19.11.2014 Views

Resilience Planning in the Face of Uncertainty: Adapting to Climate ...

Resilience Planning in the Face of Uncertainty: Adapting to Climate ...

Resilience Planning in the Face of Uncertainty: Adapting to Climate ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Resilience</strong> <strong>Plann<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> <strong>Face</strong> <strong>of</strong> Uncerta<strong>in</strong>ty: Adapt<strong>in</strong>g <strong>to</strong> <strong>Climate</strong><br />

Change Effects on Coastal Hazards<br />

Robert E. Deyle and William H. Butler<br />

Department <strong>of</strong> Urban and Regional <strong>Plann<strong>in</strong>g</strong><br />

Florida State University<br />

Introduction<br />

The resilience <strong>of</strong> coastal communities has long been precarious as <strong>the</strong> coastal environment is a<br />

highly dynamic system, prone <strong>to</strong> shocks from <strong>the</strong> w<strong>in</strong>d, waves, and surges <strong>of</strong> coastal s<strong>to</strong>rms, as well as<br />

daily and seasonal cycles <strong>of</strong> sediment erosion and accretion. Coastal planners and managers have applied<br />

an array <strong>of</strong> structural and nonstructural strategies for mitigat<strong>in</strong>g vulnerability <strong>to</strong> <strong>the</strong>se hazards and have<br />

applied techniques such as cost-benefit analysis and risk-benefit analysis <strong>to</strong> evaluate alternatives.<br />

Strategy designs, and <strong>the</strong> conventional methods for assess<strong>in</strong>g <strong>the</strong>m, are grounded on assumptions <strong>of</strong><br />

stationarity and predictability <strong>of</strong> coastal system conditions and trends and <strong>the</strong> external forces that affect<br />

<strong>the</strong>m. Conventional application <strong>of</strong> <strong>the</strong>se assessment techniques also limits <strong>the</strong> array <strong>of</strong> social values that<br />

are considered and constra<strong>in</strong>s transparent and participa<strong>to</strong>ry approaches <strong>to</strong> <strong>in</strong>corporat<strong>in</strong>g social values <strong>in</strong><strong>to</strong><br />

management decisions.<br />

The unfold<strong>in</strong>g narrative <strong>of</strong> climate change poses challenges <strong>to</strong> us<strong>in</strong>g conventional methods <strong>of</strong><br />

assess<strong>in</strong>g alternatives for ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g and enhanc<strong>in</strong>g community resilience <strong>to</strong> <strong>the</strong> hazards <strong>of</strong> chronic<br />

erosion and coastal s<strong>to</strong>rms. Assumptions <strong>of</strong> stationarity are erod<strong>in</strong>g, and predictability is elusive.<br />

Empirical observations demonstrate that <strong>the</strong> rate <strong>of</strong> global eustatic sea level rise i has <strong>in</strong>creased <strong>in</strong> recent<br />

decades and is very likely accelerat<strong>in</strong>g. Scientists also have determ<strong>in</strong>ed that <strong>the</strong> <strong>in</strong>tensity <strong>of</strong> tropical<br />

cyclones has <strong>in</strong>creased <strong>in</strong> several <strong>of</strong> <strong>the</strong> world’s oceans and <strong>the</strong>orize that this might be a result <strong>of</strong> global<br />

warm<strong>in</strong>g. Very large uncerta<strong>in</strong>ties rema<strong>in</strong> about how <strong>the</strong>se changes will translate <strong>in</strong><strong>to</strong> altered local<br />

1


exposure and associated vulnerability and, <strong>in</strong> fact, those uncerta<strong>in</strong>ties are <strong>in</strong>determ<strong>in</strong>ate. Scientists are<br />

unable <strong>to</strong> estimate objective probabilities for how high sea level will get, where, and when, or how more<br />

frequently higher-<strong>in</strong>tensity hurricanes will occur.<br />

The capacity <strong>to</strong> adapt <strong>in</strong> <strong>the</strong> face <strong>of</strong> chang<strong>in</strong>g system dynamics is essential for community<br />

resilience <strong>to</strong> coastal hazards (Adger et al., 2005; Beatley, 2009; U.S. Indian Ocean Tsunami Warn<strong>in</strong>g<br />

System Program, 2007; Walker et al., 2004). Thus, coastal communities need a different approach for<br />

analyz<strong>in</strong>g alternatives and choos<strong>in</strong>g responses where uncerta<strong>in</strong>ty is <strong>in</strong>determ<strong>in</strong>ate and where <strong>the</strong>y wish <strong>to</strong><br />

apply broader goals <strong>to</strong> assess<strong>in</strong>g alternatives <strong>in</strong> a transparent and participa<strong>to</strong>ry manner. The practices <strong>of</strong><br />

adaptive management and scenario analysis can provide <strong>the</strong> means <strong>to</strong> identify, select, and adopt robust<br />

and flexible mitigation measures that promote resilience while cop<strong>in</strong>g with uncerta<strong>in</strong>ty <strong>in</strong> complex and<br />

dynamic social-ecological systems.<br />

In this chapter, we explore how small and rural coastal communities can effectively address <strong>the</strong><br />

challenges that confront <strong>the</strong>m as <strong>the</strong>y attempt <strong>to</strong> build <strong>the</strong> resilience with limited economic and human<br />

capital. We <strong>in</strong>troduce a decision <strong>to</strong>ol based on Hill’s (1968) goals achievement matrix (GAM) and<br />

demonstrate how it can be used <strong>to</strong> support complex alternatives analysis under <strong>in</strong>determ<strong>in</strong>ate uncerta<strong>in</strong>ty.<br />

We also show how communities can build <strong>the</strong>ir adaptive capacity by us<strong>in</strong>g such a <strong>to</strong>ol <strong>in</strong> an adaptive<br />

governance framework that facilitates social learn<strong>in</strong>g and collaborative management.<br />

We beg<strong>in</strong> this chapter by contrast<strong>in</strong>g conventional views <strong>of</strong> resilience with <strong>the</strong> concept <strong>of</strong><br />

adaptive resilience that recognizes that most social-ecological systems do not exist <strong>in</strong> a state <strong>of</strong> dynamic<br />

equilibrium. Then, we explore how <strong>the</strong> context <strong>of</strong> coastal management is chang<strong>in</strong>g <strong>in</strong> <strong>the</strong> face <strong>of</strong><br />

accelerat<strong>in</strong>g sea-level rise and <strong>the</strong> possibility <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>tensities <strong>of</strong> tropical cyclones. Next, we<br />

elaborate on <strong>the</strong> short-com<strong>in</strong>gs <strong>of</strong> conventional approaches <strong>to</strong> alternatives analysis, and make our case for<br />

adaptive management and scenario analysis as more effective for deal<strong>in</strong>g with complexity and<br />

2


uncerta<strong>in</strong>ty. We <strong>the</strong>n <strong>in</strong>troduce Hill’s GAM and show how it can be applied <strong>to</strong> <strong>the</strong> particulars <strong>of</strong> adapt<strong>in</strong>g<br />

<strong>to</strong> <strong>the</strong> effects <strong>of</strong> climate change on coastal hazards. We conclude by outl<strong>in</strong><strong>in</strong>g <strong>the</strong> elements <strong>of</strong> an adaptive<br />

governance process through which collaborative, social learn<strong>in</strong>g can be <strong>in</strong>corporated <strong>in</strong><strong>to</strong> iterative and<br />

ongo<strong>in</strong>g use <strong>of</strong> a GAM as new knowledge and chang<strong>in</strong>g understand<strong>in</strong>gs, values, and perceptions are<br />

<strong>in</strong>corporated <strong>in</strong><strong>to</strong> climate change adaptation responses.<br />

<strong>Resilience</strong> and Coastal Hazards Management<br />

The conventional approach <strong>to</strong> hazard mitigation and post-disaster redevelopment conceives <strong>of</strong><br />

resilience as <strong>the</strong> ability <strong>of</strong> a physical or social system <strong>to</strong> recover from <strong>the</strong> major disturbance <strong>of</strong> a natural<br />

disaster. This so-called “eng<strong>in</strong>eer<strong>in</strong>g resilience” presumes stability <strong>of</strong> system structure and function<br />

centered on some optimal equilibrium. It is measured by <strong>the</strong> time necessary <strong>to</strong> repair or rebuild <strong>the</strong><br />

impacted elements <strong>of</strong> <strong>the</strong> system and <strong>to</strong> res<strong>to</strong>re its normal structure and functions (Folke 2006, p. 256;<br />

Zellner et al., 2011, p. 45); hence <strong>the</strong> conventional goal <strong>of</strong> post-disaster recovery <strong>to</strong> “return <strong>to</strong> normal as<br />

quickly as possible” (Schwab et al., 1998).<br />

Scholars have begun <strong>to</strong> understand that stability is an elusive state for complex social-ecological<br />

systems that are subject <strong>to</strong> periodic acute perturbations, such as natural hazards and economic shocks,<br />

and slow-mov<strong>in</strong>g chronic changes, such as shift<strong>in</strong>g demographic patterns and climate change which<br />

repeatedly and cont<strong>in</strong>uously alter system conditions and dynamics (Walker & Salt, 2006, p. 10). In this<br />

view, <strong>the</strong> system’s resilience is not its ability <strong>to</strong> bounce back <strong>to</strong> a previous equilibrium po<strong>in</strong>t. Ra<strong>the</strong>r it is<br />

<strong>the</strong> ability <strong>of</strong> system relationships and functions <strong>to</strong> persist, perhaps <strong>in</strong> an altered state, <strong>in</strong> a new context<br />

(Boyd & Folke, 2012, p. 2; Holl<strong>in</strong>g, 1973, p. 17). This mode <strong>of</strong> resilience, which has been dubbed by<br />

some as “adaptive resilience” (Ali et al., 2011; Rob<strong>in</strong>son, 2010), depends upon a system’s “adaptive<br />

capacity,” that is, its ability <strong>to</strong> “modify or change its characteristics or behaviour so as <strong>to</strong> cope better with<br />

exist<strong>in</strong>g or anticipated external stresses” (Adger et al., 2004, p. 34).<br />

3


Adger et al. (2005, p. 1036), cit<strong>in</strong>g Carpenter et al. (2001) and Folke (2002), argue that such<br />

resilience is <strong>in</strong> part a function <strong>of</strong> <strong>the</strong> ability <strong>of</strong> <strong>the</strong> system <strong>to</strong> “build capacity for learn<strong>in</strong>g.” Such learn<strong>in</strong>g<br />

is especially critical where planners and managers face uncerta<strong>in</strong>ty about how social-ecological systems<br />

work, how <strong>the</strong>y are affected by external perturbations and management <strong>in</strong>terventions, and how external<br />

drivers are chang<strong>in</strong>g.<br />

Scholars who have exam<strong>in</strong>ed <strong>the</strong> capacity <strong>of</strong> communities <strong>to</strong> adapt <strong>to</strong> climate change have<br />

determ<strong>in</strong>ed that this capacity is a function <strong>of</strong> human and social capital, as well as economic capital, and is<br />

uneven across communities, even with<strong>in</strong> developed countries (Adger et al., 2007, pp. 728-729).<br />

Important fac<strong>to</strong>rs <strong>in</strong>clude education, <strong>in</strong>come, and health, local economic development, and access <strong>to</strong><br />

technology, as well as government <strong>in</strong>stitutions, community organizations, and social networks (Adger &<br />

V<strong>in</strong>cent, 2005; Adger et al., 2004; Yohe & Tol, 2002). Adaptive capacity <strong>in</strong> small and rural coastal<br />

communities is constra<strong>in</strong>ed by limited resources on which <strong>to</strong> draw <strong>to</strong> undertake plann<strong>in</strong>g and implement<br />

management actions. Thus, smaller coastal cities and rural communities are likely <strong>to</strong> have less capacity <strong>to</strong><br />

adapt <strong>to</strong> <strong>the</strong> added complexities and uncerta<strong>in</strong>ties that climate change br<strong>in</strong>gs <strong>to</strong> manag<strong>in</strong>g coastal hazards<br />

resiliently. It is <strong>to</strong> <strong>the</strong>se uncerta<strong>in</strong>ties and complexities <strong>in</strong> coastal climate change adaptation that we now<br />

turn our attention.<br />

Uncerta<strong>in</strong> complex hazards<br />

The equilibrium resilience assumptions <strong>of</strong> conventional coastal hazard mitigation along<br />

sedimentary coasts reflect <strong>in</strong> part implicit or explicit assumptions that <strong>the</strong> external drivers <strong>of</strong> chronic<br />

erosion and s<strong>to</strong>rm forces are stationary phenomena: chronic erosion rates are driven by a constant rate <strong>of</strong><br />

sea level rise and coastal s<strong>to</strong>rms have return frequencies that can be ascerta<strong>in</strong>ed by analyz<strong>in</strong>g his<strong>to</strong>ric<br />

data. Thus coastal communities have sought <strong>to</strong> reduce <strong>the</strong>ir vulnerability <strong>to</strong> <strong>the</strong>se hazards through such<br />

strategies as construct<strong>in</strong>g s<strong>of</strong>t (beach nourishment) and hard (bulkheads, revetments, seawalls)<br />

4


eng<strong>in</strong>eered structures designed <strong>to</strong> withstand s<strong>to</strong>rms with specified return frequencies. They similarly<br />

adopt build<strong>in</strong>g elevation standards and policies for restrict<strong>in</strong>g development <strong>of</strong> <strong>the</strong> most hazardous areas<br />

based on maps <strong>of</strong> w<strong>in</strong>d zones, flood hazard areas, and s<strong>to</strong>rm surge flood zones with specified return<br />

frequencies. And some communities def<strong>in</strong>e fixed-distance development setbacks based on a reference<br />

feature such as <strong>the</strong> mean high tide l<strong>in</strong>e or some multiple <strong>of</strong> <strong>the</strong> average annual erosion rate.<br />

<strong>Climate</strong> change, however, confronts coastal planners with two dimensions <strong>of</strong> uncerta<strong>in</strong>ty as <strong>the</strong>y<br />

attempt <strong>to</strong> ma<strong>in</strong>ta<strong>in</strong> or enhance <strong>the</strong> resilience <strong>of</strong> <strong>the</strong>ir communities over plann<strong>in</strong>g horizons <strong>of</strong> multiple<br />

decades:<br />

1. knowledge <strong>of</strong> <strong>the</strong> future trends <strong>of</strong> <strong>the</strong> external drivers <strong>of</strong> physical and ecological coastal systems<br />

and how those systems will adjust au<strong>to</strong>nomously and<br />

2. knowledge <strong>of</strong> <strong>the</strong> current and future goals and priorities <strong>of</strong> <strong>the</strong> stakeholders who comprise <strong>the</strong><br />

social systems for which <strong>the</strong>y plan.<br />

The uncerta<strong>in</strong>ties about future trends <strong>of</strong> <strong>the</strong> external drivers <strong>of</strong> sea level rise rates and tropical cyclone<br />

<strong>in</strong>tensity are currently <strong>in</strong>determ<strong>in</strong>ate, a function <strong>of</strong> all three dimensions <strong>of</strong> what <strong>the</strong> U.S. Army Corps <strong>of</strong><br />

Eng<strong>in</strong>eers def<strong>in</strong>es as “knowledge uncerta<strong>in</strong>ty”: “<strong>in</strong>complete understand<strong>in</strong>g <strong>of</strong> . . . [<strong>the</strong>] system, model<strong>in</strong>g<br />

limitations, and . . . limited data” (USACE, 2011, p. 10). Until recently, <strong>the</strong> rate <strong>of</strong> global eustatic sea<br />

level rise has been quite modest, approximately 1.8 mm/year (Meehl et al., 2007). As sea level rises,<br />

sedimentary shorel<strong>in</strong>es recede from <strong>the</strong> comb<strong>in</strong>ed effects <strong>of</strong> erosion and <strong>in</strong>undation. Reced<strong>in</strong>g shorel<strong>in</strong>es<br />

and higher sea levels also shift coastal flood zones fur<strong>the</strong>r <strong>in</strong>land <strong>the</strong>reby <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> return<br />

frequencies <strong>of</strong> floods <strong>of</strong> a given magnitude at any given location (N<strong>in</strong>g et al., 2012). Coastal planners<br />

have accommodated ris<strong>in</strong>g sea level ei<strong>the</strong>r by ignor<strong>in</strong>g it because <strong>the</strong> rate has been so slow or by<br />

account<strong>in</strong>g for average erosion rates <strong>in</strong> <strong>the</strong> design <strong>of</strong> beach renourishment projects, shore protection<br />

structures, and erosion-based development setbacks.<br />

5


More recent observations <strong>in</strong>dicate, however, that <strong>the</strong> rate <strong>of</strong> global eustatic sea level rise has been<br />

higher s<strong>in</strong>ce at least <strong>the</strong> early 1990s, averag<strong>in</strong>g 3.3 mm/yr between 1993 and 2003 (Meehl et al., 2007).<br />

Both <strong>the</strong>ory and evidence suggest that <strong>the</strong> rate is accelerat<strong>in</strong>g due <strong>to</strong> an array <strong>of</strong> positive global warm<strong>in</strong>g<br />

and sea level rise feedbacks, <strong>the</strong> most prom<strong>in</strong>ent <strong>of</strong> which is accelerated melt<strong>in</strong>g <strong>of</strong> <strong>the</strong> Greenland and<br />

West Antarctic ice sheets (Gr<strong>in</strong>sted et al., 2010; Hansen & Sa<strong>to</strong>, 2011; Pfeffer et al., 2008; Steffen et al.,<br />

2008; Vermeer & Rahms<strong>to</strong>rf, 2009). At present, however, scientists are unable <strong>to</strong> fully expla<strong>in</strong> how and<br />

why <strong>the</strong> ice sheets are melt<strong>in</strong>g more rapidly based on models derived from geologic time scales <strong>of</strong> glacial<br />

changes (Steffen et al., 2008). Add<strong>in</strong>g <strong>to</strong> <strong>the</strong>se uncerta<strong>in</strong>ties are <strong>the</strong> complexities <strong>of</strong> predict<strong>in</strong>g rates <strong>of</strong> sea<br />

level rise <strong>in</strong> particular locations. This local “relative sea level” rise is a function <strong>of</strong> differential <strong>the</strong>rmal<br />

expansion <strong>of</strong> sea water, sal<strong>in</strong>ity, w<strong>in</strong>ds and currents, proximity <strong>to</strong> melt<strong>in</strong>g ice, and <strong>the</strong> direction and rate<br />

<strong>of</strong> land surface movement (Meehl et al., 2007, p. 813).<br />

<strong>Climate</strong> change also is likely <strong>to</strong> affect tropical cyclone activity, add<strong>in</strong>g a second dimension <strong>of</strong><br />

uncerta<strong>in</strong>ty <strong>to</strong> manag<strong>in</strong>g <strong>the</strong> resilience <strong>of</strong> coastal communities. There is some evidence that <strong>in</strong>creases <strong>in</strong><br />

tropical cyclone frequency may have accompanied ris<strong>in</strong>g sea surface temperatures <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn<br />

Atlantic s<strong>in</strong>ce <strong>the</strong> 1970s (Webster et al., 2005, p. 1844), but not elsewhere. The percentage <strong>of</strong> higher<br />

<strong>in</strong>tensity tropical cyclones, i.e. Category 4 and 5 hurricanes, has apparently <strong>in</strong>creased <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn<br />

Atlantic and <strong>in</strong> o<strong>the</strong>r oceans (Elsner et al., 2008; Emanuel, 2005, 2007; USEPA, 2010). Uncerta<strong>in</strong>ty<br />

rema<strong>in</strong>s, however, about <strong>the</strong> extent <strong>to</strong> which recent trends are a direct reflection <strong>of</strong> climate change as<br />

opposed <strong>to</strong> o<strong>the</strong>r temporal patterns <strong>in</strong> fac<strong>to</strong>rs that <strong>in</strong>fluence tropical cyclone <strong>in</strong>tensity (Karl et al., 2008, p.<br />

6; USEPA, 2010, p. 32).<br />

Coastal planners and managers also may face knowledge uncerta<strong>in</strong>ty about social goals and<br />

priorities because <strong>of</strong> <strong>the</strong> diversity <strong>of</strong> perceptions and value-based perspectives held by stakeholders about<br />

<strong>the</strong> causes <strong>of</strong> observed changes <strong>in</strong> coastal hazard phenomena and <strong>the</strong> appropriate management responses<br />

6


(Pahl Wostl et al., 2007, p. 32). Uncerta<strong>in</strong>ty <strong>in</strong> <strong>the</strong> social system may arise not only from a lack <strong>of</strong> data or<br />

<strong>in</strong>formation <strong>to</strong> understand <strong>the</strong>se values under current conditions, but also from chang<strong>in</strong>g stakeholder<br />

values and perceptions over time about <strong>the</strong> nature and importance <strong>of</strong> <strong>the</strong> threats posed by climate change<br />

and coastal hazards (NRC, 2004, p. 43).<br />

Conventional decision mak<strong>in</strong>g <strong>in</strong> uncerta<strong>in</strong> environments<br />

Cost-benefit analysis (CBA) is <strong>the</strong> bedrock <strong>of</strong> public-sec<strong>to</strong>r alternatives evaluation <strong>in</strong> <strong>the</strong> U.S.<br />

(USACE, 1983, 2011, 2012) and is widely embraced for assess<strong>in</strong>g climate change adaptation options (see<br />

for example Callaway, 2004; Fankhauser et al., 1999; Smith, 1997; Toman, 2006). The methods for<br />

do<strong>in</strong>g so are complex and data <strong>in</strong>tensive, however, and likely well beyond <strong>the</strong> means <strong>of</strong> small local<br />

governments with limited staff and fiscal resources. CBA also presents a number <strong>of</strong> limitations <strong>to</strong> fully<br />

assess<strong>in</strong>g <strong>the</strong> effects that alternative strategies will have on <strong>the</strong> resilience <strong>of</strong> coastal communities <strong>to</strong> <strong>the</strong><br />

effects <strong>of</strong> climate change on natural hazards.<br />

Where <strong>the</strong> costs and benefits <strong>of</strong> alternative adaptive strategies can be fully specified with<br />

certa<strong>in</strong>ty, planners maximize efficiency by choos<strong>in</strong>g <strong>the</strong> alternative with <strong>the</strong> highest net present value.<br />

However, scholars and practitioners have long recognized <strong>the</strong> challenges <strong>of</strong> monetiz<strong>in</strong>g non-market costs<br />

and benefits and <strong>the</strong> limitations <strong>of</strong> standard approaches for contend<strong>in</strong>g with this problem (see for example<br />

Hill, 1968; Kneese, 1984). Analysts estimate shadow prices for some costs or benefits that are not traded<br />

<strong>in</strong> private markets, but o<strong>the</strong>r “<strong>in</strong>tangibles” may not even be susceptible <strong>to</strong> quantification and <strong>of</strong>ten are<br />

given no more than “lip service” (Hill, 1968, p. 20).<br />

Where <strong>the</strong> tim<strong>in</strong>g and/or magnitude <strong>of</strong> costs and benefits are uncerta<strong>in</strong> but can be assigned<br />

probabilities, planners employ so-called risk-benefit analysis (RBA) <strong>in</strong> which probability values for<br />

<strong>in</strong>dividual costs and benefits are <strong>in</strong>corporated <strong>in</strong> net present value calculations (USACE, 2011, p. 50). For<br />

coastal hazards adaptation projects, <strong>the</strong>y estimate probabilities from his<strong>to</strong>ric frequency data across <strong>the</strong><br />

7


array <strong>of</strong> possible s<strong>to</strong>rm scenarios or by employ<strong>in</strong>g Monte Carlo simulation (USACE, 2011, pp. 50-51).<br />

RBA adds additional layers <strong>of</strong> complexity that require fur<strong>the</strong>r technical sophistication. But more<br />

important is that this approach cannot be applied where uncerta<strong>in</strong>ties are <strong>in</strong>determ<strong>in</strong>ate.<br />

In such situations, planners <strong>of</strong>ten apply a heuristic that reflects <strong>the</strong>ir level <strong>of</strong> risk averseness.<br />

Some commenta<strong>to</strong>rs, concerned about <strong>the</strong> opportunity costs <strong>of</strong> unnecessary over-protection, have<br />

advocated a “wait and see” approach, until uncerta<strong>in</strong>ties are resolved. O<strong>the</strong>rs suggest <strong>in</strong>itiat<strong>in</strong>g adaptation<br />

strategies with near-term benefits that are more certa<strong>in</strong>, or follow<strong>in</strong>g <strong>the</strong> so-called “low regrets” or “no<br />

regrets” approach <strong>of</strong> tak<strong>in</strong>g <strong>in</strong>itiatives that have net benefits even <strong>in</strong> <strong>the</strong> absence <strong>of</strong> climate change<br />

(Fankhauser, 2010; Stern, 2006, p. 420; Titus & Neumann, 2009, p. 144). Rely<strong>in</strong>g on such heuristics,<br />

runs <strong>the</strong> risk <strong>of</strong> tak<strong>in</strong>g <strong>in</strong>sufficient adaptation measures <strong>to</strong> forestall significant long-term climate change<br />

impact costs and irreversible damages (Adger et al., 2007, p. 721). The consequences <strong>of</strong> wait<strong>in</strong>g for<br />

greater certa<strong>in</strong>ty may be substantial because <strong>of</strong> <strong>the</strong> long-term commitments embodied <strong>in</strong> land use<br />

development and <strong>in</strong>frastructure <strong>in</strong>vestment (Deyle et al., 2007; Parry et al., 2007, p. 346; Smith, 1997, p.<br />

253) and <strong>the</strong> fact that <strong>the</strong> burden <strong>of</strong> anthropogenic greenhouse gases already <strong>in</strong> <strong>the</strong> atmosphere makes<br />

accelerated sea level rise a certa<strong>in</strong>ty for centuries (Nicholls et al., 2007; Wigley, 2005). Where concerned<br />

with under-protection planners may <strong>in</strong>corporate a “safety fac<strong>to</strong>r” <strong>in</strong> eng<strong>in</strong>eer<strong>in</strong>g designs (USACE, 2011,<br />

p. 10) or <strong>in</strong>voke <strong>the</strong> so-called “precautionary pr<strong>in</strong>ciple,” under which lack <strong>of</strong> full scientific certa<strong>in</strong>ty is not<br />

used as a reason for postpon<strong>in</strong>g actions <strong>to</strong> address “threats <strong>of</strong> serious or irreversible damage” (United<br />

Nations, 1992).<br />

Two additional concerns with <strong>the</strong> conventional approaches <strong>of</strong> CBA and RBA are <strong>the</strong> frequent<br />

lack <strong>of</strong> transparency <strong>of</strong> value-based and empirical assumptions, and <strong>the</strong> limited <strong>in</strong>volvement <strong>of</strong><br />

stakeholders <strong>in</strong> def<strong>in</strong><strong>in</strong>g evaluation criteria and methods (Toman, 2006). While lack <strong>of</strong> transparency is<br />

not <strong>in</strong>herent <strong>to</strong> <strong>the</strong> methods <strong>the</strong>mselves, because <strong>of</strong> <strong>the</strong> technical nature <strong>of</strong> <strong>the</strong>se analyses, many explicit<br />

8


and implicit assumptions are not always made known <strong>to</strong>, much less validated with, parties who have a<br />

stake <strong>in</strong> <strong>the</strong> outcomes.<br />

Adaptive Management and Scenario Analysis<br />

Adaptive management and scenario analysis <strong>of</strong>fer alternatives <strong>to</strong> conventional approaches for<br />

assess<strong>in</strong>g strategies for mitigat<strong>in</strong>g coastal hazards that can contend with <strong>the</strong> <strong>in</strong>determ<strong>in</strong>ate uncerta<strong>in</strong>ties <strong>of</strong><br />

climate change while avoid<strong>in</strong>g <strong>the</strong> over-simplification <strong>of</strong> resort<strong>in</strong>g <strong>to</strong> heuristics. They also can facilitate<br />

transparency and stakeholder <strong>in</strong>volvement <strong>in</strong> <strong>the</strong> selection and implementation <strong>of</strong> actions. They can be<br />

applied separately or used <strong>to</strong>ge<strong>the</strong>r <strong>to</strong> maximize <strong>the</strong> resilience <strong>of</strong> <strong>the</strong> chosen adaptive strategies.<br />

Adaptive Management<br />

When uncerta<strong>in</strong>ty is high and <strong>the</strong> future is unpredictable, a system’s adaptability becomes<br />

paramount <strong>to</strong> its resilience. Adaptive management <strong>of</strong>fers an approach <strong>to</strong> both adjust <strong>to</strong> and resolve<br />

uncerta<strong>in</strong>ty. The classic approach, first described by Holl<strong>in</strong>g (1978), <strong>of</strong>fers <strong>the</strong> means <strong>to</strong> <strong>in</strong>form iterative<br />

management decisions us<strong>in</strong>g an experimental, hypo<strong>the</strong>sis-test<strong>in</strong>g approach <strong>in</strong> which management actions<br />

are taken on <strong>the</strong> landscape, results are moni<strong>to</strong>red and analyzed, <strong>in</strong>formation is fed back <strong>in</strong><strong>to</strong> <strong>the</strong> plann<strong>in</strong>g<br />

process and management strategies are altered <strong>to</strong> account for a revised understand<strong>in</strong>g <strong>of</strong> ecological<br />

dynamics (Anderson et al., 2003; Holl<strong>in</strong>g, 1978; Lee, 1993). While <strong>the</strong> practice <strong>of</strong> moni<strong>to</strong>r<strong>in</strong>g project<br />

implementation and mak<strong>in</strong>g adjustments, so-called “passive” adaptive management (Anderson et al.,<br />

2003; NRC, 2004), is not new (see for example Hill, 1968), this explicitly experimental, “active” form <strong>of</strong><br />

adaptive management (Anderson, et al., 2003; NRC, 2004; Pahl-Wostl et al., 2007) was a departure from<br />

an emphasis on identify<strong>in</strong>g <strong>the</strong> best alternative and attempt<strong>in</strong>g <strong>to</strong> implement it as successfully as possible.<br />

Active adaptive management assumes that <strong>the</strong> pr<strong>in</strong>cipal uncerta<strong>in</strong>ties <strong>to</strong> be resolved concern how<br />

<strong>the</strong> system will react <strong>to</strong> management <strong>in</strong>terventions. <strong>Climate</strong> change, however, presents coastal planners<br />

and managers with uncerta<strong>in</strong>ties about <strong>the</strong> future trends <strong>of</strong> external drivers that affect <strong>the</strong> systems with<br />

9


which <strong>the</strong>y are concerned as well as <strong>the</strong> very social systems for which <strong>the</strong>y are try<strong>in</strong>g <strong>to</strong> enhance<br />

resilience. Changes <strong>in</strong> <strong>the</strong> rate <strong>of</strong> sea level rise or <strong>the</strong> <strong>in</strong>tensity <strong>of</strong> tropical cyclones may <strong>in</strong>fluence how<br />

effective management <strong>in</strong>terventions are over time and even render some <strong>in</strong>feasible or untenable. But<br />

<strong>the</strong>se uncerta<strong>in</strong>ties cannot be resolved through experimentation. Thus <strong>the</strong> less scientifically rigorous,<br />

passive adaptive management approach is <strong>the</strong> more practical. Ra<strong>the</strong>r than adjust <strong>the</strong>ir management<br />

strategies as <strong>the</strong>y experiment with different <strong>in</strong>terventions, coastal planners and managers will need <strong>to</strong><br />

maximize <strong>the</strong>ir options for adjust<strong>in</strong>g strategies as <strong>the</strong>y ga<strong>in</strong> better understand<strong>in</strong>g <strong>of</strong> how <strong>the</strong> external<br />

drivers are chang<strong>in</strong>g and how <strong>the</strong> vulnerabilities <strong>of</strong> <strong>the</strong> social-ecological systems with which <strong>the</strong>y are<br />

concerned are be<strong>in</strong>g affected (Adger et al., 2005; Folke, 2006; Walker et al., 2004).<br />

Toward that end, scholars have advocated use <strong>of</strong> two criteria for assess<strong>in</strong>g <strong>the</strong> adaptive capacity<br />

<strong>of</strong> climate change responses: flexibility and robustness (Adger & V<strong>in</strong>cent, 2005, p. 402; Fankhauser et<br />

al., 1999, pp. 72-73; NRC, 2004, p. 20; Pahl-Wostl et al., 2007, p. 33; Quay, 2010). Fankhauser et al.<br />

(1999) def<strong>in</strong>e flexibility <strong>in</strong> terms <strong>of</strong> “accelerated capital turnover,” i.e. capital projects with relatively<br />

rapid depreciation and short design lives. Viewed more broadly, flexible adaptive responses are<br />

susceptible <strong>to</strong> adjustment over time as planners and managers ga<strong>in</strong> knowledge that helps <strong>to</strong> resolve<br />

uncerta<strong>in</strong>ty about systems and <strong>the</strong>ir drivers and as <strong>the</strong>y contend with chang<strong>in</strong>g perceptions and priorities<br />

<strong>of</strong> stakeholders. Quay (2010, p. 499), cit<strong>in</strong>g Hallegatte (2009) and Easterl<strong>in</strong>g et al. (2004), suggests<br />

“creat<strong>in</strong>g flexible actions that can be broken <strong>in</strong><strong>to</strong> modules and implemented as needed as <strong>the</strong> future<br />

unfolds.” Costs can <strong>the</strong>n be distributed across time and losses m<strong>in</strong>imized <strong>in</strong> <strong>the</strong> event that certa<strong>in</strong><br />

<strong>in</strong>vestments are no longer needed. Selection <strong>of</strong> flexible measures <strong>in</strong> an adaptive management process can<br />

also help <strong>to</strong> m<strong>in</strong>imize “decision-mak<strong>in</strong>g gridlock” by mak<strong>in</strong>g it clear that decisions are provisional, that<br />

<strong>the</strong>re is . . . no “right” or “wrong” decision, and that modifications are [possible and] expected” (NRC,<br />

2004, p. 20). Robust actions are those that are capable <strong>of</strong> rema<strong>in</strong><strong>in</strong>g effective over a range <strong>of</strong> possible<br />

10


system changes or multiple futures (Fankhauser et al., 2009; Pahl-Wostl et al., 2007; Quay, 2010). Such<br />

actions have <strong>the</strong> potential <strong>to</strong> achieve desired outcomes <strong>in</strong> various scenarios which fur<strong>the</strong>r legitimizes<br />

<strong>in</strong>vestment <strong>in</strong> <strong>the</strong>se strategies.<br />

Scenario Analysis<br />

Scenario analysis ii<br />

provides a way <strong>to</strong> assess <strong>the</strong> robustness <strong>of</strong> adaptive response alternatives as<br />

well as a means for engag<strong>in</strong>g stakeholders <strong>in</strong> <strong>the</strong> process <strong>of</strong> identify<strong>in</strong>g and analyz<strong>in</strong>g those alternatives.<br />

It <strong>in</strong>volves def<strong>in</strong><strong>in</strong>g an array <strong>of</strong> possible future states <strong>of</strong> <strong>the</strong> world that, <strong>in</strong> <strong>the</strong> absence <strong>of</strong> <strong>in</strong>terventions,<br />

represent “alternative plausible comb<strong>in</strong>ations <strong>of</strong> <strong>the</strong> values <strong>of</strong> <strong>the</strong> key uncerta<strong>in</strong>ties” (USACE, 2011, p.<br />

88). This process seeks <strong>to</strong> characterize multiple plausible futures that might unfold <strong>in</strong> response <strong>to</strong><br />

foreseeable trends and/or disturbances over time and assess<strong>in</strong>g each alternative aga<strong>in</strong>st each scenario.<br />

Planners can use <strong>the</strong> scenario development process as an opportunity <strong>to</strong> engage stakeholders <strong>in</strong><br />

collaboratively learn<strong>in</strong>g about <strong>the</strong> uncerta<strong>in</strong>ties <strong>the</strong> community faces and <strong>the</strong> vulnerabilities for which<br />

<strong>the</strong>y want <strong>to</strong> plan (Yoe, 2004, p. 4-1). How far <strong>in</strong><strong>to</strong> <strong>the</strong> future should we look when assess<strong>in</strong>g land use<br />

and <strong>in</strong>frastructure <strong>in</strong>vestment policies that will commit us <strong>to</strong> 50 <strong>to</strong> 100 years or more <strong>of</strong> urban<br />

development <strong>in</strong> areas that may become progressively more exposed <strong>to</strong> coastal hazards? What sea level<br />

rise scenarios should we consider at what po<strong>in</strong>ts <strong>in</strong> time across that plann<strong>in</strong>g horizon? For what tropical<br />

s<strong>to</strong>rm <strong>in</strong>tensities should we assess future vulnerabilities and <strong>the</strong> effects <strong>of</strong> alternative adaptive strategies<br />

on mitigat<strong>in</strong>g those vulnerabilities?<br />

Once planners and stakeholders have specified <strong>the</strong> scenarios aga<strong>in</strong>st which <strong>the</strong>y wish <strong>to</strong> test <strong>the</strong>ir<br />

adaptive response alternatives, robustness can be def<strong>in</strong>ed as <strong>the</strong> extent <strong>to</strong> which an alternative performs<br />

satisfac<strong>to</strong>rily across <strong>the</strong> array <strong>of</strong> plausible future conditions (Yoe, 2004, p. 3-1). Planners and<br />

stakeholders can apply this criterion, along with adaptive flexibility, <strong>to</strong> identify those coastal hazard<br />

11


mitigation alternatives that are likely <strong>to</strong> maximize <strong>the</strong> community’s capacity <strong>to</strong> adapt as future climate<br />

conditions and <strong>the</strong>ir effects are manifest.<br />

Structur<strong>in</strong>g uncerta<strong>in</strong>ty with a goals achievement matrix<br />

Hill (1968) presents <strong>the</strong> goals achievement matrix (GAM) as a <strong>to</strong>ol for structur<strong>in</strong>g complex<br />

decisions where <strong>the</strong> decision maker wishes <strong>to</strong> apply multiple, non-commensurable evaluation criteria. He<br />

advocates us<strong>in</strong>g <strong>the</strong> GAM as a means <strong>to</strong> contend with <strong>the</strong> exclusion <strong>of</strong> non-market commodities <strong>in</strong><br />

conventional cost-benefit analysis and with <strong>the</strong> practice <strong>of</strong> rely<strong>in</strong>g predom<strong>in</strong>antly or exclusively on<br />

economic efficiency as <strong>the</strong> basis for evaluat<strong>in</strong>g public sec<strong>to</strong>r policy and program alternatives. The GAM<br />

provides transparency about underly<strong>in</strong>g goals and <strong>the</strong>ir importance and can accommodate various levels<br />

<strong>of</strong> analytic sophistication. For example, Hill illustrates how it can be used <strong>to</strong> tally <strong>the</strong> distribution <strong>of</strong> costs<br />

and benefits for different stakeholder groups ra<strong>the</strong>r than simply calculat<strong>in</strong>g aggregate social welfare.<br />

In a fully-specified GAM, <strong>the</strong> planner quantifies goal atta<strong>in</strong>ment by <strong>in</strong>dividual alternatives us<strong>in</strong>g<br />

<strong>the</strong> specific scale and unit <strong>of</strong> measurement for each goal. The planner may attach weights <strong>to</strong> each goal<br />

and stakeholder group. While such a structure facilitates transparency about goals, evaluation<br />

dimensions, affected stakeholders, and <strong>the</strong> weights ascribed <strong>to</strong> each, it does not readily resolve <strong>the</strong><br />

challenge <strong>of</strong> decid<strong>in</strong>g which alternative is best when goals are measured on non-commensurable scales.<br />

An alternative suggested by Hill is <strong>to</strong> convert <strong>the</strong> scales for all goals <strong>to</strong> a common, unit-less, ord<strong>in</strong>al<br />

scale, e.g. from +3 <strong>to</strong> – 3. Do<strong>in</strong>g so permits calculation <strong>of</strong> a weighted sums score for each alternative,<br />

thus simplify<strong>in</strong>g <strong>the</strong> comparison <strong>of</strong> alternatives.<br />

Use <strong>of</strong> a fully-specified GAM can be complicated and resource <strong>in</strong>tensive. Planners can substitute<br />

ord<strong>in</strong>al measures <strong>of</strong> costs and benefits for more formal cost-benefit analysis which may be advantageous<br />

for smaller communities that lack <strong>the</strong> <strong>in</strong>-house expertise for do<strong>in</strong>g such analyses and <strong>the</strong> fiscal resources<br />

<strong>to</strong> hire consultants <strong>to</strong> do so for <strong>the</strong>m. This approach also permits straightforward sensitivity analyses <strong>in</strong><br />

12


which <strong>the</strong> decision maker can assess <strong>the</strong> effects <strong>of</strong> alternative weights for <strong>in</strong>dividual goals and/or<br />

stakeholders.<br />

Coastal planners can use <strong>the</strong> GAM <strong>in</strong> several ways <strong>to</strong> assess <strong>the</strong> adaptive capacity <strong>of</strong> alternatives<br />

for manag<strong>in</strong>g <strong>the</strong> uncerta<strong>in</strong> effects <strong>of</strong> climate change on coastal hazards. They can <strong>in</strong>clude flexibility <strong>of</strong><br />

<strong>the</strong> strategy itself, and <strong>the</strong> result<strong>in</strong>g coastal development that it supports, as a goal <strong>in</strong> <strong>the</strong> matrix. They can<br />

operationalize flexibility <strong>of</strong> <strong>the</strong> strategy <strong>in</strong> terms <strong>of</strong> short economic and/or design life (Fankhauser et al.,<br />

1999) or more broadly as <strong>the</strong> ability <strong>to</strong> adjust <strong>the</strong> <strong>in</strong>tervention <strong>to</strong> accommodate chang<strong>in</strong>g conditions.<br />

Planners also can <strong>in</strong>clude a goal <strong>to</strong> m<strong>in</strong>imize <strong>in</strong>terference with au<strong>to</strong>nomous adaptation by coastal<br />

ecosystems. They can evaluate <strong>the</strong> robustness <strong>of</strong> alternative strategies by construct<strong>in</strong>g GAMs for two or<br />

more climate change scenarios.<br />

Assess<strong>in</strong>g alternative responses <strong>to</strong> climate change impacts on coastal hazards<br />

In this section, we demonstrate how a GAM could be used for assess<strong>in</strong>g a selection <strong>of</strong> alternative<br />

strategies for mitigat<strong>in</strong>g acute and chronic erosion, s<strong>to</strong>rm surge flood<strong>in</strong>g, and wave damage from coastal<br />

s<strong>to</strong>rms while account<strong>in</strong>g for <strong>the</strong> uncerta<strong>in</strong>ties <strong>of</strong> climate change impacts on rates <strong>of</strong> sea level rise and<br />

<strong>in</strong>tensity <strong>of</strong> tropical cyclones. We def<strong>in</strong>e a set <strong>of</strong> goals that could be used <strong>to</strong> assess those alternatives, and<br />

we describe a coastal shorel<strong>in</strong>e typology that can be used <strong>to</strong> set weights for <strong>the</strong> goals that reflect local<br />

conditions. We simplify <strong>the</strong> method for this demonstration by not analyz<strong>in</strong>g costs and benefits for<br />

different types <strong>of</strong> stakeholders.<br />

Table 1 briefly describes a limited set <strong>of</strong> common strategies for mitigat<strong>in</strong>g damages from coastal<br />

erosion, s<strong>to</strong>rm surge flood<strong>in</strong>g, and waves, plus a strategy specifically designed <strong>to</strong> accommodate<br />

accelerat<strong>in</strong>g sea level rise, roll<strong>in</strong>g easements. We have classified <strong>the</strong>se strategies <strong>in</strong><strong>to</strong> three categories <strong>of</strong><br />

adaptive response <strong>to</strong> sea level rise generally follow<strong>in</strong>g Dronkers et al. (1990): protect, accommodate, and<br />

13


avoid/retreat. While a number <strong>of</strong> o<strong>the</strong>r strategies can be considered (see for example Titus & Craghan,<br />

2009; van Raalten et al., 2010), this abbreviated set suffices for our demonstration.<br />

[Table 1 about here]<br />

Draw<strong>in</strong>g from <strong>the</strong> criteria that an array <strong>of</strong> scholars and practitioners have used <strong>to</strong> assess climate<br />

change adaptation and hazard mitigation alternatives (Fankhauser et al., 1999; Godschalk et al., 1998;<br />

Hill, 1968; Smith, 1997; Titus & Neumann, 2009; USACE, 2011), we apply eight goals for evaluat<strong>in</strong>g<br />

<strong>the</strong>se strategies:<br />

1. M<strong>in</strong>imize risk <strong>to</strong> human development<br />

2. M<strong>in</strong>imize public sec<strong>to</strong>r capital and operat<strong>in</strong>g costs<br />

3. M<strong>in</strong>imize opportunity costs <strong>of</strong> regulation<br />

4. M<strong>in</strong>imize <strong>in</strong>terference with ecological adaptation<br />

5. Maximize flexibility <strong>to</strong> adapt as conditions change and new knowledge is ga<strong>in</strong>ed<br />

6. M<strong>in</strong>imize legal challenges, i.e. account for federal and state constitutional and state statu<strong>to</strong>ry<br />

constra<strong>in</strong>ts<br />

7. Maximize political feasibility viz-a-viz costs, property rights, etc.<br />

8. Mitigate environmental stresses <strong>in</strong>clud<strong>in</strong>g climate change.<br />

Several authors suggest relatively simple typologies for assess<strong>in</strong>g <strong>the</strong> suitability <strong>of</strong> different adaptive<br />

response strategies for sea level rise. Titus et al. (2009) apply a heuristic based on exist<strong>in</strong>g and planned<br />

development <strong>in</strong>tensity <strong>to</strong> prioritize <strong>the</strong> alternative responses <strong>of</strong> protection or retreat. They posit that<br />

communities are more likely <strong>to</strong> opt for protection aga<strong>in</strong>st sea level rise as <strong>the</strong> mix <strong>of</strong> exist<strong>in</strong>g and planned<br />

land use shifts from areas dedicated <strong>to</strong> conservation and “vacant” land (e.g. agriculture or forestry) <strong>to</strong><br />

higher levels <strong>of</strong> development <strong>in</strong>tensity. Van Raalten et al. (2009) follow a similar approach <strong>in</strong> which <strong>the</strong>y<br />

reduce <strong>the</strong> adaptive response decision framework <strong>to</strong> a four-cell “Strategy Development Method” matrix<br />

14


ased on two primary values ascribed <strong>to</strong> a specific geographic area: (1) economic importance and<br />

<strong>in</strong>tensity <strong>of</strong> exist<strong>in</strong>g development (high/low) and (2) natural hydrological and ecosystem dynamics (highnatural/low-altered).<br />

We use a shorel<strong>in</strong>e typology framework <strong>in</strong>formed by <strong>the</strong>se two approaches <strong>to</strong> illustrate how goal<br />

weights can be def<strong>in</strong>ed <strong>to</strong> reflect local conditions (see Table 2). Table 3 shows how weights on a 100-<br />

po<strong>in</strong>t scale might be assigned <strong>to</strong> reflect those conditions and <strong>the</strong> priorities <strong>of</strong> stakeholders <strong>in</strong>volved <strong>in</strong><br />

formulat<strong>in</strong>g <strong>the</strong> GAM.<br />

[Table 2 about here]<br />

[Table 3 about here]<br />

Tables 4 and 5 illustrate how <strong>the</strong> weighted goals achievement matrix might be applied <strong>to</strong> a beachdune<br />

coastal system on <strong>the</strong> Gulf <strong>of</strong> Mexico or Atlantic Ocean. We scored each adaptive response strategy<br />

based on our knowledge <strong>of</strong> <strong>the</strong>se systems and pert<strong>in</strong>ent literature (see for example, Titus & Craghan<br />

(2009)). The scores can be adjusted as new knowledge becomes available, but <strong>the</strong>y should be held<br />

constant across shorel<strong>in</strong>e types. Table 4 illustrates <strong>the</strong> aggregate scores for each strategy with uniform<br />

weights for each goal. We calculated <strong>the</strong> Table 4 scores by summ<strong>in</strong>g <strong>the</strong> weighted rat<strong>in</strong>gs for each<br />

strategy. Table 5 shows how those scores would change with <strong>the</strong> alternative goal weights for <strong>the</strong> different<br />

shorel<strong>in</strong>e types shown <strong>in</strong> Table 3. The scores for <strong>in</strong>dividual strategies vary significantly among <strong>the</strong><br />

shorel<strong>in</strong>e types. This illustrates both <strong>the</strong> sensitivity <strong>of</strong> <strong>the</strong> framework <strong>to</strong> <strong>the</strong> goal weights and <strong>the</strong><br />

importance <strong>of</strong> devis<strong>in</strong>g decision frameworks that are sensitive <strong>to</strong> variations <strong>in</strong> shorel<strong>in</strong>e vulnerability,<br />

urban value, and natural system value. In <strong>the</strong> follow<strong>in</strong>g paragraphs we illustrate <strong>the</strong> manner <strong>in</strong> which<br />

stakeholders might score <strong>the</strong> two protection alternatives: shore armor<strong>in</strong>g and beach nourishment.<br />

[Tables 4 and 5 about here]<br />

15


We rate hard-eng<strong>in</strong>eered structures, such as shore armor<strong>in</strong>g (see generally Nordstrom 2000)<br />

highly for m<strong>in</strong>imiz<strong>in</strong>g risk <strong>to</strong> human development because <strong>the</strong>y can be designed <strong>to</strong> withstand high waves<br />

and s<strong>to</strong>rm surges. They are, however, very expensive <strong>to</strong> construct (Beever et al., 2009) and will<br />

eventually <strong>in</strong>cur costs for repair and/or replacement due <strong>to</strong> advanc<strong>in</strong>g shore erosion and reduced<br />

effectiveness as sea level rises. Shore armor<strong>in</strong>g m<strong>in</strong>imizes opportunity costs <strong>of</strong> regulation by allow<strong>in</strong>g<br />

development <strong>of</strong> vulnerable lands for some periods <strong>of</strong> time. Shore armor<strong>in</strong>g can prevent landward<br />

migration <strong>of</strong> beach and dune systems and/or coastal wetlands as sea level rises and can exacerbate<br />

erosion both <strong>in</strong> front <strong>of</strong> and adjacent <strong>to</strong> <strong>the</strong> structure. These structures <strong>the</strong>refore <strong>in</strong>crease environmental<br />

stress and present impediments <strong>to</strong> au<strong>to</strong>nomous landward migration <strong>of</strong> beach-dune ecosystems. The sunk<br />

capital costs <strong>in</strong> hard eng<strong>in</strong>eered structures, coupled with design lives <strong>of</strong> 50 years (ASCE, 2011), limit<br />

flexibility <strong>to</strong> adapt as better knowledge is ga<strong>in</strong>ed about future trends <strong>in</strong> sea level rise and tropical cyclone<br />

<strong>in</strong>tensity. Political opposition and legal challenges are likely m<strong>in</strong>imal except where environmental<br />

advocates oppose shore armor<strong>in</strong>g or where <strong>the</strong> structures will adversely affect neighbor<strong>in</strong>g properties.<br />

“S<strong>of</strong>t” eng<strong>in</strong>eered approaches such as beach nourishment <strong>of</strong>ten provide lower design levels <strong>of</strong><br />

protection, may have lower capital costs, with fewer direct adverse impacts on natural systems and<br />

greater long-term flexibility for both natural and human systems <strong>to</strong> adapt <strong>to</strong> chang<strong>in</strong>g tropical cyclone<br />

<strong>in</strong>tensity as well as sea level rise and chang<strong>in</strong>g shorel<strong>in</strong>es (see generally National Research Council,<br />

1995). Beach nourishment benefits can be short-lived if a project area is hit by a severe s<strong>to</strong>rm, potentially<br />

requir<strong>in</strong>g expensive subsequent renourishment. None<strong>the</strong>less, nourishment is <strong>of</strong>ten sought because it helps<br />

preserve <strong>the</strong> recreation, <strong>to</strong>urism, and ecosystem values <strong>of</strong> <strong>the</strong> beach. Beach nourishment has his<strong>to</strong>rically<br />

been viewed favorably by property owners and <strong>the</strong> public and thus has experienced little political<br />

opposition and few legal challenges. While property owners recently challenged <strong>the</strong> constitutionality <strong>of</strong><br />

16


publicly-funded beach nourishment <strong>in</strong> Florida (S<strong>to</strong>p <strong>the</strong> Beach Renourishment, Inc. v. Florida<br />

Department <strong>of</strong> Environmental Protection, 130 S. Ct. 2592 (2010)), <strong>the</strong> state prevailed.<br />

To assess <strong>the</strong> robustness <strong>of</strong> different adaptive response strategies, one could evaluate <strong>the</strong>ir<br />

performance for some comb<strong>in</strong>ation <strong>of</strong> possible sea level rise scenarios coupled with s<strong>to</strong>rm surge<br />

associated with tropical cyclones <strong>of</strong> different <strong>in</strong>tensities. A number <strong>of</strong> scholars and practitioners have<br />

def<strong>in</strong>ed 1.0 meter <strong>of</strong> sea level rise relative <strong>to</strong> 1990 by 2100 as a plausible adaptive response scenario (see<br />

for example Miami-Dade County <strong>Climate</strong> Change Task Force, 2008; Mitchum, 2010; Pfeffer et al., 2008;<br />

Vermeer & Rahms<strong>to</strong>rf, 2009). Several scientists have def<strong>in</strong>ed an upper bound by 2100 on <strong>the</strong> order <strong>of</strong> 2.0<br />

meters (Pfeffer et al., 2008; Vermeer & Rahms<strong>to</strong>rf, 2009), while Hansen (2007) <strong>in</strong>dicates that with a tenyear<br />

doubl<strong>in</strong>g acceleration rate, sea level could reach 5.0 meters by 2100. Intermediate scenarios might<br />

be set at 0.5 meter and 1.0 meter by 2050. To <strong>in</strong>corporate <strong>the</strong> effects <strong>of</strong> tropical cyclone <strong>in</strong>tensity, one<br />

could construct scenarios us<strong>in</strong>g a category 2 or category 4 hurricane with <strong>the</strong> different sea level rise<br />

scenarios.<br />

Adaptive use <strong>of</strong> goals achievement matrices<br />

The GAM as we have described it provides a decision support <strong>to</strong>ol that can be employed by a<br />

resource- constra<strong>in</strong>ed community <strong>in</strong> order <strong>to</strong> take action <strong>in</strong> <strong>the</strong> face <strong>of</strong> uncerta<strong>in</strong>ty. In this section, we<br />

argue that <strong>the</strong> GAM must not only <strong>in</strong>corporate measures <strong>of</strong> adaptation, but also must be used <strong>in</strong> a way<br />

that engenders greater adaptive capacity for <strong>the</strong> community through ongo<strong>in</strong>g learn<strong>in</strong>g and adaptation <strong>of</strong><br />

<strong>the</strong> <strong>to</strong>ol itself.<br />

Whatever decision mak<strong>in</strong>g process is used <strong>in</strong> resource-constra<strong>in</strong>ed coastal communities, plann<strong>in</strong>g<br />

for complex dynamic systems when faced with uncerta<strong>in</strong>ty requires learn<strong>in</strong>g and feedback (Diduck,<br />

2010; Pahl-Wostl, 2007). As <strong>in</strong>ternal or external system conditions change, planners and managers need<br />

<strong>to</strong> have <strong>the</strong> ability <strong>to</strong> assess <strong>the</strong> changes, take <strong>in</strong><strong>to</strong> account new conditions and new <strong>in</strong>formation, and alter<br />

17


management strategies <strong>to</strong> reflect those changes. There are several sources <strong>of</strong> new <strong>in</strong>formation that should<br />

be reflected <strong>in</strong> adaptive use <strong>of</strong> <strong>the</strong> GAM. First, new <strong>in</strong>formation can be obta<strong>in</strong>ed from experience by<br />

moni<strong>to</strong>r<strong>in</strong>g <strong>the</strong> effectiveness <strong>of</strong> <strong>the</strong> implemented strategy. Second, <strong>in</strong>formation can be shared with o<strong>the</strong>r<br />

communities that are attempt<strong>in</strong>g <strong>to</strong> adapt <strong>to</strong> <strong>the</strong> same environmental change phenomena and that have<br />

similar coastal hazard vulnerabilities. Third, ongo<strong>in</strong>g scientific research may reveal new knowledge about<br />

<strong>the</strong> underly<strong>in</strong>g environmental change phenomena which may reduce (or <strong>in</strong>crease) uncerta<strong>in</strong>ty about<br />

future change, associated impacts, and <strong>the</strong> likely effectiveness <strong>of</strong> strategies be<strong>in</strong>g implemented. In<br />

addition, stakeholder perceptions may shift <strong>in</strong> response <strong>to</strong> new understand<strong>in</strong>gs <strong>of</strong> environmental change<br />

phenomena, <strong>the</strong> onset <strong>of</strong> disruptions <strong>to</strong> <strong>the</strong> community’s social-ecological system (e.g. from a natural<br />

disaster or a socio-economic crisis such as a national or global recession), or changes <strong>in</strong> values that<br />

accompany demographic shifts <strong>in</strong> <strong>the</strong> community. These changes <strong>in</strong> perceptions or values may alter how<br />

new <strong>in</strong>formation is <strong>in</strong>terpreted and applied.<br />

Coastal planners and stakeholders may choose <strong>to</strong> reassess and revise elements <strong>of</strong> <strong>the</strong> GAM <strong>to</strong><br />

reflect what <strong>the</strong>y have learned and <strong>to</strong> <strong>in</strong>corporate new perspectives about <strong>the</strong> challenges <strong>to</strong> community<br />

resiliency and <strong>the</strong> suitability <strong>of</strong> different management alternatives. For example, <strong>the</strong> community learns<br />

that enhanced models <strong>of</strong> ice sheet model<strong>in</strong>g now <strong>in</strong>dicate that sea level rise is more likely <strong>to</strong> reach 1<br />

meter above 1990 levels by 2050 ra<strong>the</strong>r than 0.5 meter and that <strong>the</strong> rate is doubl<strong>in</strong>g every 10 years. This<br />

means that erosion-based setbacks, sea walls, beach renourishment projects, and elevation standards will<br />

provide considerably less protection than anticipated over <strong>the</strong> next 40 years. It also means that such<br />

measures will need <strong>to</strong> <strong>in</strong>corporate greater marg<strong>in</strong>s <strong>of</strong> safety or risk becom<strong>in</strong>g obsolete before <strong>the</strong>y are<br />

fully depreciated. Coastal planners and stakeholders may want <strong>to</strong> reassess <strong>the</strong>ir risk averseness, i.e. how<br />

will<strong>in</strong>g <strong>the</strong>y are <strong>to</strong> risk under- or over-adaptation, and <strong>in</strong> that light, <strong>to</strong> reconsider <strong>the</strong>ir options for<br />

18


mitigat<strong>in</strong>g coastal hazards as climate change cont<strong>in</strong>ues <strong>to</strong> alter <strong>the</strong> environment for which <strong>the</strong>y are<br />

plann<strong>in</strong>g.<br />

Adaptive governance for learn<strong>in</strong>g<br />

Tools for decision-mak<strong>in</strong>g about mitigat<strong>in</strong>g vulnerability and enhanc<strong>in</strong>g resilience <strong>in</strong> <strong>the</strong> face <strong>of</strong><br />

uncerta<strong>in</strong>ty are most effective when deployed through a collaborative process that engenders social<br />

learn<strong>in</strong>g and fosters social capital through networks <strong>to</strong> build adaptive capacity <strong>in</strong> <strong>the</strong> system (Adger &<br />

V<strong>in</strong>cent, 2005; Boyd & Folke, 2011). Thus, coastal communities will need <strong>to</strong> develop an adaptive<br />

governance approach for plann<strong>in</strong>g <strong>in</strong> <strong>the</strong> face <strong>of</strong> uncerta<strong>in</strong>ty, <strong>to</strong> enable learn<strong>in</strong>g and <strong>to</strong> build a greater<br />

capacity <strong>to</strong> act on what has been learned <strong>in</strong> <strong>the</strong>ir management efforts. In <strong>the</strong> sections that follow, we<br />

describe how communities can <strong>in</strong>corporate <strong>the</strong> GAM <strong>in</strong> an adaptive governance process<br />

Knowledge and social learn<strong>in</strong>g<br />

Sort<strong>in</strong>g through relevant knowledge and <strong>in</strong>formation <strong>to</strong> assess alternative adaptive strategies is a<br />

core component <strong>of</strong> <strong>the</strong> process <strong>of</strong> us<strong>in</strong>g a GAM <strong>to</strong> structure <strong>in</strong>itial decision mak<strong>in</strong>g and <strong>to</strong> successfully<br />

adapt<strong>in</strong>g management strategies over time as conditions, social values, and perspectives change.<br />

Knowledge and <strong>in</strong>formation will arise from diverse sources, be <strong>in</strong>complete, and will be a source <strong>of</strong><br />

uncerta<strong>in</strong>ty un<strong>to</strong> itself. Fur<strong>the</strong>rmore, coastal communities will be constantly challenged <strong>to</strong> stay abreast <strong>of</strong><br />

<strong>the</strong> rapid advances be<strong>in</strong>g made <strong>in</strong> climate change science.<br />

Jo<strong>in</strong>t-fact f<strong>in</strong>d<strong>in</strong>g can be an effective way for communities <strong>to</strong> engage <strong>in</strong> adaptive learn<strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

face <strong>of</strong> uncerta<strong>in</strong>ty. Participants, function<strong>in</strong>g as a “community <strong>of</strong> <strong>in</strong>quiry,” seek new <strong>in</strong>formation, sort<br />

through and test it, and educate <strong>the</strong>mselves <strong>to</strong> build a common new understand<strong>in</strong>g about <strong>the</strong> plann<strong>in</strong>g<br />

challenges <strong>the</strong>y face context (Innes & Booher, 2010; Karl, Sussk<strong>in</strong>d, & Wallace, 2007). Scientists and<br />

o<strong>the</strong>r experts can play an important role by <strong>in</strong>form<strong>in</strong>g community understand<strong>in</strong>g based on research and<br />

explicit knowledge. Planners can help <strong>to</strong> translate complex scientific <strong>in</strong>formation <strong>in</strong><strong>to</strong> lay terms and work<br />

19


with stakeholders <strong>to</strong> construct common understand<strong>in</strong>g by apply<strong>in</strong>g new knowledge and <strong>in</strong>formation <strong>to</strong><br />

local context and <strong>the</strong>ir experiences <strong>in</strong> situ. Jo<strong>in</strong>t-fact f<strong>in</strong>d<strong>in</strong>g can help communities uncover “truth” as<br />

“deeply embedded <strong>in</strong> context, a time and a place” not simply by reveal<strong>in</strong>g facts, but by explor<strong>in</strong>g<br />

“relationships, causes, and predictions” (Innes & Booher, 2010, p. 160).<br />

Participation <strong>of</strong> diverse stakeholders<br />

No <strong>in</strong>dividual or organization will be able <strong>to</strong> ga<strong>the</strong>r, comprehend, and apply all <strong>of</strong> <strong>the</strong> relevant<br />

<strong>in</strong>formation about <strong>the</strong> complex layers <strong>of</strong> <strong>the</strong> coastal social-ecological system <strong>in</strong> a context <strong>of</strong> high levels <strong>of</strong><br />

uncerta<strong>in</strong>ty about external climate drivers and <strong>the</strong>ir effects (Innes, 1996; Innes & Booher, 2010). Jo<strong>in</strong>t<br />

fact-f<strong>in</strong>d<strong>in</strong>g will most effectively foster social learn<strong>in</strong>g for iterative climate change adaptation when<br />

coastal planners engage experts from multiple discipl<strong>in</strong>es and organizations, as well as lay and political<br />

participants, <strong>in</strong> open communication <strong>to</strong> generate knowledge about facts, values, problems, and<br />

opportunities; areas <strong>of</strong> agreement and disagreement; alternative actions; and possibilities for work<strong>in</strong>g<br />

<strong>to</strong>ge<strong>the</strong>r (Diduck 2010; Pahl-Wostl et al., 2007; Schusler et al., 2003, p. 317; Toman, 2006, p. 375).<br />

<strong>Climate</strong> change and its associated impacts on coastal hazards will affect a wide array <strong>of</strong><br />

<strong>in</strong>dividuals and organizations <strong>in</strong>clud<strong>in</strong>g landowners, government agents, bus<strong>in</strong>ess owners, <strong>to</strong>urists,<br />

seasonal visi<strong>to</strong>rs, etc. Participation <strong>of</strong> <strong>the</strong>se diverse parties <strong>in</strong> decid<strong>in</strong>g how <strong>to</strong> adapt, with <strong>the</strong>ir multiple<br />

<strong>in</strong>terests, perspectives, values, and ways <strong>of</strong> understand<strong>in</strong>g <strong>the</strong> world, will foster greater opportunities for<br />

learn<strong>in</strong>g and creativity (Innes & Booher 2010, Schusler et al., 2003; Walker & Salt, 2006). Coastal<br />

planners should engage an equally wide array <strong>of</strong> empirical observers, <strong>in</strong>clud<strong>in</strong>g knowledgeable locals as<br />

well as experts, environmentalists, advocates <strong>of</strong> social equity, land use pr<strong>of</strong>essionals, etc., <strong>to</strong> <strong>in</strong>form<br />

efforts <strong>to</strong> adapt <strong>to</strong> <strong>the</strong>se changes.<br />

20


Moni<strong>to</strong>r<strong>in</strong>g and cont<strong>in</strong>uous learn<strong>in</strong>g<br />

Ongo<strong>in</strong>g moni<strong>to</strong>r<strong>in</strong>g <strong>of</strong> changes <strong>in</strong> <strong>the</strong> external environment, and <strong>of</strong> <strong>the</strong> responses <strong>of</strong> a<br />

community’s social-ecological system <strong>to</strong> those changes and <strong>to</strong> management <strong>in</strong>itiatives <strong>in</strong>tended <strong>to</strong><br />

enhance resilience, can be a valuable source <strong>of</strong> <strong>in</strong>put <strong>to</strong> <strong>the</strong> community’s cont<strong>in</strong>uous process <strong>of</strong> adaptive<br />

learn<strong>in</strong>g. Such moni<strong>to</strong>r<strong>in</strong>g can help redress uncerta<strong>in</strong>ties or highlight <strong>the</strong> effectiveness (or lack <strong>the</strong>re<strong>of</strong>) <strong>of</strong><br />

management alternatives. Engag<strong>in</strong>g <strong>the</strong> multiple parties <strong>of</strong> <strong>the</strong> adaptive management “community <strong>of</strong><br />

<strong>in</strong>quiry” <strong>in</strong> <strong>the</strong> moni<strong>to</strong>r<strong>in</strong>g effort can facilitate collective learn<strong>in</strong>g and trust build<strong>in</strong>g (Moote, 2012).<br />

Coastal communities can ga<strong>the</strong>r a variety <strong>of</strong> data <strong>to</strong> keep track <strong>of</strong> chang<strong>in</strong>g conditions as well as<br />

evaluate <strong>the</strong> effectiveness <strong>of</strong> <strong>in</strong>terventions. For example, <strong>the</strong>y can deduce local relative sea level rise<br />

based on <strong>in</strong>formation collected from <strong>the</strong> nearest tide gauges and scientific studies about global or regional<br />

eustatic sea level rise rates. Some states (e.g. Florida) moni<strong>to</strong>r erosion rates, <strong>in</strong>formation that can be<br />

comb<strong>in</strong>ed with local observations <strong>of</strong> changes <strong>in</strong> beach and dune systems. To moni<strong>to</strong>r <strong>the</strong> effectiveness <strong>of</strong><br />

<strong>in</strong>terventions, stakeholders will need <strong>to</strong> observe how well strategies perform <strong>in</strong> <strong>the</strong> achiev<strong>in</strong>g multiple<br />

goals <strong>in</strong> <strong>the</strong>ir GAM, particularly follow<strong>in</strong>g coastal s<strong>to</strong>rms and <strong>in</strong> relation <strong>to</strong> chronic erosion and<br />

<strong>in</strong>undation associated with ris<strong>in</strong>g sea levels. As participants moni<strong>to</strong>r <strong>the</strong>se chang<strong>in</strong>g conditions and <strong>the</strong><br />

performance <strong>of</strong> management strategies, <strong>the</strong>y will need <strong>to</strong> revisit and reassess <strong>the</strong> GAM <strong>to</strong> <strong>in</strong>corporate<br />

new <strong>in</strong>formation and knowledge. Stakeholders may choose <strong>to</strong> revise goals, weights, strategies, or scor<strong>in</strong>g<br />

based on <strong>the</strong> ongo<strong>in</strong>g collection <strong>of</strong> data and <strong>in</strong>formation over time.<br />

Summary and Conclusions<br />

Innes and Booher (2010, p. 206) suggest that “<strong>Resilience</strong> th<strong>in</strong>k<strong>in</strong>g shifts <strong>the</strong> purpose <strong>of</strong><br />

governance from <strong>the</strong> questions ‘where do we want <strong>to</strong> be and how do we get <strong>the</strong>re’ <strong>to</strong> ‘how do we move <strong>in</strong><br />

a desirable direction <strong>in</strong> <strong>the</strong> face <strong>of</strong> uncerta<strong>in</strong>ty?’” We have sought <strong>to</strong> <strong>of</strong>fer guidance <strong>to</strong> planners and<br />

managers work<strong>in</strong>g with low-resource, small and rural coastal communities as <strong>the</strong>y seek <strong>to</strong> ma<strong>in</strong>ta<strong>in</strong> and<br />

21


enhance <strong>the</strong>ir resilience <strong>in</strong> <strong>the</strong> face <strong>of</strong> <strong>in</strong>determ<strong>in</strong>ate uncerta<strong>in</strong>ty about climate change impacts on coastal<br />

hazards. Such communities face significant challenges as <strong>the</strong>y attempt <strong>to</strong> adapt <strong>to</strong> accelerat<strong>in</strong>g sea-level<br />

rise and <strong>the</strong> possibility <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>tensity <strong>of</strong> tropical cyclones. Knowledge and <strong>in</strong>formation<br />

requirements are high, uncerta<strong>in</strong>ty and complexity are irreducible, and social perceptions, priorities, and<br />

values are likely <strong>to</strong> change over <strong>the</strong> decades that adaptive strategies must function. <strong>Resilience</strong> <strong>of</strong> <strong>the</strong>se<br />

communities will depend upon <strong>the</strong>m develop<strong>in</strong>g adaptive capacity <strong>to</strong> implement robust and flexible<br />

strategies while learn<strong>in</strong>g and act<strong>in</strong>g on new understand<strong>in</strong>gs about <strong>the</strong> chang<strong>in</strong>g <strong>in</strong>ternal and external<br />

drivers <strong>of</strong> change.<br />

In response <strong>to</strong> <strong>the</strong>se challenges, planners and managers have drawn on several decision mak<strong>in</strong>g<br />

<strong>to</strong>ols, techniques, and approaches as <strong>the</strong>y seek <strong>to</strong> manage “with<strong>in</strong> <strong>the</strong>ir means” while build<strong>in</strong>g new<br />

capacities for adaptation. We argue that conventional, resource-<strong>in</strong>tensive <strong>to</strong>ols such as cost-benefit<br />

analysis and risk-benefit analysis are poorly suited <strong>to</strong> account for <strong>the</strong> diverse social and ecological goals<br />

<strong>of</strong> resilience plann<strong>in</strong>g and <strong>the</strong> complexities and <strong>in</strong>determ<strong>in</strong>ate uncerta<strong>in</strong>ties <strong>of</strong> climate change effects on<br />

coastal hazards. We suggest that passive adaptive management coupled with scenario analysis <strong>of</strong>fers an<br />

alternative approach that may more effectively address uncerta<strong>in</strong>ty and complexity while provid<strong>in</strong>g<br />

ample opportunity <strong>to</strong> identify robust and flexible strategies go<strong>in</strong>g forward.<br />

To aid <strong>in</strong> this endeavor, we draw <strong>in</strong>spiration from Hill’s (1968) Goals Achievement Matrix<br />

(GAM) <strong>to</strong> develop an approach that planners and stakeholders can employ <strong>to</strong> identify adaptive strategies<br />

that are scientifically defensible, socially acceptable, politically viable, and economically feasible. We<br />

argue that this <strong>to</strong>ol is most aptly used with<strong>in</strong> an adaptive governance framework that fosters collaborative<br />

fact f<strong>in</strong>d<strong>in</strong>g and learn<strong>in</strong>g. We provide guidance for how coastal communities can design this governance<br />

approach, suggest<strong>in</strong>g that it <strong>in</strong>volve multiple stakeholders and experts <strong>in</strong> ongo<strong>in</strong>g <strong>in</strong>quiry as <strong>the</strong>y engage<br />

new knowledge from scientific research, experiments, and moni<strong>to</strong>r<strong>in</strong>g. This approach <strong>to</strong> us<strong>in</strong>g a GAM<br />

22


can provide <strong>the</strong> flexibility <strong>to</strong> assess and modify management strategies <strong>in</strong> response <strong>to</strong> changes <strong>in</strong> <strong>in</strong>ternal<br />

and external conditions and <strong>to</strong> changes <strong>in</strong> stakeholder values, perceptions, and goals and <strong>to</strong> build<br />

community adaptive capacity through social learn<strong>in</strong>g. Undertak<strong>in</strong>g this work requires a level <strong>of</strong> humility<br />

on <strong>the</strong> part <strong>of</strong> planners and managers, a clear recognition <strong>of</strong> uncerta<strong>in</strong>ty and complexity and <strong>the</strong><br />

challenges that <strong>the</strong>y br<strong>in</strong>g. It also requires a level <strong>of</strong> openness and flexibility <strong>in</strong> decision mak<strong>in</strong>g and<br />

rel<strong>in</strong>quish<strong>in</strong>g control <strong>to</strong> a broader base <strong>of</strong> stakeholders <strong>to</strong> enable greater creativity and <strong>in</strong>novation <strong>in</strong> <strong>the</strong><br />

face <strong>of</strong> unpredictable and, <strong>in</strong> many ways, unth<strong>in</strong>kable changes ahead.<br />

References Cited<br />

Adger, W. N., Agrawala, S., Mirza, M. M. Q., Conde, C., O’Brien, K., Pulh<strong>in</strong>, J., Pulwarty, R., Smit, B.,<br />

& Takahashi, K. (2007). Assessment <strong>of</strong> adaptation practices, options, constra<strong>in</strong>ts and capacity. In M. L.<br />

Parry, O. F. Canziani, J. P Palutik<strong>of</strong>, P. J.van der L<strong>in</strong>den, & C. E. Hanson (Eds.), <strong>Climate</strong> change 2007:<br />

Impacts, adaptation and vulnerability. Contribution <strong>of</strong> Work<strong>in</strong>g Group II <strong>to</strong> <strong>the</strong> fourth assessment report<br />

<strong>of</strong> <strong>the</strong> Intergovernmental Panel on <strong>Climate</strong> Change. New York: Cambridge University Press.<br />

Adger, W. N. and K. V<strong>in</strong>cent (2005). Uncerta<strong>in</strong>ty <strong>in</strong> adaptive capacity. Comptes Rendues Geoscience.<br />

337, 399-410.<br />

Adger, W.N., Hughes, T.P., Folke, C., Carpenter, S.R., & Rockstrom, J. (2005) Social-ecological<br />

resilience <strong>to</strong> coastal disasters. Science, 309, 1036-1039.<br />

Adger, W.N., N. Brooks, G. Bentham, M. Agrnew, & S. Eriksen. (2004). New Indica<strong>to</strong>rs <strong>of</strong> vulnerability<br />

and adaptive capacity. Technical Report 7. Tyndall Centre for <strong>Climate</strong> Change Research. Norwich, UK:<br />

East Anglia University.<br />

Ali, A., Angelov, P. & Hutchison, D. (2011). Towards an adaptive resilience strategy for future computer<br />

networks. In, Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> 11th UK workshop on computational <strong>in</strong>telligence, pp. 201-206. Manchester, UK:<br />

University <strong>of</strong> Manchester School <strong>of</strong> Computer Science. Retrieved, February 10, 2012 from<br />

http://ukci.cs.manchester.ac.uk/files/Proceed<strong>in</strong>gs.pdf.<br />

Anderson, J. L., R. W. Hilborn, R. T. Lackey, and D. Ludwig. (2003). Watershed res<strong>to</strong>ration— adaptive<br />

decision mak<strong>in</strong>g <strong>in</strong> <strong>the</strong> face <strong>of</strong> uncerta<strong>in</strong>ty. In R.C. Wissmar and P.A. Bisson (eds). Strategies for<br />

res<strong>to</strong>r<strong>in</strong>g river ecosystems: sources <strong>of</strong> variability and uncerta<strong>in</strong>ty <strong>in</strong> natural and managed systems. Pages<br />

203-232. Be<strong>the</strong>sda, Maryland: American Fisheries Society.<br />

Beatley, T. (2009). <strong>Plann<strong>in</strong>g</strong> for coastal resilience. Wash<strong>in</strong>g<strong>to</strong>n, DC: Island Press.<br />

Beever, J.W., Gray, W., Trescott, D., Cobb, D., Utley, J., Hutch<strong>in</strong>son, D., Gibbons, J., Walker, T.,<br />

Abimbola, M., Beever, L., & Ott, J. (2009). City <strong>of</strong> Punta Gorda adaptation plan. Technical Report 09-4.<br />

23


Ft. Myers, FL: Southwest Florida Regional <strong>Plann<strong>in</strong>g</strong> Council and Charlotte Harbor National Estuary<br />

Program.<br />

Boyd, E. and C. Folke (2012). Adapt<strong>in</strong>g <strong>in</strong>stitutions: Governance, complexity and social-ecological<br />

resilience. Cambridge, UK: Cambridge University Press.<br />

Callaway, J.M. (2004). Adaptation benefits and costs: Are <strong>the</strong>y important <strong>in</strong> <strong>the</strong> global policy picture and<br />

how can we estimate <strong>the</strong>m? Global Environmental Change, 14, 273-282.<br />

Deyle, R.E. French, S.P., Olshansky, R.B., & Paterson, R.G. (1998). Hazard assessment: A factual basis<br />

for plann<strong>in</strong>g and mitigation. In R.J. Burby (Ed.), Cooperat<strong>in</strong>g with nature: Confront<strong>in</strong>g natural hazards<br />

with land-use plann<strong>in</strong>g for susta<strong>in</strong>able communities, pp. 119-166. Wash<strong>in</strong>g<strong>to</strong>n, DC: Joseph Henry Press.<br />

Deyle, R.E., Bailey, K.C. & Ma<strong>the</strong>ny, A. (2007). Adaptive response <strong>Plann<strong>in</strong>g</strong> <strong>to</strong> Sea Level Rise <strong>in</strong><br />

Florida and Implications for Comprehensive and Public-Facilities <strong>Plann<strong>in</strong>g</strong>. Tallahassee, FL: Florida<br />

<strong>Plann<strong>in</strong>g</strong> and Development Lab, Florida State University.<br />

Diduck, A. (2010). The learn<strong>in</strong>g dimension <strong>of</strong> adaptive capacity: untangl<strong>in</strong>g <strong>the</strong> multi-level connections.<br />

In Armitage, D. and R. Plummer (eds). Adaptive Capacity and Environmental Governance. Spr<strong>in</strong>ger-<br />

Verlag: New York.<br />

Dronkers, J., Misdorp, R., Schröder, P.C., Carey, J.J., Spradley, J.R., Vallianos, L., Titus, J.G., Butler,<br />

L.W., Ries, K.L., Gilbert, J.T.E., Campbell, J., von Dadelszen, J., Qu<strong>in</strong>n, N., McKenzie, C., & James E.<br />

(1990). Strategies for adaptation <strong>to</strong> sea level rise: Report <strong>of</strong> <strong>the</strong> coastal zone management subgroup <strong>to</strong><br />

<strong>the</strong> Intergovernmental Panel on <strong>Climate</strong> Change response strategies work<strong>in</strong>g group. Retrieved from<br />

http://epa.gov/climatechange/effects/downloads/adaption.pdf.<br />

Elsner, J.B., Koss<strong>in</strong>, J.P., & Jagger, T.H. (2008). The <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>tensity <strong>of</strong> <strong>the</strong> strongest tropical<br />

cyclones. Nature, 455, 92-95.<br />

Emanuel, K. A. (2005). Increas<strong>in</strong>g destructiveness <strong>of</strong> tropical cyclones over <strong>the</strong> past 30 years. Nature,<br />

436, 686–688.Emanuel, K.A. (2007). Environmental fac<strong>to</strong>rs affect<strong>in</strong>g tropical cyclone power dissipation.<br />

Journal <strong>of</strong> <strong>Climate</strong>, 20(22), 5497–5509<br />

Emanuel, K.A. (2007). Environmental fac<strong>to</strong>rs affect<strong>in</strong>g tropical cyclone power dissipation. Journal <strong>of</strong><br />

<strong>Climate</strong>, 20(22), 5497–5509<br />

Fankhauser, S. (2010). The costs <strong>of</strong> adaptation. WIRES <strong>Climate</strong> Change, 1(1), 23-30. doi:<br />

10.1002/wcc.014.<br />

Fankhauser, S., Smith, J.B., & Tol, R.S.J. (1999). Wea<strong>the</strong>r<strong>in</strong>g climate change: Some simple rules <strong>to</strong><br />

guide adaptation decisions. Ecological Economics, 30, 67-78.<br />

Folke, C. (2006). <strong>Resilience</strong>: The emergence <strong>of</strong> a perspective for social–ecological systems analyses.<br />

Global Environmental Change, 16, 253-267.<br />

24


Godschalk, D.R., Kaiser, E.J., & Berke, P.R.(1998).Integrat<strong>in</strong>g hazard mitigation and local land use<br />

plann<strong>in</strong>g. In R.J. Burby (Ed.), Cooperat<strong>in</strong>g with nature: Confront<strong>in</strong>g natural hazards with land-use<br />

plann<strong>in</strong>g for susta<strong>in</strong>able communities, pp. 85-118. Wash<strong>in</strong>g<strong>to</strong>n, DC: Joseph Henry Press.<br />

Gr<strong>in</strong>sted, A., Moore, J.C., & Jevrejeva, S. (2010). Reconstruct<strong>in</strong>g sea level from paleo and projected<br />

temperatures 200 <strong>to</strong> 2100 AD. <strong>Climate</strong> Dynamics, 34, 461-472.<br />

http://www.spr<strong>in</strong>gerl<strong>in</strong>k.com/content/527178062596k202/fulltext.pdf.<br />

Hallegatte, S. (2009). Strategies <strong>to</strong> adapt <strong>to</strong> an uncerta<strong>in</strong> climate change. Global Environmental Change.<br />

19 (2), 240-247.<br />

Hansen, J.E. (2007). Scientific reticence and sea level rise. Environmental Research Letters, 2, 024002 (6<br />

pp.).<br />

Hansen, J.E. & Sa<strong>to</strong>, M. (2011). Paleoclimate implications for human-made climate change. Retrieved<br />

December 29, 2011 from http://arxiv.org/ftp/arxiv/papers/1105/1105.0968.pdf.<br />

Hill, M. (1968). A goals-achievement matrix for evaluat<strong>in</strong>g alternative plans. Journal <strong>of</strong> <strong>the</strong> American<br />

<strong>Plann<strong>in</strong>g</strong> Association, 34 (1), 19-29.<br />

Holl<strong>in</strong>g, C. S. (1978). Adaptive environmental assessment and management. New York: John Wiley and<br />

Sons.<br />

Innes, J. E. (1996). <strong>Plann<strong>in</strong>g</strong> through consensus build<strong>in</strong>g: A new view <strong>of</strong> <strong>the</strong> comprehensive plann<strong>in</strong>g<br />

ideal. Journal <strong>of</strong> <strong>the</strong> American <strong>Plann<strong>in</strong>g</strong> Association, 62(4), 460-472.<br />

Innes, J. E. & D. E. Booher. (2010). <strong>Plann<strong>in</strong>g</strong> with complexity: An <strong>in</strong>troduction <strong>to</strong> collaborative<br />

rationality for public policy. Routledge Press: New York.<br />

Karl, H., Sussk<strong>in</strong>d, L., & Wallace, K. (2007). A dialogue, not a diatribe: Effective <strong>in</strong>tegration <strong>of</strong> science<br />

and policy through jo<strong>in</strong>t fact f<strong>in</strong>d<strong>in</strong>g. Environment, 49 (1), 20–34.<br />

Karl, T. R., Meehl, G. A., Miller, C. D., Hassol, S. J., Waple, A. M., & Murray, W. L. (2008). Wea<strong>the</strong>r<br />

and climate extremes <strong>in</strong> a chang<strong>in</strong>g climate. Regions <strong>of</strong> focus: North America, Hawaii, Caribbean, and<br />

U.S. Pacific Islands. Syn<strong>the</strong>sis and Assessment Product 3.3. Wash<strong>in</strong>g<strong>to</strong>n, DC: U.S. <strong>Climate</strong> Change<br />

Science Program and <strong>the</strong> Subcommittee on Global Change Research.<br />

Kneese, A.V. (1984). Measur<strong>in</strong>g <strong>the</strong> benefits <strong>of</strong> clean air and water. Wash<strong>in</strong>g<strong>to</strong>n, DC: Resources for <strong>the</strong><br />

Future.<br />

Lee, K. N. (1993). Compass and gyroscope: <strong>in</strong>tegrat<strong>in</strong>g politics and science for <strong>the</strong> environment.<br />

Wash<strong>in</strong>g<strong>to</strong>n, D.C.: Island Press.<br />

Meehl, G.A., S<strong>to</strong>cker, T.F., Coll<strong>in</strong>s, W.D., Friedl<strong>in</strong>gste<strong>in</strong>, P., Gaye, A.T., Gregory, J.M., Ki<strong>to</strong>h, A.,<br />

Knutti, R., Murphy, J.M., Noda, A., Raper, S.C.B., Watterson, I.G., Weaver, A.J., & Zhao, Z.-C. (2007).<br />

25


Global climate projections. In S. Solomon, D. Q<strong>in</strong>, M. Mann<strong>in</strong>g, Z. Chen, M. Marquis, K. B. Averyt, M.<br />

Tignor, & H. L. Miller (Eds.), <strong>Climate</strong> change 2007: The physical science basis. Contribution <strong>of</strong> Work<strong>in</strong>g<br />

Group I <strong>to</strong> <strong>the</strong> fourth assessment report <strong>of</strong> <strong>the</strong> Intergovernmental Panel on <strong>Climate</strong> Change, (pp. 747-<br />

845). New York: Cambridge University Press.<br />

Miami-Dade County <strong>Climate</strong> Change Advisory Task Force. (2008). Second report and <strong>in</strong>itial<br />

recommendations. Miami: Author.<br />

Mitchum, G.T. (2011). Sea level changes <strong>in</strong> <strong>the</strong> sou<strong>the</strong>astern United States: Past, present, and future.<br />

Sou<strong>the</strong>ast <strong>Climate</strong> Consortium and <strong>the</strong> Florida <strong>Climate</strong> Institute. Retrieved from<br />

http://www.seclimate.org/pdfpubs/201108mitchum_sealevel.pdf.<br />

Moote, A. (2011). Multi-party moni<strong>to</strong>r<strong>in</strong>g and stewardship contract<strong>in</strong>g: a <strong>to</strong>ol for adaptive management.<br />

Portland, OR: Susta<strong>in</strong>able Northwest. Retrieved from<br />

http://www.susta<strong>in</strong>ablenorthwest.org/resources/publications/Multiparty%20Moni<strong>to</strong>r<strong>in</strong>g%20Guidebook%<br />

202012_f<strong>in</strong>alV3_l<strong>in</strong>ks.pdf, February 9, 2012.<br />

National Research Council. (1995). Beach nourishment and protection. Wash<strong>in</strong>g<strong>to</strong>n, DC: National<br />

Academy Press.<br />

National Research Council (NRC). (2004). Adaptive management for water resources project plann<strong>in</strong>g.<br />

National Academies Press. Retrieved from http://www.nap.edu/catalog/10972.html, January 23, 2012.<br />

Nicholls, R.J. (2011). <strong>Plann<strong>in</strong>g</strong> for <strong>the</strong> impacts <strong>of</strong> sea level rise. Oceanography, 24(2):144–<br />

157,doi:10.5670/oceanog.2011.34.<br />

Nicholls, R.J., Wong, P.P., Burkett, V.R., Codignot<strong>to</strong>, J.O., Hay, J.E., McLean, R.F., Ragoonaden, S., &<br />

Woodr<strong>of</strong>fe, C.D. (2007). Coastal systems and low-ly<strong>in</strong>g areas. In M. Parry, O.F. Canziani, J.P. Palutik<strong>of</strong>,<br />

P. Van Der L<strong>in</strong>den, and C.E. Hanson, eds, <strong>Climate</strong> change 2007: Impacts, adaptation and vulnerability.<br />

Cambridge, UK: Cambridge University Press.<br />

N<strong>in</strong>g L., Emanuel, K., Oppenheimer, M., & Vanmarcke, E. (2012). Physically based assessment <strong>of</strong><br />

hurricane surge threat under climate change. Nature <strong>Climate</strong> Change, DOI: 10.1038/nclimate1389.<br />

Nordstrom, K.F. (2000). Beaches and dunes <strong>of</strong> developed coasts. Cambridge, UK: Cambridge University<br />

Press.<br />

Pahl-Wostl, C., Sendzimir, J., Jeffrey, P., Aerts, J., Berkamp, G., & Cross, K. (2007). Manag<strong>in</strong>g change<br />

<strong>to</strong>ward adaptive water management through social learn<strong>in</strong>g. Ecology and Society, 12(2), 30. Retrieved<br />

from http://www.ecologyandsociety.org/vol12/iss2/art30/, January 26, 2012.<br />

Parry, M., Canziani, O., Palutik<strong>of</strong>, J., van der L<strong>in</strong>den, P., & Hanson, C. (2007). <strong>Climate</strong> change 2007:<br />

Impacts, adaptation, and vulnerability. Contribution <strong>of</strong> Work<strong>in</strong>g Group II <strong>to</strong> <strong>the</strong> Fourth Assessment<br />

Report <strong>of</strong> <strong>the</strong> Intergovernmental Panel on <strong>Climate</strong> Change. [Electronic version] Retrieved May 23, 2007<br />

from http://www.ipcc.ch.<br />

26


Peterson, G., G. Cumm<strong>in</strong>g, and S. Carpenter. (2003). Scenario plann<strong>in</strong>g: a <strong>to</strong>ol for conservation <strong>in</strong> an<br />

uncerta<strong>in</strong> world. Conservation Biology. 17(2), 358-366.<br />

Pfeffer, W. T., Harper, J. T. & O’Neel, S. (2008). K<strong>in</strong>ematic constra<strong>in</strong>ts on glacier contributions <strong>to</strong> 21stcentury<br />

sea-level rise. Science, 321, 1340-1343. DOI: 10.1126/science.1159099.<br />

Quay, R. (2010). Anticipa<strong>to</strong>ry governance: A <strong>to</strong>ol for climate change adaptation. Journal <strong>of</strong> <strong>the</strong> American<br />

<strong>Plann<strong>in</strong>g</strong> Association. 76 (4), 496-511.<br />

Rob<strong>in</strong>son, M. (2010). Mak<strong>in</strong>g adaptive resilience real. London: Arts Council <strong>of</strong> England. Retrieved<br />

February 10, 2012, from http://www.britishcouncil.org/mak<strong>in</strong>g_adaptive_resilience_real-2.pdf.<br />

Schwab, J., Topp<strong>in</strong>g, K.C., Eadie, C.C., Deyle, R.E., & Smith, R.A. (1998). <strong>Plann<strong>in</strong>g</strong> for post-disaster<br />

recovery and reconstruction. <strong>Plann<strong>in</strong>g</strong> Advisory Service Report No. 483/484. Chcago: American<br />

<strong>Plann<strong>in</strong>g</strong> Association.<br />

Schusler, T. M., D. Decker, & M. Pfeffer (2003). Social learn<strong>in</strong>g for collaborative natural resource<br />

management. Society and Natural Resources, 16(4), 309-326.<br />

Smith, J.B. (1997). Sett<strong>in</strong>g priorities for adapt<strong>in</strong>g <strong>to</strong> climate change. Global Environmental Change, 7,<br />

251-264.<br />

Steffen, K., Clark, P. U., Cogley, J. G., Holland, D., Marshall, S., Rignot, E., & Thomas, R. (2008).<br />

Rapid changes <strong>in</strong> glaciers and ice sheets and <strong>the</strong>ir impacts on sea level. In J. P. McGeeh<strong>in</strong> (Ed.) Abrupt<br />

climate change, Syn<strong>the</strong>sis and Assessment Product 3.4, (pp. 29-66). Wash<strong>in</strong>g<strong>to</strong>n, DC: U.S. <strong>Climate</strong><br />

Change Science Program and <strong>the</strong> Subcommittee on Global Change Research.<br />

Stern, N. (2006). Stern review on <strong>the</strong> economics <strong>of</strong> climate change: Report <strong>to</strong> HM Treasury. London: HM<br />

Treasury.<br />

Titus, J. G. & Craghan, M. (2009). Shore protection and retreat. In J.G. Titus (Ed.), Coastal sensitivity <strong>to</strong><br />

sea-level rise: A focus on <strong>the</strong> mid-Atlantic region. Syn<strong>the</strong>sis and Assessment Product 4.1, pp. 87-103.<br />

Wash<strong>in</strong>g<strong>to</strong>n, DC: U.S. <strong>Climate</strong> Change Science Program and <strong>the</strong> Subcommittee on Global Change<br />

Research.<br />

Titus, J. G. & Neumann, J. E. (2009). Implications for decisions. In J.G. Titus (Ed.), Coastal sensitivity <strong>to</strong><br />

sea-level rise: A focus on <strong>the</strong> mid-Atlantic region. Syn<strong>the</strong>sis and Assessment Product 4.1, pp. 141-156.<br />

Wash<strong>in</strong>g<strong>to</strong>n, DC: U.S. <strong>Climate</strong> Change Science Program and <strong>the</strong> Subcommittee on Global Change<br />

Research.<br />

Toman, M. (2006). Values <strong>in</strong> <strong>the</strong> economics <strong>of</strong> climate change. Environmental Values, 15, 365-379.<br />

United Nations. (1992). United Nations Framework Convention on <strong>Climate</strong> Change. Retrieved from<br />

http://unfccc.<strong>in</strong>t/resource/docs/convkp/conveng.pdf.<br />

27


United States Army Corps <strong>of</strong> Eng<strong>in</strong>eers (USACE). (1983). Economic and environmental pr<strong>in</strong>ciples for<br />

water and related land resources implementation studies. Retrieved February 8, 2012 from<br />

http://plann<strong>in</strong>g.usace.army.mil/<strong>to</strong>olbox/ library%5CGuidance%5CPr<strong>in</strong>ciples_Guidel<strong>in</strong>es.pdf.<br />

United States Army Corps <strong>of</strong> Eng<strong>in</strong>eers (USACE). (2011). Coastal s<strong>to</strong>rm risk management national<br />

economic development manual. Retrieved February 9, 2012 from<br />

http://www.corpsnedmanuals.us/Includes/PDFs/2011-R-09.pdf.<br />

United States Army Corps <strong>of</strong> Eng<strong>in</strong>eers (USACE). (2012). National economic development (NED)<br />

procedures manual for flood risk management. Retrieved February 13, 2012 from<br />

http://www.corpsnedmanuals.us/FloodDamageReduction/ FDRID001Welcome.asp.<br />

United States Environmental Protection Agency (USEPA). (2010). <strong>Climate</strong> change <strong>in</strong>dica<strong>to</strong>rs <strong>in</strong> <strong>the</strong><br />

United States. EPA 430-R-10-007. Retrieved July 2010 from<br />

http://epa.gov/climatechange/<strong>in</strong>dica<strong>to</strong>rs.html.<br />

United States Indian Ocean Tsunami Warn<strong>in</strong>g System Program. (2007). How resilient is your coastal<br />

community? A guide for evaluat<strong>in</strong>g coastal community resilience <strong>to</strong> tsunamis and o<strong>the</strong>r coastal hazards.<br />

Bangkok, Thailand: U.S. Indian Ocean Tsunami Warn<strong>in</strong>g System Program.<br />

Van Raalten, D., van der Laan, T., Wijsman, P., Boeije, L., Schellekens, E., Dircke, P., Pyke, B., Moors,<br />

E., van Pelt, S., Elias, E., Dijkman, J., Travis, W., McCrea, B., LaClair, J., Goldbeck, S., & Schoots, M.<br />

(2009). San Francisco Bay: prepar<strong>in</strong>g for <strong>the</strong> next level. San Francisco Bay Conservation and<br />

Development Commission. Retrieved from<br />

www.bcdc.ca.gov/plann<strong>in</strong>g/climate_change/SFBay_prepar<strong>in</strong>g_%20for_<strong>the</strong>_next_Level.pdf.<br />

Vermeer, M. & Rahms<strong>to</strong>rf, S. (2009). Global sea level l<strong>in</strong>ked <strong>to</strong> global temperature. Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong><br />

National Academy <strong>of</strong> Sciences <strong>of</strong> <strong>the</strong> United States <strong>of</strong> America, 106(51), 21527-21532. doi:<br />

10.1073/pnas.0907765106<br />

Walker, B. and D. Salt. (2006). <strong>Resilience</strong> th<strong>in</strong>k<strong>in</strong>g: Susta<strong>in</strong><strong>in</strong>g ecosystems and people <strong>in</strong> a chang<strong>in</strong>g<br />

world. Wash<strong>in</strong>g<strong>to</strong>n, DC: Island Press.<br />

Walker, B., Holl<strong>in</strong>g, C. S., Carpenter, S. R., & K<strong>in</strong>zig, A. (2004). <strong>Resilience</strong>, Adaptability and<br />

Transformability <strong>in</strong> Socialecological Systems. Ecology and Society, 9(2). Retrieved from<br />

http://www.ecologyandsociety.org/vol9/iss2/art5, September 16, 2011.<br />

Webster, P. J., Holland, G. J., Curry, J. A., & Chang, H.-R. (2005). Changes <strong>in</strong> Tropical Cyclone<br />

Number, Duration, and Intensity <strong>in</strong> a Warm<strong>in</strong>g Environment. Science, 309, 1844-1846.<br />

Wigley, T. M. L. (2005). The climate change commitment. Science, 307(5716), 1766-1769. DOI:<br />

10.1126/science.1103934.<br />

Yoe, C. (2004). Scenario plann<strong>in</strong>g literature review. Retrieved, February 13, 2012 from<br />

http://www.corpsnedmanuals.us/FloodDamageReduction/FDRIncludes/<br />

FDRYoeLitReviewSept2204PG102504.pdf.<br />

28


Yohe, G. and R. Tol. (2002). Indica<strong>to</strong>rs for social and economic cop<strong>in</strong>g capacity: mov<strong>in</strong>g <strong>to</strong>ward a<br />

work<strong>in</strong>g def<strong>in</strong>ition <strong>of</strong> adaptive capacity. Global Environmental Change. 12(1), 25-40.<br />

Zellner, M., C. J. Hock, and E. W. Welch. (2011). Leap<strong>in</strong>g forward: Build<strong>in</strong>g resilience by<br />

communicat<strong>in</strong>g vulnerability. In Bruce Goldste<strong>in</strong> (ed.). Collaborative <strong>Resilience</strong>: Mov<strong>in</strong>g Through Crisis<br />

<strong>to</strong> Opportunity. (pp. xx-xx) Cambridge, MA: MIT Press.<br />

29


Adaptive<br />

Response<br />

Strategy Response Option Description<br />

Protect Shore armor<strong>in</strong>g Seawalls, bulkheads, and revetments constructed parallel <strong>to</strong><br />

<strong>the</strong> shore <strong>to</strong> protect upland embankments or structures from<br />

flood<strong>in</strong>g, waves, and erosion.<br />

Beach nourishment Artificial replenishment <strong>of</strong> beach (and dune) sediments <strong>to</strong><br />

counteract <strong>the</strong> effects <strong>of</strong> chronic and/or acute erosion.<br />

Accommodate Elevate structures Require elevat<strong>in</strong>g <strong>of</strong> habitable structures above a specified<br />

flood level us<strong>in</strong>g fill, or pil<strong>in</strong>gs (FEMA, 2009).<br />

Erosion-based setback Require setback <strong>of</strong> habitable structures based on some<br />

Avoid/Retreat<br />

Prohibit development<br />

plus transfer <strong>of</strong><br />

development rights<br />

(TDR)<br />

Prohibit development<br />

plus acquisition<br />

Post-disaster downzon<strong>in</strong>g<br />

plus TDR<br />

Post-disaster downzon<strong>in</strong>g<br />

plus acquisition<br />

Roll<strong>in</strong>g easement<br />

multiple <strong>of</strong> <strong>the</strong> average annual erosion rate, e.g. 30 years<br />

Zone vacant land vulnerable <strong>to</strong> coastal erosion and flood<strong>in</strong>g<br />

so as <strong>to</strong> prohibit development and facilitate transfer <strong>of</strong><br />

development rights from those properties <strong>to</strong> o<strong>the</strong>rs<br />

determ<strong>in</strong>ed <strong>to</strong> be more suitable for development.<br />

Zone <strong>of</strong> vacant land vulnerable as above, and acquire those<br />

properties <strong>in</strong> fee-simple.<br />

Down-zone built-out land so as <strong>to</strong> prohibit redevelopment <strong>of</strong><br />

properties damaged by s<strong>to</strong>rm-<strong>in</strong>duced erosion and/or<br />

flood<strong>in</strong>g and facilitate transfer <strong>of</strong> development rights from<br />

those properties <strong>to</strong> o<strong>the</strong>r less vulnerable properties.<br />

Down-zone built-out land as above, and acquire those<br />

properties <strong>in</strong> fee-simple.<br />

Prohibit shorel<strong>in</strong>e armor<strong>in</strong>g and require that structures be<br />

moved landward or removed al<strong>to</strong>ge<strong>the</strong>r when <strong>the</strong> mean high<br />

water l<strong>in</strong>e reaches <strong>the</strong> seaward <strong>to</strong>e <strong>of</strong> <strong>the</strong> structure or some<br />

similar threshold condition.<br />

Table 1.<br />

Sample<br />

adaptive<br />

response<br />

options<br />

for<br />

coastal<br />

hazards<br />

with<br />

accelerate<br />

d sea<br />

level rise<br />

and<br />

<strong>in</strong>creased<br />

tropical<br />

cyclone<br />

<strong>in</strong>tensity<br />

30


Dimension<br />

Coastal shorel<strong>in</strong>e<br />

vulnerability<br />

Urban system value<br />

Natural system<br />

value<br />

Scale<br />

High Moderate Low<br />

High wave energy + high erosion High wave energy + low erosion<br />

Low wave energy + low or no<br />

vulnerability<br />

vulnerability<br />

erosion vulnerability<br />

OR low wave energy + high <strong>to</strong> moderate<br />

erosion vulnerability<br />

AND/OR high <strong>in</strong>undation/flood exposure AND/OR moderate <strong>in</strong>undation/flood AND/OR low <strong>in</strong>undation/flood<br />

exposure<br />

exposure<br />

Significant private and/or public sunk Substantial private and/or public sunk Few or no private and/or public<br />

assets and important <strong>to</strong> current local and assets, important <strong>to</strong> local economy and sunk assets, lower economic<br />

regional economies and culture<br />

culture and/or with substantial potential <strong>to</strong> potential, and low cultural value<br />

become important <strong>to</strong> local and regional<br />

Threatened or endangered species habitat<br />

and/or high recreational or economic<br />

value ecosystems, e.g. beaches, coastal<br />

wetlands that support fisheries<br />

Table 2. Coastal shorel<strong>in</strong>e typology<br />

economies and culture<br />

O<strong>the</strong>r valuable coastal natural systems<br />

Altered coastal ecosystems that<br />

do not give substantial support <strong>to</strong><br />

recreational or commercial<br />

<strong>in</strong>terests<br />

High wave energy = National Flood Insurance Program (NFIP) V-zone<br />

Low wave energy = National Flood Insurance Program A-zone<br />

High erosion vulnerability = sedimentary substrate (sand beach and dune system)<br />

Moderate erosion vulnerability = wetland (salt marsh or mangrove) substrate<br />

Low erosion vulnerability = consolidated substrate, e.g. Florida Keys<br />

No erosion vulnerability = armored shorel<strong>in</strong>e (seawalls, bulkheads, revetments, etc.)<br />

High <strong>in</strong>undation/flood exposure = areas 3 ft and 5 ft above MHWL*<br />

*Based on updated NFIP maps, s<strong>to</strong>rm surge projections, and local sea level rise <strong>in</strong>undation maps and time frame<br />

projections. These may vary based on site-specific characteristics. For example, lands particularly subject <strong>to</strong><br />

s<strong>to</strong>rm surge may be “high <strong>in</strong>undation” even though <strong>the</strong>y are more than 3 ft above MHWL. Similarly, areas not at<br />

great risk <strong>of</strong> s<strong>to</strong>rm surge may be “low <strong>in</strong>undation” at elevations lower than 5 ft above MHWL.<br />

31


Scenario<br />

High-high-low<br />

Shorel<strong>in</strong>e vulnerability = high<br />

Urban system value = high<br />

Natural system value = low<br />

High-low-high<br />

Shorel<strong>in</strong>e vulnerability = high<br />

Urban system value = low<br />

Natural system value = high<br />

Low-high-low<br />

Shorel<strong>in</strong>e vulnerability = low<br />

Urban system value = high<br />

Natural system value = low<br />

Low-low-high<br />

Shorel<strong>in</strong>e vulnerability = low<br />

Urban system value = low<br />

Natural system value = high<br />

M<strong>in</strong>imize<br />

Risk <strong>to</strong><br />

Human<br />

Development<br />

M<strong>in</strong>imize<br />

Capital and<br />

Operat<strong>in</strong>g<br />

Costs<br />

M<strong>in</strong>imize<br />

Opportunity<br />

Costs <strong>of</strong><br />

Regulation<br />

M<strong>in</strong>imize<br />

Environmental<br />

Stresses<br />

Goal Weights<br />

M<strong>in</strong>imize<br />

Interference with<br />

Ecological<br />

Adaptation<br />

Maximize<br />

Adaptive<br />

Flexibility<br />

Maximize<br />

Political<br />

Feasibility<br />

M<strong>in</strong>imize<br />

Legal<br />

Challenges<br />

20.0 12.5 20.0 5.0 5.0 12.5 12.5 12.5 100.0<br />

5.0 12.5 5.0 20.0 20.0 12.5 12.5 12.5 100.0<br />

20.0 20.0 20.0 5.0 5.0 5.0 12.5 12.5 100.0<br />

5.0 20.0 5.0 20.0 20.0 5.0 12.5 12.5 100.0<br />

Table 3. Example assignment <strong>of</strong> weights <strong>to</strong> sea level rise adaptive response goals.<br />

Totals<br />

32


M<strong>in</strong>imize<br />

Risk <strong>to</strong><br />

Human<br />

Development<br />

M<strong>in</strong>imize<br />

Capital and<br />

Operat<strong>in</strong>g<br />

Costs<br />

M<strong>in</strong>imize<br />

Opportunity<br />

Costs <strong>of</strong><br />

Regulation<br />

M<strong>in</strong>imize<br />

Environmental<br />

Stresses<br />

Goals<br />

M<strong>in</strong>imize<br />

Interference<br />

with Ecological<br />

Adaptation<br />

Maximize<br />

Adaptive<br />

Flexibility<br />

Maximize<br />

Political<br />

Feasibility<br />

M<strong>in</strong>imize<br />

Legal<br />

Challenges<br />

Goal weights 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5<br />

Adaptive Response<br />

Strategies<br />

Protect<br />

Shore armor<strong>in</strong>g + + + – – – + + + – – – – – – – + / – + + -25<br />

Beach nourishment + + – – + + – + + + / – + 50<br />

Accommodate<br />

Elevate structures + + + – – + + + – + + / – + + 75<br />

Erosion-based setback + + + + + + + + + + / – + + 138<br />

Avoid/Retreat<br />

Total<br />

Weighted<br />

Score<br />

Prohibit development plus<br />

TDR<br />

+ + + + + – – + + + + + + + + + / – + + 163<br />

Prohibit development plus<br />

acquisition<br />

+ + + – – – – – + + + + + + + + + / – + / – 75<br />

Post-disaster down-zon<strong>in</strong>g<br />

plus TDR<br />

+ + + + + – – + + + + + + + + – – – + + 125<br />

Post-disaster down-zon<strong>in</strong>g<br />

plus acquisition<br />

+ + + – – – – – + + + + + + + + – – – + / – 38<br />

Roll<strong>in</strong>g easement + + + + + + + + + + + + / – – 125<br />

Table 4. Illustration <strong>of</strong> adaptive response goals achievement matrix with equal goal weights.<br />

Rat<strong>in</strong>g scale: + + + highly positive impact on goal = 3<br />

+ + moderately positive impact = 2<br />

+ somewhat positive impact = 1<br />

– – – highly negative impact = -3<br />

– – moderately negative impact = -2<br />

– somewhat negative impact = -1<br />

+/– neutral or uncerta<strong>in</strong> impact on goal = 0<br />

33


Adaptive Response<br />

Strategies and<br />

Potential Options<br />

Scenarios<br />

High-High-Low High-Low-High Low-High-Low Low-Low-High<br />

Shorel<strong>in</strong>e vulnerability = high<br />

Urban system value = high<br />

Natural system value = low<br />

Shorel<strong>in</strong>e vulnerability = high<br />

Urban system value = low<br />

Natural system value = high<br />

Shorel<strong>in</strong>e vulnerability = low<br />

Urban system value = high<br />

Natural system value = low<br />

Shorel<strong>in</strong>e vulnerability = low<br />

Urban system value = low<br />

Natural system value = high<br />

Protect<br />

Shore armor<strong>in</strong>g 58 -108 50 -115<br />

Beach nourishment 28 -3 -3 -33<br />

Accommodate<br />

Elevate structures 113 38 90 15<br />

Erosion-based setback 138 138 145 145<br />

Retreat<br />

Prohibit development plus<br />

TDR<br />

Prohibit development plus<br />

acquisition<br />

Post-disaster down-zon<strong>in</strong>g<br />

plus TDR<br />

125 200 125 200<br />

30 120 0 90<br />

88 163 88 163<br />

Post-disaster down-zon<strong>in</strong>g<br />

plus acquisition<br />

-8 83 -38 53<br />

Roll<strong>in</strong>g easement 110 140 103 133<br />

Table 5. Illustration <strong>of</strong> effects <strong>of</strong> different weight<strong>in</strong>g schemes on adaptive response option scores.<br />

Endnotes<br />

i Eustatic sea level rise is <strong>the</strong> <strong>in</strong>crease <strong>in</strong> <strong>the</strong> volume <strong>of</strong> <strong>the</strong> oceans that results primarily from <strong>the</strong> <strong>the</strong>rmal expansion <strong>of</strong> sea water as heat is transferred from <strong>the</strong><br />

atmosphere and from <strong>the</strong> melt<strong>in</strong>g <strong>of</strong> glaciers, ice caps, and <strong>the</strong> Greenland and West Antarctic ice sheets. Sea level rise experienced by an observer on land is<br />

referred <strong>to</strong> as "relative" sea level rise. This is a function <strong>of</strong> changes <strong>in</strong> eustatic sea level as well as shifts <strong>in</strong> <strong>the</strong> elevation <strong>of</strong> <strong>the</strong> land.<br />

ii A number <strong>of</strong> scholars also describe and advocate what <strong>the</strong>y refer <strong>to</strong> as “scenario plann<strong>in</strong>g” (see for example Peterson et al., 2003). While closely related<br />

methodologically, scenario plann<strong>in</strong>g typically refers <strong>to</strong> <strong>the</strong> construction <strong>of</strong> complex, multi-dimensional alternative futures that represent whole systems and <strong>the</strong><br />

effects <strong>of</strong> changes <strong>in</strong> multiple variables and drivers. We focus here on <strong>the</strong> narrower concept <strong>of</strong> scenario analysis as it can be applied <strong>to</strong> assess<strong>in</strong>g <strong>the</strong> effectiveness<br />

<strong>of</strong> a set <strong>of</strong> more discrete alternative actions.<br />

34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!