Asymmetric Tensors [pdf]

Asymmetric Tensors [pdf] Asymmetric Tensors [pdf]

people.kyb.tuebingen.mpg.de
from people.kyb.tuebingen.mpg.de More from this publisher
19.11.2014 Views

2D Asymmetric Tensor Field Analysis and Visualization Eugene Zhang Oregon State University

2D <strong>Asymmetric</strong> Tensor Field<br />

Analysis and Visualization<br />

Eugene Zhang<br />

Oregon State University


Introduction<br />

• <strong>Asymmetric</strong> tensors can model the gradient<br />

of a vector field<br />

– velocity gradient in fluid dynamics<br />

– deformation gradient in solid mechanics


Introduction<br />

• Flow visualization has a wide range of<br />

applications in areo- and hydro-dynamics:<br />

y<br />

– Climatology<br />

– Oceanography and limnology<br />

– Hydraulic engineering<br />

– Aircraft and undersea vehicle design


Introduction<br />

• Existing techniques often focus on velocity<br />

[Laramee et al. 2004, Laramee et al. 2007]<br />

– Good for visualizing particle movement<br />

Trajectories<br />

Vector magnitude<br />

Topology


Introduction<br />

• Basic types of non-translational motions<br />

Rotation (+/-)<br />

Expansion<br />

Pure shear<br />

Contraction


Introduction<br />

• Given a vector field , the local<br />

linearization at is:<br />

Velocity vector field:<br />

translation<br />

Velocity gradient tensor field:<br />

yg<br />

rotation, isotropic scaling (expansion<br />

and contraction), and pure shear.


Introduction<br />

• Rotation:<br />

• Isotropic scaling:<br />

• Anisotropic stretching (aka pure shear):


Introduction<br />

• Flow motions and physical meanings: [Batchelor<br />

1967, Lighthill 1986, Ottino 1989, Sherman 1990]<br />

– Rotation:<br />

• Vorticity<br />

– Isotropic scaling:<br />

• volume change and/or stretching t in the third dimensioni<br />

– Anisotropic stretching:<br />

• rate of angular deformation, related to energy dissipation and rate<br />

of fluid mixing


Introduction<br />

• Velocity gradient tensor has been used in<br />

vector field visualization<br />

– Singularity classification [Helman and Hesselink 1991]<br />

– Periodic orbit extraction [Chen et al. 2007]<br />

– Attachment and separation detection [Kenwright 1998]<br />

– Vortex core identification [Sujudi and Haimes 1995, Jeong and<br />

Hussain 1995, Peikert and Roth 1999, Sadarjoen and Post 2000]


Introduction<br />

• However, tensor field structures were not<br />

investigated and applied to flow visualization<br />

– Velocity gradient is asymmetric<br />

– Past work in tensor field visualization focus on<br />

symmetric tensors [Delmarcelle and Hesselink 1994, Hesselink et<br />

al. 1997, Tricoche et al. 2001, Tricoche et al. 2003, Hotz et al. 2004,<br />

Zheng and Pang 2004, Zheng et al. 2005, Zhang et al. 2007]


Introduction<br />

• Symmetric tensors<br />

– two real eigenvalues<br />

– two mutually perpendicular eigenvectors when not<br />

degenerate<br />

• <strong>Asymmetric</strong> tensors<br />

– can have complex eigenvalues<br />

– eigenvectors not always mutually perpendicularp


Introduction<br />

• Questions:<br />

– What are features in an asymmetric tensor field?<br />

– How to visualize these features?<br />

Wh t l b t th fl f th<br />

– What can we learn about the flow from these<br />

features?


Tensor Decomposition<br />

– Isotropic scaling:<br />

– Rotation:<br />

– Pure shear:


Tensor Decomposition<br />

• The set of 2x2 tensors can be parameterized<br />

by , , , and , such that<br />

– , and<br />

–<br />

• This is a four-dimensional space<br />

• Can we focus on configuration spaces with<br />

lower-dimensions?


Tensor Decomposition<br />

• Eigenvalues only depend on , , and<br />

• Eigenvectors are dependent on , , and<br />

• Define eigenvector and eigenvalue manifolds


Eigenvector Manifold<br />

• Eigenvectors of<br />

are same as<br />

are same as<br />

can be rewritten as


Eigenvector Manifold<br />

Image credit: http://math.etsu.edu/MultiCalc/Chap3/Chap3-4/sphere1.gif


Eigenvector Manifold<br />

• Eigenvalues are constant along any latitude


Eigenvector Manifold<br />

• Real domains and complex domains<br />

• Degenerate curves


Eigenvector Manifold<br />

• We can focus on any longitude and understand<br />

how eigenvectors change


Eigenvector Manifold


Eigenvector Manifold


Eigenvector Manifold


Eigenvector Manifold


Eigenvector Manifold


Eigenvector Manifold


Eigenvector Manifold


Eigenvector Manifold


Eigenvector Manifold


Eigenvector Manifold<br />

• Bisectors never change along any longitude<br />

• They are dual-eigenvectors (Zheng and<br />

Pang 2005)<br />

• Dual-eigenvectors are eigenvectors of


Eigenvector Manifold<br />

• Dual-eigenvectors of


Eigenvector Manifold<br />

• Dual-eigenvectors of


Eigenvector Manifold<br />

• Which side of the Equator matters<br />

• Incorporate the Equator into asymmetric<br />

Incorporate the Equator into asymmetric<br />

tensor topology


Eigenvector Manifold<br />

• Degenerate (circular) points of<br />

– Number, location, index, orientation<br />

Major Eigenvectors of<br />

Symmetric Component<br />

Major Dual-Eigenvectors


Eigenvector Manifold<br />

• Poincaré-Hopf theorem (asymmetric<br />

tensors):<br />

– Given a continuous asymmetric tensor field<br />

defined on a closed surface S such that<br />

has only isolated degenerate points ,<br />

then


Eigenvector Manifold<br />

• Visualization<br />

– Black curves:<br />

– White curves:<br />

– Blue curves:<br />

– Degenerate points<br />

– The Equator<br />

– Degenerate curves


Eigenvector Manifold


Eigenvalue Manifold<br />

• Eigenvalues depend on , , and<br />

• We are interested in relatively strengths<br />

We are interested in relatively strengths<br />

among the three components


Eigenvalue Manifold


Eigenvalue Manifold


Eigenvalue Manifold<br />

Dominant component


Eigenvalue Manifold


Eigenvalue Manifold<br />

All components


Eigenvalue Manifold<br />

Tensor Magnitude


Combining Eigenvector and<br />

Eigenvalue Manifolds<br />

• CCW-dominant region (red) must be in the<br />

northern hemisphere (red)<br />

• CW-dominant region (green) must be in the<br />

southern hemisphere (red)


Combining Eigenvector and<br />

Eigenvalue Manifolds


Applications<br />

• Sullivan flow (a tornado model) [Sullivan:1959]


Applications<br />

• Sullivan flow (a tornado model)<br />

Vector field topology<br />

Dominant eigenvalue +<br />

major eigenvector and<br />

major dual-Eigenvector<br />

Tensor magnitude


Applications<br />

• Sullivan flow (a tornado model)<br />

Vector Field Topology<br />

Dominant Eigenvalue +<br />

Major Eigenvector and<br />

Major Dual-Eigenvector<br />

Tensor Magnitude


Applications<br />

• Sullivan flow (a tornado model)<br />

Vector Field Topology<br />

Dominant Eigenvalue +<br />

Major Eigenvector and<br />

Major Dual-Eigenvector<br />

Tensor Magnitude


Applications<br />

• Sullivan flow (a tornado model)<br />

Vector field topology<br />

Dominant eigenvalue +<br />

major eigenvector and<br />

major dual-eigenvector<br />

Tensor magnitude


Applications<br />

• Diesel engine


Applications<br />

• Diesel engine


Open Questions<br />

• What does tensor index tell us about the<br />

flow, other than zero stretching?<br />

• Can we generate a graph representation for<br />

asymmetric tensors, much like the vector<br />

field topology?


Open Questions<br />

• How do we integrate information from vector<br />

and tensor field analysis?


Open Questions<br />

• How does the analysis carry over to 3D?<br />

– Axis of rotation is not always aligned with any of<br />

the eigenvector directions, which means all of<br />

them could be moving when going from real<br />

domains into complex domains<br />

– How to deal with 3D anisotropic stretching?<br />

– What do the eigenvalue and eigenvector manifolds<br />

look like?


Open Questions<br />

• What is the topology of higher-order tensor<br />

fields, symmetric or not, 2D or 3D, static or<br />

time-varying? And why do we care?


Acknowledgement<br />

• Collaborators<br />

– Dr. Harry Yeh, Professor in fluid mechanics, Oregon<br />

State University<br />

– Darrel Palke, Intel<br />

– Zhongzang Lin, Ph.D. student at Oregon State<br />

University<br />

– Dr. Guoning Chen, postdoctoral researcher at<br />

University of Utah<br />

– Dr. Robert S. Laramee, Lecturer (Assistant Professor)<br />

at Swansea University, UK


Acknowledgement<br />

• Inspirations from:<br />

– Dr. Xiaoqiang Zheng, Nvidia<br />

– Dr. Alex Pang, Professor in computer science, UC<br />

Santa Cruz<br />

– The pioneers in vector and tensor field analysis and<br />

– The pioneers in vector and tensor field analysis and<br />

visualization


References<br />

• Xiaoqiang Zheng and Alex Pang, “2D <strong>Asymmetric</strong> Tensor Analysis”,<br />

IEEE Vis 2005 (http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1532770)<br />

• Eugene Zhang, Harry Yeh, Zhongzang Lin, and Robert S. Laramee,<br />

“<strong>Asymmetric</strong> Tensor Analysis for Flow Visualization”, IEEE Trans. on<br />

Visualization and Computer Graphics<br />

(http://www.computer.org/portal/web/csdl/doi/10.1109/TVCG.2008.68)<br />

org/portal/web/csdl/doi/10 1109/TVCG • Darrel Palke, Guoning Chen, Zhongzang Lin, Harry Yeh, Robert S.<br />

Laramee, and Eugene Zhang, “<strong>Asymmetric</strong> Tensor Visualization with<br />

Glyph and Hyperstreamline Placement on 2D Manifolds”, Tech<br />

Report, Oregon State University<br />

(http://ir.library.oregonstate.edu/jspui/handle/1957/13549)


Questions?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!