18.11.2014 Views

Molecular Dynamics and the Rouse Model - An Introduction to the ...

Molecular Dynamics and the Rouse Model - An Introduction to the ...

Molecular Dynamics and the Rouse Model - An Introduction to the ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong><br />

<strong>An</strong> <strong>Introduction</strong> <strong>to</strong> <strong>the</strong> Physics of Polymers<br />

Daniel Bridges 1 Dr. <strong>An</strong>iket Bhattacharya 2<br />

1 Department of Physics & Astronomy<br />

Middle Tennessee State University<br />

2 Department of Physics<br />

University of Central Florida<br />

July 28, 2009<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Polymers are essential <strong>to</strong> life.<br />

Why am I here?<br />

Polymer physics<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Why am I here?<br />

Polymer physics<br />

Don’t sneeze; you might lose some polymers.<br />

We can model a simplified DNA<br />

str<strong>and</strong> as a beaded necklace.<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Why am I here?<br />

Polymer physics<br />

Don’t sneeze; you might lose some polymers.<br />

We can model a simplified DNA<br />

str<strong>and</strong> as a beaded necklace.<br />

<strong>Rouse</strong> model: ”Bead-spring<br />

model”<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


Polymers sit in solvents!<br />

<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Why am I here?<br />

Polymer physics<br />

Polymer/solvent interaction (varies with temp.) dictates three<br />

situations:<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


Polymers sit in solvents!<br />

<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Why am I here?<br />

Polymer physics<br />

Polymer/solvent interaction (varies with temp.) dictates three<br />

situations:<br />

1 polymer ”stretched” ⇒ ”good solvent”<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


Polymers sit in solvents!<br />

<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Why am I here?<br />

Polymer physics<br />

Polymer/solvent interaction (varies with temp.) dictates three<br />

situations:<br />

1 polymer ”stretched” ⇒ ”good solvent”<br />

2 ideal r<strong>and</strong>om walk ⇒ ”<strong>the</strong>ta condition”<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


Polymers sit in solvents!<br />

<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Why am I here?<br />

Polymer physics<br />

Polymer/solvent interaction (varies with temp.) dictates three<br />

situations:<br />

1 polymer ”stretched” ⇒ ”good solvent”<br />

2 ideal r<strong>and</strong>om walk ⇒ ”<strong>the</strong>ta condition”<br />

3 collapses <strong>to</strong> form compact globule<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


Polymers sit in solvents!<br />

<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Why am I here?<br />

Polymer physics<br />

Polymer/solvent interaction (varies with temp.) dictates three<br />

situations:<br />

1 polymer ”stretched” ⇒ ”good solvent”<br />

2 ideal r<strong>and</strong>om walk ⇒ ”<strong>the</strong>ta condition”<br />

3 collapses <strong>to</strong> form compact globule<br />

modeling this behavior ...<br />

⃗F = − ⃗ ∇U<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


Polymers sit in solvents!<br />

<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Why am I here?<br />

Polymer physics<br />

Polymer/solvent interaction (varies with temp.) dictates three<br />

situations:<br />

1 polymer ”stretched” ⇒ ”good solvent”<br />

2 ideal r<strong>and</strong>om walk ⇒ ”<strong>the</strong>ta condition”<br />

3 collapses <strong>to</strong> form compact globule<br />

modeling this behavior ...<br />

⃗F = − ⃗ ∇U − ⃗ F R (t)<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


Polymers sit in solvents!<br />

<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Why am I here?<br />

Polymer physics<br />

Polymer/solvent interaction (varies with temp.) dictates three<br />

situations:<br />

1 polymer ”stretched” ⇒ ”good solvent”<br />

2 ideal r<strong>and</strong>om walk ⇒ ”<strong>the</strong>ta condition”<br />

3 collapses <strong>to</strong> form compact globule<br />

modeling this behavior ...<br />

⃗F = − ⃗ ∇U − ⃗ F R (t) − ζ d⃗r<br />

dt<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


Polymers sit in solvents!<br />

<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Why am I here?<br />

Polymer physics<br />

Polymer/solvent interaction (varies with temp.) dictates three<br />

situations:<br />

1 polymer ”stretched” ⇒ ”good solvent”<br />

2 ideal r<strong>and</strong>om walk ⇒ ”<strong>the</strong>ta condition”<br />

3 collapses <strong>to</strong> form compact globule<br />

Langevin dynamics<br />

⃗F = − ⃗ ∇U − ⃗ F R (t) − ζ d⃗r<br />

dt = m d2 ⃗r<br />

dt 2<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


Polymers sit in solvents!<br />

<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Why am I here?<br />

Polymer physics<br />

Polymer/solvent interaction (varies with temp.) dictates three<br />

situations:<br />

1 polymer ”stretched” ⇒ ”good solvent”<br />

2 ideal r<strong>and</strong>om walk ⇒ ”<strong>the</strong>ta condition”<br />

3 collapses <strong>to</strong> form compact globule<br />

Langevin dynamics<br />

⃗F = − ⃗ ∇U − ⃗ F R (t) − ζ d⃗r<br />

dt = m d2 ⃗r<br />

dt 2<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Why am I here?<br />

Polymer physics<br />

Relaxation time = MD equilibriation<br />

Want polymer <strong>to</strong> be ”at rest”.<br />

Important for MD accuracy <strong>and</strong> clarity<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Verlet Algorithm<br />

The <strong>Rouse</strong> <strong>Model</strong><br />

The Zimm <strong>Model</strong><br />

Some Topics Considered<br />

Verlet Algorithm is ”numerical integration” of motion eqns.<br />

Next position ⃗r(t + δt) ”future” determined by<br />

current position ⃗r(t) <strong>and</strong> acceleration ⃗a(t): t ⇒ ”now”<br />

previous position ⃗r(t − δt): t − δt ⇒ ”past”<br />

⃗r(t + δt) = ⃗r(t) + δt⃗v(t) + 1 2 δt2 ⃗a(t) + ...<br />

⃗r(t − δt) = ⃗r(t) − δt⃗v(t) + 1 2 δt2 ⃗a(t) + ...<br />

The Verlet Algorithm<br />

⃗r(t + δt) = 2⃗r(t) −⃗r(t − δt) + δt 2 ⃗a(t) + ...<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Verlet Algorithm<br />

The <strong>Rouse</strong> <strong>Model</strong><br />

The Zimm <strong>Model</strong><br />

Some Topics Considered<br />

Verlet Algorithm is ”numerical integration” of motion eqns.<br />

Next position ⃗r(t + δt) ”future” determined by<br />

current position ⃗r(t) <strong>and</strong> acceleration ⃗a(t): t ⇒ ”now”<br />

previous position ⃗r(t − δt): t − δt ⇒ ”past”<br />

⃗r(t + δt) = ⃗r(t) + δt⃗v(t) + 1 2 δt2 ⃗a(t) + ...<br />

⃗r(t − δt) = ⃗r(t) − δt⃗v(t) + 1 2 δt2 ⃗a(t) + ...<br />

The Verlet Algorithm<br />

⃗r(t + δt) = 2⃗r(t) −⃗r(t − δt) + δt 2 ⃗a(t) + ...<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Verlet Algorithm<br />

The <strong>Rouse</strong> <strong>Model</strong><br />

The Zimm <strong>Model</strong><br />

Some Topics Considered<br />

Verlet Algorithm is ”numerical integration” of motion eqns.<br />

Next position ⃗r(t + δt) ”future” determined by<br />

current position ⃗r(t) <strong>and</strong> acceleration ⃗a(t): t ⇒ ”now”<br />

previous position ⃗r(t − δt): t − δt ⇒ ”past”<br />

⃗r(t + δt) = ⃗r(t) + δt⃗v(t) + 1 2 δt2 ⃗a(t) + ...<br />

⃗r(t − δt) = ⃗r(t) − δt⃗v(t) + 1 2 δt2 ⃗a(t) + ...<br />

The Verlet Algorithm<br />

⃗r(t + δt) = 2⃗r(t) −⃗r(t − δt) + δt 2 ⃗a(t) + ...<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Verlet Algorithm<br />

The <strong>Rouse</strong> <strong>Model</strong><br />

The Zimm <strong>Model</strong><br />

Some Topics Considered<br />

Verlet Algorithm is ”numerical integration” of motion eqns.<br />

Next position ⃗r(t + δt) ”future” determined by<br />

current position ⃗r(t) <strong>and</strong> acceleration ⃗a(t): t ⇒ ”now”<br />

previous position ⃗r(t − δt): t − δt ⇒ ”past”<br />

⃗r(t + δt) = ⃗r(t) + δt⃗v(t) + 1 2 δt2 ⃗a(t) + ...<br />

⃗r(t − δt) = ⃗r(t) − δt⃗v(t) + 1 2 δt2 ⃗a(t) + ...<br />

The Verlet Algorithm<br />

⃗r(t + δt) = 2⃗r(t) −⃗r(t − δt) + δt 2 ⃗a(t) + ...<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Verlet Algorithm<br />

The <strong>Rouse</strong> <strong>Model</strong><br />

The Zimm <strong>Model</strong><br />

Some Topics Considered<br />

Basic assumptions of <strong>the</strong> <strong>the</strong> ”Bead-Spring” <strong>Model</strong><br />

N ”beads” (monomers are points) with<br />

spring constant k sp = 3k BT<br />

b 2<br />

No hydrodynamic interactions between<br />

beads<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Verlet Algorithm<br />

The <strong>Rouse</strong> <strong>Model</strong><br />

The Zimm <strong>Model</strong><br />

Some Topics Considered<br />

Basic assumptions of <strong>the</strong> <strong>the</strong> ”Bead-Spring” <strong>Model</strong><br />

N ”beads” (monomers are points) with<br />

spring constant k sp = 3k BT<br />

b 2<br />

No hydrodynamic interactions between<br />

beads<br />

Proposed by P. E. <strong>Rouse</strong>, J Chem Phys 21,<br />

1272 (1953).<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Verlet Algorithm<br />

The <strong>Rouse</strong> <strong>Model</strong><br />

The Zimm <strong>Model</strong><br />

Some Topics Considered<br />

Basic assumptions of <strong>the</strong> <strong>the</strong> ”Bead-Spring” <strong>Model</strong><br />

N ”beads” (monomers are points) with<br />

spring constant k sp = 3k BT<br />

b 2<br />

No hydrodynamic interactions between<br />

beads<br />

Proposed by P. E. <strong>Rouse</strong>, J Chem Phys 21,<br />

1272 (1953).<br />

Drawbacks: Does not accurately express diffusion coefficient or<br />

relaxation time.<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Verlet Algorithm<br />

The <strong>Rouse</strong> <strong>Model</strong><br />

The Zimm <strong>Model</strong><br />

Some Topics Considered<br />

Building on <strong>Rouse</strong>: <strong>the</strong> Zimm model<br />

addresses hydrodynamic<br />

interactions between beads<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Verlet Algorithm<br />

The <strong>Rouse</strong> <strong>Model</strong><br />

The Zimm <strong>Model</strong><br />

Some Topics Considered<br />

Building on <strong>Rouse</strong>: <strong>the</strong> Zimm model<br />

addresses hydrodynamic<br />

interactions between beads<br />

<strong>the</strong> diffusion coefficient <strong>and</strong><br />

relaxation times agree with<br />

experiment.<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Verlet Algorithm<br />

The <strong>Rouse</strong> <strong>Model</strong><br />

The Zimm <strong>Model</strong><br />

Some Topics Considered<br />

Building on <strong>Rouse</strong>: <strong>the</strong> Zimm model<br />

addresses hydrodynamic<br />

interactions between beads<br />

<strong>the</strong> diffusion coefficient <strong>and</strong><br />

relaxation times agree with<br />

experiment.<br />

Proposed by B. H. Zimm, J Chem<br />

Phys 24, 269 (1956).<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Interesting Quantities (<strong>Rouse</strong>)<br />

Verlet Algorithm<br />

The <strong>Rouse</strong> <strong>Model</strong><br />

The Zimm <strong>Model</strong><br />

Some Topics Considered<br />

Average Radius of Gyration:<br />

Rg 2 = 1 ∑ npart<br />

npart n=1<br />

〈( R ⃗ n − R ⃗ 〉<br />

G ) 2 End-<strong>to</strong>-end Distance: ∥R ⃗ ∥ ∥ ∥∥ ∥∥ ∑ 1N = N<br />

n=1 ⃗r n∥<br />

Diffusion Constant:<br />

D G = k BT<br />

Nζ<br />

= 1 6t<br />

〈‖⃗r i (t) −⃗r i (0)‖ 2〉<br />

Relaxation Time: τ r ≃ Nb2<br />

D G<br />

ζ, (viscous) friction<br />

coefficient<br />

N, number of<br />

monomers<br />

k B , Boltzmann<br />

constant<br />

T , temperature<br />

τ, relaxation time<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


Diffusion Constant<br />

D G = k BT<br />

Nζ<br />

= 1 6t<br />

Rahman: 2.43 × 10−5 cm2<br />

s<br />

<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

〈‖⃗r i (t) −⃗r i (0)‖ 2〉<br />

Diffusion Constant<br />

Mine: 2.47 × 10−5 cm2<br />

s<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Future Outlook<br />

Future goals:<br />

underst<strong>and</strong>ing forced translocation<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Future Outlook<br />

Future goals:<br />

underst<strong>and</strong>ing forced translocation<br />

manipulate polymer movement<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Future Outlook<br />

Future goals:<br />

underst<strong>and</strong>ing forced translocation<br />

manipulate polymer movement<br />

gene <strong>the</strong>rapy<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Future Outlook<br />

Future goals:<br />

underst<strong>and</strong>ing forced translocation<br />

manipulate polymer movement<br />

gene <strong>the</strong>rapy<br />

virus injection<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Future Outlook<br />

Future goals:<br />

underst<strong>and</strong>ing forced translocation<br />

manipulate polymer movement<br />

gene <strong>the</strong>rapy<br />

virus injection<br />

protein sequencing<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


Thank you!<br />

<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

Future Outlook<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


For Fur<strong>the</strong>r Reading I<br />

<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

For Fur<strong>the</strong>r Reading<br />

Allen, M.P., Tildesley, D.J. (1987).<br />

Computer Simulation of Liquids.<br />

Oxford: Clarendon Press.<br />

Doi, M. (1995).<br />

<strong>Introduction</strong> <strong>to</strong> Polymer Physics.<br />

Oxford: Clarendon Press<br />

Jones, R. A. L. (2002).<br />

Soft Condensed Matter.<br />

Oxford: Oxford University Press.<br />

Teraoka, I. (2002).<br />

Polymer Solutions: <strong>An</strong> <strong>Introduction</strong> <strong>to</strong> Physical Properties<br />

John Wiley <strong>and</strong> Sons, Inc.<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>


For Fur<strong>the</strong>r Reading II<br />

<strong>Introduction</strong><br />

Methods<br />

Results<br />

Summary<br />

Appendix<br />

For Fur<strong>the</strong>r Reading<br />

Rahman, A. (1964).<br />

Correlations in <strong>the</strong> Motion of A<strong>to</strong>ms in Liquid Argon.<br />

Physical Review, 136, Number 2A<br />

Daniel Bridges, Dr. <strong>An</strong>iket Bhattacharya<br />

<strong>Molecular</strong> <strong>Dynamics</strong> <strong>and</strong> <strong>the</strong> <strong>Rouse</strong> <strong>Model</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!