped ions, H.<br />

Haffner et al., Nature, 438, 643 (2005)<br />

12


13<br />

Pr<strong>in</strong>ciple - level 1<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

T. Coudreau<br />

Introduction<br />

Teleportation<br />

Cat states<br />

Goal<br />

Create a superposition of<br />

“two maximally different<br />

quantum states”;<br />

Create a multiparticle<br />

entangled state.<br />

∣<br />

∣ψ 〉 =<br />

1 √<br />

2<br />

(|↑↑ ... ↑〉 + |↓↓ ... ↓〉)<br />

High fidelity<br />

gate<br />

Conclusion<br />

Test of the cat / entangled state<br />

Measure the fidelity, i.e. overlap <strong>with</strong> the cat state;<br />

Measure the coherence between the two “feet” of the<br />

cat.


14<br />

Pr<strong>in</strong>ciple - level 2<br />

Some useful def<strong>in</strong>itions and relations<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

T. Coudreau<br />

Introduction<br />

Teleportation<br />

Cat states<br />

High fidelity<br />

gate<br />

Conclusion<br />

Dicke operators : ⃗ J =<br />

N∑<br />

⃗σ j<br />

j=1<br />

Dicke states : N + 1 eigenstates of J 2 and J z <strong>with</strong><br />

eigenvalues J = N/2 and M (−J ≤ M ≤ M)<br />

N e and N g are given by N e = J + M and N g = J − M.<br />

|↑↑ ... ↑〉 = |J,J〉 and |↓↓ ... ↓〉 = |J,−J〉;<br />

∣<br />

∣ψ 〉 = √ 1 (|J,J〉 + |J,−J〉);<br />

2<br />

For N even, |J,J〉 + |J,−J〉 is even <strong>in</strong> J y while<br />

|J,J〉 − |J,−J〉 is odd;<br />

|J,−J〉 = 1 2 (|J,J〉 + |J,−J〉) − 1 2<br />

(|J,J〉 + |J,−J〉)


15<br />

Pr<strong>in</strong>ciple - level 2<br />

Entangl<strong>in</strong>g gate<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

T. Coudreau<br />

Introduction<br />

Teleportation<br />

Cat states<br />

High fidelity<br />

gate<br />

Conclusion<br />

The application of J 2 y<br />

will entangle the ions<br />

(<br />

exp i π )<br />

(<br />

2 J2 y |J,−J〉 = exp i π )[ 1<br />

2 J2 y (|J,J〉 + |J,−J〉)−<br />

2<br />

]<br />

1<br />

2 (|J,J〉 + |J,−J〉)<br />

= 1 2 (|J,J〉 + |J,−J〉) − i (|J,J〉 + |J,−J〉)<br />

2<br />

= 1 − i<br />

2 |J,J〉 + 1 + i<br />

2 |J,−J〉<br />

= 1 − i<br />

2<br />

|↑ ... ↑〉 +<br />

1 + i<br />

2<br />

|↓ ... ↓〉<br />

The state produced at the end of the <strong>in</strong>teraction is, apart<br />

from a phase shift, the desired cat state.


Pr<strong>in</strong>ciple - level 3<br />

Entangl<strong>in</strong>g gate<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

Yet another gate<br />

A simple relation:<br />

(<br />

exp i π 2 J2 y<br />

)<br />

= exp<br />

(<br />

−i π ) (<br />

2 J x exp i π ) (<br />

2 J2 z exp i π )<br />

2 J x<br />

T. Coudreau<br />

Introduction<br />

Teleportation<br />

Cat states<br />

High fidelity<br />

gate<br />

Conclusion<br />

State dependent phase shift<br />

Under the <strong>in</strong>fluence of a force, the vibrational state can<br />

follow a closed curve.<br />

Phase shift proportional to the area enclosed <strong>in</strong> the<br />

curve : to have a phase shift proportional to J 2 z , one<br />

must have a force proportional to J z ;<br />

S<strong>in</strong>ce J z = (N e − N g )/2, the force must have a state<br />

dependent sign.<br />

16


17<br />

Pr<strong>in</strong>ciple - level 3<br />

Sett<strong>in</strong>g up the force<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

T. Coudreau<br />

Introduction<br />

Teleportation<br />

Cat states<br />

High fidelity<br />

gate<br />

Conclusion<br />

The qubit is encoded <strong>in</strong> hyperf<strong>in</strong>e ground states of Be +<br />

ions;<br />

The force is produced by sh<strong>in</strong><strong>in</strong>g Raman beams on the<br />

ions;<br />

Illum<strong>in</strong>at<strong>in</strong>g the ions : the ions spac<strong>in</strong>g is chosen so<br />

that each ion receives the same light (<strong>in</strong> practice, error<br />

≤ 4%);<br />

State dependent force<br />

The detun<strong>in</strong>g is chosen so<br />

that the two Raman<br />

amplitudes have opposite<br />

signs.


18<br />

Pr<strong>in</strong>ciple : summary<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

T. Coudreau<br />

Introduction<br />

Teleportation<br />

Cat states<br />

High fidelity<br />

gate<br />

Conclusion<br />

Level 1 Level 2 Level 3<br />

Initialize state<br />

Put system <strong>in</strong><br />

|↓ ... ↓〉|0〉<br />

Optical pump<strong>in</strong>g<br />

+ laser cool<strong>in</strong>g<br />

expi π 2 J Raman π/2<br />

x gate<br />

pulse on carrier<br />

Raman pulse at<br />

Entangl<strong>in</strong>g gate<br />

exp ( )<br />

i π expi π<br />

2 J2 y gate 2 J2 z gate frequency ω 2 −<br />

ω 1 = ν + δ for duration<br />

τ g<br />

expi π 2 J x gate<br />

Raman π/2<br />

pulse on carrier


19<br />

State read-out by fluorescence<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

T. Coudreau<br />

Introduction<br />

Teleportation<br />

The first measurement consists <strong>in</strong> measur<strong>in</strong>g the<br />

fluorescence;<br />

ions <strong>in</strong> |g〉 will emit an average of 10 photons while<br />

those <strong>in</strong> |e〉 emit none;<br />

The correspond<strong>in</strong>g histogram must have two peaks, the<br />

first around 0 photons (|e ...e〉), the second one around<br />

6 × 10 photons (|g ...g〉).<br />

Cat states<br />

High fidelity<br />

gate<br />

Conclusion


20<br />

Coherence measurement<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

It is necessary to test the coherence between |e ...e〉<br />

and |g ...g〉;<br />

This can be done by an <strong>in</strong>terference measurement :<br />

T. Coudreau<br />

Introduction<br />

Teleportation<br />

Cat states<br />

High fidelity<br />

gate<br />

Conclusion<br />

|g ...g〉 expi π 2 J2 y<br />

−→<br />

GHZ expiφJ z<br />

−→<br />

expi π 2 J2 y<br />

−→<br />

read-out


21<br />

High fidelity operations<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

T. Coudreau<br />

Introduction<br />

Teleportation<br />

Motivation<br />

<strong>Quantum</strong> error correction imposes “strict” bounds on<br />

the tolerable errors : 10 −4 – 10 −2<br />

The operations described previously failed to achieve<br />

this bound e.g. preparation of a 6 ions entangled state<br />

F ≈ 50%<br />

Cat states<br />

High fidelity<br />

gate<br />

Conclusion<br />

<strong>Recent</strong> results<br />

J. Benhelm et al., Towards fault-tolerant quantum<br />

comput<strong>in</strong>g <strong>with</strong> trapped ions, Nature Physics (apr.<br />

2008)


Towards fault-tolerant quantum comput<strong>in</strong>g <strong>with</strong><br />

trapped ions<br />

System<br />

22<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

T. Coudreau<br />

two 40 Ca ions <strong>in</strong> a l<strong>in</strong>ear Paul trap<br />

Mølmer - Sørensen entangl<strong>in</strong>g gate (H ∝ J 2 y )<br />

Adiabatic switch<strong>in</strong>g dur<strong>in</strong>g a well chosen time, τ gate<br />

gives a propagator<br />

Introduction<br />

Teleportation<br />

Cat states<br />

High fidelity<br />

gate<br />

It is an entangl<strong>in</strong>g gate <strong>with</strong><br />

U gate = exp(−i(π/8)J 2 y )<br />

Conclusion<br />

|SS〉 τ gate<br />

−→ |SS〉 + i |DD〉 τ gate<br />

−→ |DD〉 τ gate<br />

−→ |DD〉 + i |SS〉 τ gate<br />

−→ |SS〉


Towards fault-tolerant quantum comput<strong>in</strong>g <strong>with</strong><br />

trapped ions<br />

Experimental results (a)<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

T. Coudreau<br />

Introduction<br />

Teleportation<br />

Cat states<br />

High fidelity<br />

gate<br />

Conclusion<br />

|SS〉 → |SS〉 + i |DD〉 → |DD〉<br />

23


Towards fault-tolerant quantum comput<strong>in</strong>g <strong>with</strong><br />

trapped ions<br />

Experimental results (b)<br />

24<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

T. Coudreau<br />

Introduction<br />

Teleportation<br />

Cat states<br />

High fidelity<br />

gate<br />

Conclusion


Towards fault-tolerant quantum comput<strong>in</strong>g <strong>with</strong><br />

trapped ions<br />

Experimental results (c)<br />

25<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

T. Coudreau<br />

State populations<br />

Introduction<br />

Teleportation<br />

Cat states<br />

High fidelity<br />

gate<br />

Conclusion<br />

The total time corresponds to the application of 17<br />

gates<br />

Even after 21 gates, the fidelity is still on the order of<br />

80%


Towards fault-tolerant quantum comput<strong>in</strong>g <strong>with</strong><br />

trapped ions<br />

Some causes of errors<br />

26<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

T. Coudreau<br />

Introduction<br />

Teleportation<br />

Cat states<br />

High fidelity<br />

gate<br />

Conclusion<br />

State <strong>in</strong>itialization<br />

2 × 10 −3<br />

State discrim<strong>in</strong>ation<br />

1.5 × 10 −3<br />

Pulse shap<strong>in</strong>g<br />

10 −4<br />

Coupl<strong>in</strong>g strength variation (laser <strong>in</strong>tensity<br />

variation, beam po<strong>in</strong>t<strong>in</strong>g, ion < 4 × 10 −4<br />

motion . . . )<br />

Non resonant excitation<br />

< 4 × 10 −4<br />

Laser frequency uncerta<strong>in</strong>ty < 2 × 10 −3 (*)<br />

Total<br />

7 ×10 −3<br />

(*) not directly measured


27<br />

Conclusion<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

T. Coudreau<br />

Introduction<br />

Teleportation<br />

Cat states<br />

High fidelity<br />

gate<br />

Conclusion<br />

di V<strong>in</strong>cenzo’s criteria have been “met”<br />

A large number of gates have been demonstrated<br />

A great variety of “useful” applications have been<br />

demonstrated<br />

Teleportation<br />

Multiparticle entangled states<br />

Large fidelity gate<br />

Three–qubit gate<br />

Long coherence time<br />

Entanglement enhanced measurements<br />

<strong>Quantum</strong> error correction<br />

<strong>Quantum</strong> search (Grover’s algorithm)<br />

...


Outlook<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

T. Coudreau<br />

High fidelity operations<br />

Large constra<strong>in</strong>ts implied by quantum error correction<br />

schemes;<br />

Improve all stages of the gate: state preparation, operation,<br />

read-out;<br />

Introduction<br />

Teleportation<br />

Cat states<br />

High fidelity<br />

gate<br />

Conclusion<br />

Scalable traps<br />

Large number of qubits and <strong>in</strong>teractions needed;<br />

Devise an efficient & coherence preserv<strong>in</strong>g trap & shuttl<strong>in</strong>g<br />

method<br />

Other schemes<br />

<strong>Quantum</strong> simulations / Topological quantum comput<strong>in</strong>g.<br />

<strong>Ions</strong> as atomic ensembles : Aarhus, Paris<br />

28


29<br />

On-go<strong>in</strong>g work <strong>in</strong> Paris<br />

<strong>Recent</strong> experiments<br />

<strong>in</strong> QI <strong>with</strong> <strong>Trapped</strong> <strong>Ions</strong><br />

T. Coudreau<br />

Introduction<br />

Teleportation<br />

Cat states<br />

Towards large ensembles<br />

Micro-traps<br />

up to 4×10 4 Sr + ions<br />

Light atom <strong>in</strong>terface<br />

See S. Removille’s poster<br />

on thursday.<br />

High fidelity<br />

gate<br />

Conclusion<br />

Developed <strong>in</strong><br />

collaboration <strong>with</strong> Thales<br />

Research and<br />

Technology<br />

No trapped ions yet !

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!