18.11.2014 Views

Ketone Body Formation; Fatty acid and Cholesterol ... - Ecu

Ketone Body Formation; Fatty acid and Cholesterol ... - Ecu

Ketone Body Formation; Fatty acid and Cholesterol ... - Ecu

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Ketone</strong> <strong>Body</strong><br />

<strong>Formation</strong>; <strong>Fatty</strong> <strong>acid</strong><br />

<strong>and</strong> <strong>Cholesterol</strong><br />

Biosynthesis


• Most acetyl CoA from β-oxidation is<br />

routed through the TCA cycle<br />

• Excess is used to synthesize ketone bodies;<br />

β-hydroxybutyrate, acetoacetate <strong>and</strong><br />

acetone<br />

• <strong>Ketone</strong> bodies serve as fuel molecules<br />

• Liver is the site of synthesis in mammals<br />

(occurs in the mitochondrial matrix)


<strong>Ketone</strong> <strong>Body</strong> Synthesis:<br />

O<br />

H 3<br />

C-C-S-CoA<br />

Acetyl CoA<br />

+<br />

O<br />

H 3<br />

C-C-S-CoA<br />

Acetyl CoA


O<br />

H 3<br />

C-C-S-CoA<br />

Acetyl CoA<br />

+<br />

O<br />

H 3<br />

C-C-S-CoA<br />

Acetyl CoA<br />

HSCoA<br />

thiolase<br />

O<br />

O<br />

H 3<br />

C-C-CH 2<br />

-C-S-CoA<br />

Acetoacetyl CoA


O<br />

H 3<br />

C-C-S-CoA<br />

Acetyl CoA<br />

+<br />

O O<br />

H C-C-CH -C-S-CoA<br />

3 2<br />

Acetoacetyl CoA


O<br />

O<br />

O<br />

H 3<br />

C-C-S-CoA<br />

Acetyl CoA<br />

+<br />

H 3<br />

C-C-CH 2<br />

-C-S-CoA<br />

Acetoacetyl CoA<br />

HSCoA<br />

OH<br />

HMG CoA Synthase<br />

O<br />

-<br />

OOC-CH 2<br />

-C-CH 2<br />

-C-S-CoA<br />

CH 3<br />

3-Hydroxy-3-Methylglutaryl CoA (HMG CoA)


OH O<br />

-<br />

OOC-CH -C-CH -C-S-CoA<br />

2 2<br />

CH 3<br />

3-Hydroxy-3-Methylglutaryl CoA (HMG CoA)<br />

HMG CoA Lyase<br />

O<br />

H 3<br />

C-C-S-CoA<br />

Acetyl CoA<br />

O<br />

-<br />

OOC-CH 2<br />

-C-CH 3<br />

Acetoacetate


O<br />

-<br />

OOC-CH 2<br />

-C-CH 3<br />

Acetoacetate<br />

NADH<br />

β-Hydroxybutyrate<br />

D’Hase<br />

CO 2<br />

O<br />

CH 3<br />

-C-CH 3<br />

Acetone<br />

NAD + OH<br />

-<br />

OOC-CH -CH-CH 2 3<br />

β-Hydroxybutyrate


<strong>Ketone</strong> <strong>Body</strong> Breakdown:<br />

OH<br />

-<br />

OOC-CH 2<br />

-CH-CH 3<br />

β-Hydroxybutyrate<br />

*Liver enzyme catalyzes<br />

a near equilibrium<br />

reaction<br />

β-Hydroxybutyrate<br />

D’Hase<br />

*Isozyme found in<br />

other cells catalyzes<br />

an irreversible<br />

reaction<br />

NAD +<br />

NADH<br />

O<br />

-<br />

OOC-CH -C-CH 2 3<br />

Acetoacetate


O<br />

-<br />

OOC-CH 2<br />

-C-CH 3<br />

Acetoacetate<br />

Succinyl CoA Transferase<br />

+<br />

O<br />

-<br />

OOC-CH 2<br />

-CH 2<br />

-C-S-CoA<br />

Succinyl CoA<br />

O<br />

O<br />

H 3<br />

C-C-CH 2<br />

-C-S-CoA<br />

+<br />

-<br />

OOC-CH 2<br />

-CH 2<br />

-COO -<br />

Succinate<br />

Acetoacetyl CoA


O O<br />

H C-C-CH -C-S-CoA<br />

3 2<br />

Acetoacetyl CoA<br />

Thiolase<br />

O<br />

H 3<br />

C-C-S-CoA<br />

Acetyl CoA<br />

O<br />

H 3<br />

C-C-S-CoA<br />

Acetyl CoA


<strong>Fatty</strong> <strong>acid</strong><br />

Biosynthesis


• Occurs through the condensation of C2<br />

units<br />

• Occurs largely in adipocytes <strong>and</strong> liver<br />

<strong>and</strong> to a lesser extent in specialized<br />

tissues<br />

• Occurs in three stages: 1) transport of<br />

acetyl Co A to the cytosol; 2) formation<br />

of malonyl CoA; 3) assembly of the<br />

fatty <strong>acid</strong> chain


Citrate Transport System:<br />

Acetyl CoA + OAA<br />

Citrate<br />

α-Kg<br />

or<br />

malate<br />

Citrate:Dicarboxylic<br />

<strong>acid</strong> Carrier<br />

Cytosol<br />

Matrix


Citrate Transport System:<br />

Citrate<br />

Acetyl CoA + OAA<br />

Citrate<br />

α-Kg<br />

or<br />

malate<br />

Citrate:Dicarboxylic<br />

<strong>acid</strong> Carrier<br />

α-Kg<br />

or malate<br />

Cytosol<br />

Matrix


Citrate Transport System:<br />

citrate lyase<br />

malate<br />

d’hase<br />

Cytosol<br />

Citrate<br />

ATP<br />

ADP<br />

OAA + Acetyl CoA<br />

malate<br />

Malic<br />

enzyme<br />

NADH<br />

NAD+<br />

NADP+<br />

NADPH<br />

CO 2<br />

pyruvate<br />

Citrate:Dicarboxylic<br />

<strong>acid</strong> Carrier<br />

pyruvate<br />

translocase<br />

pyruvate<br />

Matrix


• <strong>Formation</strong> of Malonyl CoA by Acetyl CoA<br />

carboxylase<br />

• Loading Step: Transfer of<br />

acetyl CoA <strong>and</strong> malonyl CoA<br />

to ACP to form acetyl-ACP<br />

<strong>and</strong> malonyl ACP<br />

• Successive rounds of<br />

condensation; reduction;<br />

dehydration, reduction<br />

}<br />

<strong>Fatty</strong> Acid<br />

Synthetase


O<br />

H 3<br />

C-C-S-CoA<br />

acetyl-CoA<br />

+ HCO 3<br />

ATP<br />

ADP, Pi<br />

bicarbonate<br />

Acetyl CoA Carboxylase<br />

O<br />

-<br />

OOC-CH 2<br />

-C-S-CoA<br />

malonyl-CoA


<strong>Fatty</strong> Acid Synthetase Complex:<br />

Bacteria, Plants<br />

Seven activities in 7 separate proteins<br />

Yeast<br />

Seven activities in 2 separate proteins<br />

Vertebrates<br />

Seven activities in 1 large protein


acetyl-CoA<br />

O<br />

H 3<br />

C-C-S-CoA<br />

malonyl-CoA<br />

O<br />

-<br />

OOC-CH 2<br />

-C-S-CoA<br />

Acetyl CoA:ACP<br />

transacylase<br />

HS-ACP<br />

HS-CoA<br />

HS-ACP<br />

HS-CoA<br />

Malonyl CoA:ACP<br />

transacylase<br />

O<br />

H 3<br />

C-C-S-ACP<br />

acetyl-ACP<br />

O<br />

-<br />

OOC-CH 2<br />

-C-S-ACP<br />

malonyl-ACP<br />

Loading Step


O<br />

H 3<br />

C-C-S-ACP<br />

acetyl-ACP<br />

O<br />

-<br />

OOC-CH 2<br />

-C-S-ACP<br />

malonyl-ACP<br />

ketoacyl-ACP synthase<br />

Condensation


O<br />

H 3<br />

C-C-S-ACP<br />

acetyl-ACP<br />

O<br />

-<br />

OOC-CH 2<br />

-C-S-ACP<br />

malonyl-ACP<br />

CO 2<br />

HS-ACP<br />

ketoacyl-ACP synthase<br />

O O<br />

H C-C-CH -C-S-ACP<br />

3 2<br />

acetoacetyl-ACP<br />

Condensation


O<br />

O<br />

H 3<br />

C-C-CH 2<br />

-C-S-ACP<br />

acetoacetyl-ACP<br />

NADPH<br />

NADP +<br />

ketoacyl-ACP<br />

reductase<br />

OH<br />

O<br />

H 3<br />

C-C-CH 2<br />

-C-S-ACP<br />

H<br />

b-hydroxybutyryl-ACP<br />

Reduction


OH O<br />

H C-C-CH -C-S-ACP<br />

3 2<br />

H<br />

b-hydroxybutyryl-ACP<br />

b-hydroxyacyl-ACP<br />

dehydrase<br />

H 2<br />

0<br />

H O<br />

H C-C=C-C-S-ACP<br />

3<br />

H<br />

butenoyl-ACP<br />

Dehydration


H O<br />

H C-C=C-C-S-ACP<br />

3<br />

H<br />

butenoyl-ACP<br />

NADPH<br />

NADP<br />

+<br />

enoyl-ACP<br />

reductase<br />

O<br />

H 3<br />

C-CH 2<br />

-CH 2<br />

-C-S-ACP<br />

butyryl-ACP<br />

Reduction


• <strong>Fatty</strong> Acid Synthesis is sometimes called<br />

palmitate synthesis because palmitate is the<br />

predominant product (in mammals)<br />

• Rounds of synthesis continue until a C16<br />

palmitoyl group is formed<br />

• Thiolase then catalyzes the formation of<br />

palmitate <strong>and</strong> ACP-SH<br />

Palmitoyl-ACP<br />

thiolase<br />

Palmitate +<br />

ACP-SH


Overall stoichiometry for<br />

palmitate synthesis:<br />

Acetyl-CoA + 7 Malonyl CoA + 14 NADPH, H +<br />

palmitate + 7CoA + 7HCO 3<br />

14 NADP +


Regulation:<br />

• Key regulatory step: acetyl-CoA carboxylase<br />

• Citrate allosterically activates.<br />

• Palmitate is a feedback inhibitor<br />

• <strong>Fatty</strong> acyl-CoAs allosterically inhibit<br />

• Phosphorylation (stimulated by glucagon<br />

<strong>and</strong> epinephrine) inactivates


Regulation:<br />

• <strong>Fatty</strong> <strong>acid</strong> synthesis occurs in the<br />

chloroplast (stroma) in plants<br />

• The plant acetyl-CoA carboxylase is<br />

not regulated by phosphorylation; it<br />

is activated by increases in stromal<br />

pH <strong>and</strong> magnesium


• Synthesis of unsaturated fatty <strong>acid</strong>s requires the<br />

activity of a number of desaturases<br />

• Animal desauturases form double bonds as<br />

much as 9 carbons removed from the carboxyl<br />

end of a fatty <strong>acid</strong><br />

• Only plant desaturases form double bonds<br />

positioned farther than 9 carbons from the<br />

carboxyl end; thus fatty <strong>acid</strong>s such as linoleate<br />

(18:2 ∆9,12 ) must be acquired in the diet of animals<br />

<strong>and</strong> are considered essential fatty <strong>acid</strong>s


Linoleate<br />

arachidonic <strong>acid</strong> (C20:4 ∆5,8,11,14 )<br />

cyclooxygenase<br />

lipoxygenase<br />

leukotrienes<br />

eicosanoids<br />

prostagl<strong>and</strong>ins (smooth muscle<br />

contraction; pain; inflammation)<br />

trigger allergic<br />

responses


Linoleate<br />

arachidonic <strong>acid</strong> (C20:4 ∆5,8,11,14 )<br />

X<br />

cyclooxygenase<br />

lipoxygenase<br />

Aspirin<br />

eicosanoids<br />

prostagl<strong>and</strong>ins (smooth muscle<br />

contraction; pain; inflammation)<br />

leukotrienes<br />

trigger allergic<br />

responses


<strong>Cholesterol</strong> Biosynthesis<br />

• Pathway substantially active only in liver cells<br />

• All carbon atoms arise from acetyl-CoA<br />

• Squalene, C30 linear hydrocarbon, is an<br />

intermediate<br />

• Squalene is formed from 5 carbon units<br />

(isoprene)<br />

H 3<br />

C CH 2<br />

H 2<br />

C C C H


Stage 1: Acetyl Co-A to<br />

Isopentenyl Pyrophosphate<br />

2 Acetyl Co-A Acetoacetyl Co-A<br />

thiolase<br />

2 NADP +<br />

HS-CoA<br />

2<br />

NADPH<br />

HMG CoA<br />

HMG CoA<br />

synthase<br />

OH<br />

HMG CoA<br />

reductase<br />

-<br />

OOC-CH 2<br />

-C-CH 2<br />

-CH 2<br />

-OH<br />

CH 3<br />

Mevalonate


Stage 1: Acetyl Co-A to<br />

Isopentenyl Pyrophosphate<br />

2 Acetyl Co-A Acetoacetyl Co-A<br />

thiolase<br />

NADP +<br />

HS-CoA<br />

NADPH<br />

HMG CoA<br />

HMG CoA<br />

synthase<br />

OH<br />

X<br />

HMG CoA<br />

reductase<br />

-<br />

OOC-CH 2<br />

-C-CH 2<br />

-CH 2<br />

-OH<br />

CH 3<br />

Mevalonate<br />

Lovostatin<br />

(Mevacor);<br />

Zocor


OH<br />

-<br />

OOC-CH 2<br />

-C-CH 2<br />

-CH 2<br />

-OH<br />

melvalonate kinase<br />

CH 3<br />

Mevalonate<br />

ATP<br />

ADP, Pi<br />

OH<br />

Phosphomevalonate<br />

-<br />

OOC-CH -C-CH -CH -OPO<br />

=<br />

kinase<br />

2 2 2 3<br />

CH 3<br />

OH<br />

Phosphomevalonate<br />

-<br />

OOC-CH 2<br />

-C-CH 2<br />

-CH 2<br />

-OP 2<br />

O 6<br />

3-<br />

ATP<br />

ADP, Pi<br />

CH 3<br />

Pyrophosphomevalonate


Pyrophosphomevalonate<br />

ATP<br />

CH 3<br />

CH =C-CH -CH -OP O 3-<br />

2 2 2 2 6 Isopentenyl pyrophosphate<br />

Decarboxylase<br />

ADP, Pi<br />

CO 2<br />

isomerase<br />

CH 3<br />

CH -C=CH-CH -OP O 3-<br />

3 2 2 6 Dimethylallyl pyrophosphate


Stage 2: Isopentenyl Pyrophosphate to<br />

Squalene<br />

Isopentenyl pyrophosphate +<br />

Dimethylallyl pyrophosphate<br />

prenyl transferase<br />

condense head to tail<br />

PPi<br />

OP 2<br />

O 6<br />

3-<br />

Geranyl<br />

pyrophosphate<br />

(C10)


OP 2<br />

O 6<br />

3-<br />

Geranyl<br />

pyrophosphate<br />

(C10)<br />

+<br />

OP 2<br />

O 6<br />

3-<br />

Isopentenyl<br />

pyrophosphate<br />

(C5)<br />

prenyl transferase<br />

OP 2<br />

O 6<br />

3-<br />

PPi<br />

Farnesyl<br />

pyrophosphate<br />

(C15)


2 PPi<br />

OP 2<br />

O 6<br />

3-<br />

NADPH<br />

2 Farnesyl<br />

pyrophosphates<br />

condense head to head<br />

NADP +<br />

Reaction catalyzed<br />

by Squalene<br />

synthase<br />

Product is Squalene (C30) !


Stage 3: Squalene to <strong>Cholesterol</strong><br />

• Numerous steps involving addition of oxygen (to<br />

form squalene 2,3 epoxide) <strong>and</strong> closure of rings<br />

• Lanosterol is the first intermediate containing all<br />

four fused rings; it accumulates in large amounts<br />

in cells actively synthesizing cholesterol<br />

• Lanosterol is converted to cholesterol in 20<br />

more reactions<br />

• Squalene 2,3 epoxide is precursor to plant<br />

sterols


<strong>Cholesterol</strong> metabolism is a source of a large<br />

number of other cellular constituents:<br />

• Isopentenyl pyrophosphate is precursor to fat<br />

soluble vitamins (A, E, K), ubiquinone in<br />

animal cells, plastoquinone <strong>and</strong> the phytol side<br />

chain of chlorophyll in plant cells, certain oils<br />

such as musk, lemon, eucalayptus<br />

• <strong>Cholesterol</strong> is precursor for bile salts, vitamin<br />

D, steroid hormones, mineralocorticoids, <strong>and</strong><br />

is also an important component of membranes.


Regulation of HMG-CoA Reductase:<br />

• Phosphorylation by c-AMP dependent<br />

protein kinase inactivates.<br />

• Gene expression: <strong>Cholesterol</strong> levels<br />

control the amout of mRNA. If [cholesterol]<br />

is high, mRNA levels are reduced. If<br />

[cholesterol] is low, mRNA is increased.<br />

• Degradation of the enzyme: Half-life depends<br />

upon the cholesterol level; high cholesterol<br />

means a short half-life.


Lipoproteins: Good vs. Bad <strong>Cholesterol</strong><br />

Phospholipids, triacylglycerols <strong>and</strong> cholesterol circulate<br />

in blood in the form of lipoproteins.<br />

Classified according to the relative amounts of lipid<br />

<strong>and</strong> protein in the complex (the more protein <strong>and</strong> less<br />

lipid the denser the complex).<br />

Thus, we have high-density lipoproteins (HDL);<br />

low-density lipoproteins (LDL); intermediate-density<br />

lipoproteins (IDL); very-low density lipoproteins (VLDL)<br />

<strong>and</strong> chylomicrons.


All lipoproteins consist of a core of triacylglycerols or<br />

cholesterol esters surrounded by a single phospholipid<br />

layer into which is inserted a mixture of cholesterol <strong>and</strong><br />

proteins. The proteins serve as recognition sites for<br />

lipoprotein receptors throughout the body.<br />

HDL <strong>and</strong> VLDL are synthesized primarily in the ER of the<br />

liver; chylomicrons are synthesized in the intestine.<br />

LDL is synthesized from VLDL <strong>and</strong> is the major<br />

circulatory complex for transport of cholesterol <strong>and</strong><br />

cholesterol esters from liver to other tissues.<br />

Chylomicrons transport triacylglycerols mostly (<strong>and</strong><br />

some cholesterol esters) from intestines to other tissues.


VLDL released in to the bloodstream is converted to IDL<br />

<strong>and</strong> LDL by the action of lipases which cleave<br />

triacylglycerols.<br />

The half-life of LDL is about 24 hours. It is removed from<br />

circulation by endocytosis in coated vesicles <strong>and</strong><br />

degradation by lysosomal <strong>acid</strong> lipases.<br />

HDL has a half-life of 5-6 days. Newly formed HDL contains<br />

no cholesterol esters. These accumulate over time through<br />

the action of enzymes that transfer cholesterol esters. HDL<br />

functions to return cholesterol <strong>and</strong> cholesterol esters to the<br />

liver <strong>and</strong> hence remove them from circulation. Hence, HDL<br />

is the “good cholesterol”. LDL, because it is the major<br />

circulating form of cholesterol is the “bad cholesterol”<br />

correlated with increased risk of cardiovascular disease.


Receptor-Mediated Endocytosis<br />

Discovered by Brown <strong>and</strong> Goldstein (1985 Nobel<br />

Prize).<br />

ApoB-100, the major protein in LDL particles, is<br />

recognized by the LDL receptor.<br />

Binding of LDL to the LDL receptor initiates<br />

endocytosis which brings LDL <strong>and</strong> its receptors into<br />

the cell inside an endosome.<br />

Endosomes fuse with lysosomes, which contain<br />

enzymes that hydrolyze cholesterol esters, releasing<br />

cholesterol <strong>and</strong> fatty <strong>acid</strong>s into the cytosol.


ApoB-100 is degraded to amino <strong>acid</strong>s, but the LDL<br />

receptor is recycled back to the cell surface.<br />

<strong>Cholesterol</strong> entering the cell in this manner is used<br />

to synthesize membranes, or is reesterified for<br />

storage in cytosolic lipid droplets.<br />

Defective LDL receptors result in the genetic disease<br />

familial hypercholesterolemia. This is characterized<br />

by the inability of cells to take up cholesterol; hence<br />

blood cholesterol levels are extremely high.<br />

The excess blood cholesterol accumulates <strong>and</strong><br />

contributes to the formation of atherosclerotic<br />

plaques. Heart failure from atherosclerosis is the<br />

leading cause of death in industrialized societies.


Coated pit<br />

Clathrin<br />

Receptor with lig<strong>and</strong><br />

Adaptor

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!