19.11.2014 Views

Markers-Assisted Selection for Plant Breeding - ILSI India

Markers-Assisted Selection for Plant Breeding - ILSI India

Markers-Assisted Selection for Plant Breeding - ILSI India

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Markers</strong>-<strong>Assisted</strong> <strong>Selection</strong><br />

<strong>for</strong><br />

<strong>Plant</strong> <strong>Breeding</strong><br />

P. K. Gupta<br />

Molecular Biology Laboratory<br />

Department of Agricultural Botany<br />

Ch.Charan Singh University, Meerut


MAS vs Transgenics<br />

• MAS should be preferred over transgenic, if<br />

genetic variation is available in gene pool<br />

• MAS is also desirable, if visual selection is<br />

difficult & cost/time ineffective<br />

• Sometimes, both approaches are used<br />

(e.g. insect/disease resistance in rice)


Marker-<strong>Assisted</strong> <strong>Selection</strong> <strong>for</strong><br />

Conventional <strong>Breeding</strong>: Why?<br />

- Difficult traits (e.g.,abiotic stresses)<br />

- Traits with low heritability<br />

- Pyramiding of resistance genes<br />

- <strong>Selection</strong> at seedling stage<br />

- Distinguish homo- & heterozygotes<br />

- No question of biosafety and bioethics


Steps Involved in MAS<br />

• Development of trait-associated markers<br />

• <strong>Selection</strong> of markers (relative contribut’n)<br />

• Validation of markers (breeding material)<br />

• Utilization of markers (several methods)<br />

• Simultaneous marker develop’t & utilizat’n<br />

(e.g. AB-QTL; ‘mapping-as-you-go’)


Marker Polymorphism <strong>for</strong> MAS


Marker-<strong>Assisted</strong> Backcrossing<br />

Transfer of genes from DG to RG<br />

- Foreground selection (<strong>for</strong> donor’s trait)<br />

- Background selection (<strong>for</strong> host genome)<br />

(i) 2 step selection (chromosome, genome)<br />

(ii) 3-4 step selection (gene region arm<br />

chromosome genome)


Restricted Backcrossing &<br />

Double Haploidy (DH) <strong>for</strong> MAS<br />

• BC 1 F 1 pollen <strong>for</strong> haploids<br />

-gene selection at the haploid stage<br />

-background selection of DHs<br />

• gain over phenotypic selection, and cost<br />

reduced by 40%<br />

(Molecular <strong>Breeding</strong> 2005)


Some Novel Strategies<br />

(<strong>for</strong> complex & multiple traits)<br />

• Marker-assisted recurrent selection (MARS)<br />

and genome-wide selection (GWS)<br />

• AB-QTL: transfer of several traits:<br />

Tanksley & Nelson (1996) TAG 92:191<br />

• Introgr’n Lines (ILs) <strong>for</strong> gene pyramid’g<br />

Zamir (2001) Nat Rev Gen; Ashikari &Matsuoka (2006) Trends Pl Sci<br />

• <strong>Breeding</strong> by Design TM<br />

Peleman & van der Voort (2003) Trends <strong>Plant</strong> Sci 8:330


Achievements of MAS<br />

(details not being discussed)<br />

• MAS Programs World-Wide: USA,<br />

Canada, Australia, CIMMYT, IRRI -<br />

Many Cultivars Released<br />

• MAS in <strong>India</strong>: Cultivars Released<br />

-1. Rice (Improved PB-1; Improved<br />

Sambha Mahsuri; 2. Pearl-millet<br />

(HHB-67-2); 3. Maize (Vivek-QPM9)<br />

• Submergence tolerance: Sub1A


60 Genes/QTL <strong>for</strong> MAS in Wheat<br />

(Gupta et al. 2009, Mol <strong>Breeding</strong>)<br />

A<br />

1 2 3 4 5 6 7<br />

QGw.ccsu-1A.1<br />

(1AS-5 0.20)<br />

Glu-A1<br />

(1AL1-0.17-0.61)<br />

Lr46<br />

QGw.ccsu-1A.3<br />

(1AL3-0.61-1.00)<br />

Lr37/Yr17/Sr38<br />

(2AS5-0.78-1.00)<br />

Bx7, Cre 493<br />

PPO (2AL0.77-0.85)<br />

QFhs.ndsu-3AS<br />

(3AS4-0.45-1.00)<br />

QPhs.ccsu-3A.1<br />

(3AL5-0.78-1.00)<br />

PHS, GBSS Null<br />

Yr34 (5AL23-0.87-1.00)<br />

Sr26<br />

GBSS Null<br />

Lr47<br />

(7AS-6 0.21)<br />

Flour Color<br />

Sr22 (7AL 0.83-1.00)<br />

B<br />

Yr10,Yr15,Glu-3<br />

(1BS.sat18-0.50-1.00)<br />

1B/1R<br />

Glu-B1(1BL1-0.47-0.69)<br />

Lr46<br />

(1BL 0.84-0.89)<br />

Lr13/23<br />

Cre1<br />

(2BL 0.50-0.89)<br />

Sr2,Fhb1(3BS-0.78-1)<br />

Rht1(4BS8-0.57-0.81)<br />

Sr36, Sr32,<br />

Sr39/Lr35,<br />

Lr46/Yr29 Cr Yls<br />

Qss.msub-3BL<br />

(3BL-0.81-1.00)<br />

BGGP<br />

GPC-B1,Yr36<br />

(6BS-5 0.49-0.68)<br />

Cre8<br />

Lr9 (6BL-0.79-1.00)<br />

Yfc, Rlnn1, Bo1, LMA<br />

Rht8<br />

(C-2DS 0.47-1.00)<br />

Sr33<br />

Rht2 (4DS3-0.67-0.82)<br />

PinA (5DS7-0.67-0.78)<br />

Lr34/Yr18 (7DS-4 0.61-1.00)<br />

Stb4<br />

D<br />

Glu-D1<br />

(1DL2-0.41-1.00)<br />

Cre3, PPO<br />

(2DL9-0.76-1.00)<br />

Lr24 (3DL-0.78-<br />

Sr24 1) (3DL2-0.27-0.81)<br />

Almt-1<br />

(4DL 0.71–0.86)<br />

Sr30, Lr1<br />

Pch1, Lr19/Sr25,<br />

GBSS Null<br />

Bdv2 (7DS-8 0.77-1.00)<br />

Figure 1


MAS in Cereals<br />

• Maize, Wheat, Barley (CIMMYT,<br />

USA, Australia, Canada)<br />

• <strong>Markers</strong> <strong>for</strong> genes <strong>for</strong> all major traits<br />

(>20 in each case) except yield and<br />

abiotic stresses being used <strong>for</strong> MAS:<br />

-insect -pest resistance, protein<br />

quality, & other agronomic traits


Gene-<strong>Assisted</strong> selection (GAS) <strong>for</strong><br />

Bread Making Quality<br />

Objective: provide an integrated manipulation of bread<br />

making characteristics using molecular markers<br />

Molecular markers<br />

<strong>for</strong> gluten strength<br />

STS <strong>for</strong> Glu-1<br />

New varieties<br />

Molecular markers<br />

<strong>for</strong> hardness<br />

SNPs <strong>for</strong> Pinb-D1<br />

Molecular markers <strong>for</strong><br />

grain protein content<br />

CAPS <strong>for</strong> Gpc-B1


MAS <strong>for</strong> Blight and Blast of Rice<br />

Bacterial Blight<br />

Blast Disease


Pyramiding Xa Genes <strong>for</strong> Bacterial<br />

Blight Resistance in Rice<br />

• ‘Angke’ & ‘Conde’ (Indonesian cultivars) xa5 in<br />

the background of xa4<br />

Toennissen et al. (2003) Curr Opin <strong>Plant</strong> Biol 6:191-198<br />

• PR106 (PAU) & MH2R<br />

xa5 (xa5+xa13+Xa21)<br />

(Mahyco Res. Ctr, Jalna)<br />

Singh et al. 2001. TAG (PR106 × IRBB62 xa5 + xa13 + Xa21 ); Mahyco<br />

(MH2R xa5 × IRBB60 Xa4+xa5+xa13+Xa21 )<br />

• PB-1(with basmati quality) with BB resistance<br />

(from IRBB55 xa13+Xa21 ) at IARI<br />

Joseph et al. 2004. Mol Breed 13:377<br />

• Improved Sambha Mahshuri: BLB genes xa5,<br />

xa13, Xa21; donor PR 106; DRR, Hyderabad


Improved Samba Mahsuri (IET 19046)<br />

A first variety from Marker <strong>Assisted</strong> <strong>Selection</strong> (MAS)


Bacterial Blight in Rice


Pyramiding of Genes <strong>for</strong> Blast<br />

Resistance in Rice<br />

• Pi-2(t)+Pi-9(t) in ‘Kalinga III’ &‘Vandana’<br />

(CRRI) * *C101A51 Pi-2(t) & O. minuta Pi-9(t) ;<br />

Pi-1(Pi1)+Pi-2(Piz-5)+Pi-4(Pita) in ‘CO39’<br />

(UAS, Bangalore)<br />

LAC23 Pi-1 , 5173 Pi-2 & Pai-kan-tao Pi-4 → CO39 = CO39 Pi-1+Pi-2+Pi-4<br />

(Hittalmani et al. 2000. TAG 100:1121–1128); *alleles indicated in parenthesis<br />

‘IR50’, ‘Jyothi’(Madras Univ), ‘IR36’, IR50, ‘IR64’ & ‘IR72’<br />

(UAS; Hittalmani 2005)


Resistance <strong>for</strong> Rice Blast Disease


Submergence Tolerance in Rice<br />

Swarna- Sub1A (Nature, Aug ’06)<br />

BC3F2, BC2F3<br />

Sub1 donor<br />

IR49830<br />

Swarna<br />

six varieties* close to<br />

release at national &<br />

state levels in<br />

Bangladesh & <strong>India</strong><br />

*Swarna, IR64,CR1009,<br />

BR11, TDK1, Samba Mahsuri


Marker <strong>Assisted</strong> Resistance <strong>Breeding</strong><br />

Some Often Cited Examples<br />

• Soybean Cyst Nematode<br />

Cregan et al. 2000; Meksem et al., 2001<br />

• Resistance against Gall Midge in Rice<br />

Madan Mohan (ICGEB; Now at UDSC)<br />

Two Hybrids Released in <strong>India</strong><br />

• Pearl-millet (HHB-67-2 from HHB-67 (HAU)<br />

(downy mildew resistant): ICRISAT<br />

• Maize (Vivek-QPM9): VPKAS, Almora<br />

Hybrid Rice Cultivars in China<br />

(e.g., Shanyou 63; Restorer Line Minghui 63 Improved)


Gene Pyramiding <strong>for</strong> Biotic &<br />

Abiotic Stresses in Barley<br />

• South Aust. Barley Impr. Program (SABIP)<br />

- CCN (Ha2/Ha4), BYDV (Yd2), SFNB (Rpt4) &<br />

Mn effi.(Mel1) -‘Sloop’ → ‘Sloop SA’;‘Sloop Vic’<br />

Source: Chebec(Ha2), Franklin (Yd2) & Keel (Ha4, Rpt4 & Mel1)<br />

- CCN, SFNB, leaf rust, leaf scald, boron tol. &<br />

thermostable β-amylase to ‘Gairdner’<br />

Source: 1.‘Keel’– CNN & SFNB resistance, 2. ‘Fanfare’- rust resistance, 3. H. spontaneum<br />

- scab resistance, 4. ‘DH115’ – boron tolerance & 5. SD3 - thermostable β-amylase<br />

SFNB, Spot Form Net Blotch


Problems in MAS <strong>for</strong> Yield:<br />

Maize/Rice/Tomato/Barley<br />

• Limited success: 20 QTLs in maize † , 2<br />

QTLs in rice ‘9311’ * & 3 QTLs in tomato ** ;<br />

† M. Edwards, Monsanto, St. Louis, USA *O. rufipogon ‘RGC105491’ to O. sativa ‘9311’<br />

(Liang et al. 2004, Euphytica); ** Crossing ILs (S. pennellii → S. lycopersicum ‘M82’),<br />

Gur & Zamir (2004) PLoS Biol 2:e245<br />

• No benefit (epistasis & env.): QTL from<br />

‘Steptoe’ (high yield) & ‘Morex’ (malting) in<br />

Barley → 10 Morex NILs & 1 Steptoe NIL<br />

(Kandemir et al., 2000 Mol Breed 6:157)


Pyramiding Additional Genes<br />

Over Transgenes<br />

• Rice: ‘CO39’NIL Piz-5 →IR50 Piz-5 → trans<strong>for</strong>m Xa21 =<br />

IR50 Piz-5+Xa21 (Crop Sci 42:p2072, 2002)<br />

• Rice: IRBB21 Xa21 → Minghui 63 Xa21 (MAS) × Minghui<br />

63 cry1Ab+cry1Ac (GM) = Minghui 63<br />

cry1Ab+ cry1Ac+Xa21<br />

(Minghui 63 is a widely used cms restorer line <strong>for</strong> hybrid rice in<br />

China)<br />

(Jiang et al. 2004 <strong>Plant</strong> Breed 123:112-116)<br />

• Soybean: QTL <strong>for</strong> insect resistance from ‘PI<br />

229358’ to GM ‘Jack-Bt’ cry1Ac<br />

(Walker et al. 2002; Mol Breed 9:43)


Reasons <strong>for</strong> Low Impact &<br />

Future Needs <strong>for</strong> MAS<br />

• Non-availability of robust markers<br />

• Epistasis, background and g × e<br />

• Still cost-ineffective: high throughput & low<br />

cost genoytpic centres needed<br />

• <strong>Plant</strong> breeder-molecular biologist gap<br />

• Association mapping needed<br />

• MARS & GWS <strong>for</strong> complex/multiple traits


Further Reading on MAS<br />

• Gupta et al. (2009). MAS <strong>for</strong> conventional<br />

plant breeding. <strong>Plant</strong> Breed Rev 33:145-217<br />

• Gupta et al. (2009). MAS in Wheat: Mol<br />

<strong>Breeding</strong> (Special Issue): 24: (published online,<br />

11 December, 2009)<br />

• Gupta et al. (2009). MAS <strong>for</strong> complex and<br />

multiple traits in crops. (under preparation)<br />

• Several Other Reviews on this Active Area

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!