18.11.2014 Views

Theory of Relaxor Ferroelectrics - Argonne National Laboratory

Theory of Relaxor Ferroelectrics - Argonne National Laboratory

Theory of Relaxor Ferroelectrics - Argonne National Laboratory

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

<strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong><br />

Gian G. Guzmán-Verri 1,2 & Chandra M. Varma 2<br />

1 Materials Science Division, <strong>Argonne</strong> <strong>National</strong> <strong>Laboratory</strong><br />

2 Department <strong>of</strong> Physics and Astronomy, UC Riverside<br />

MTI Non-conventional Insulators Workshop<br />

11/14/2012<br />

Work partially funded by the UC Lab Fees Research Program<br />

09-LR-01-118286-HELF


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

Why are relaxors interesting? New physics & technologically important<br />

E ⩵0<br />

1 Ε, relaxors<br />

Ε<br />

E E c<br />

T fe T max T CW T B<br />

Broad region <strong>of</strong> fluctuations (diffuse phase transition).<br />

Several special temperatures.<br />

Neutron diffuse scattering exhibits unusual line shapes.<br />

Widely used for capacitors.


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

Outline<br />

1 <strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong><br />

Unit Cell<br />

Dielectric Constant<br />

S<strong>of</strong>t Modes<br />

Diffuse Scattering<br />

2 <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong><br />

Model Hamiltonian<br />

Lorentz and Onsager Approximations<br />

3 Results<br />

S<strong>of</strong>t Mode<br />

Diffuse Scattering<br />

Dielectric Constant<br />

4 Conclusions


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

Outline<br />

1 <strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong><br />

Unit Cell<br />

Dielectric Constant<br />

S<strong>of</strong>t Modes<br />

Diffuse Scattering<br />

2 <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong><br />

Model Hamiltonian<br />

Lorentz and Onsager Approximations<br />

3 Results<br />

S<strong>of</strong>t Mode<br />

Diffuse Scattering<br />

Dielectric Constant<br />

4 Conclusions


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

Unit Cell<br />

Unit Cell<br />

Complex perovskite: ABO 3 , B-site disordered.<br />

e.g.: PbMg 1/3 Nb 2/3 O 3 . (PMN).<br />

Mg +2 and Nb +5 are non-isovalent.<br />

Ionic radii: 0.72Å (Mg +2 ) and 0.64Å (Nb +5 ).<br />

<strong>Ferroelectrics</strong>: B-site ordered.<br />

e.g.: PbTiO 3 (PTO), BaTiO 3 (BTO).<br />

Compositional disorder is essential.<br />

Pb 4<br />

Mg 2 Nb 5<br />

O 2


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

Dielectric Constant<br />

Dielectric Constant<br />

J. Remeika et al., Mater. Res. Bull. 5, 37 (1970); V. Bovtun et al., <strong>Ferroelectrics</strong> 298, 23 (2004)<br />

Ε10 3<br />

8.0<br />

6.0<br />

4.0<br />

2.0<br />

PbTiO 3<br />

T 715 K<br />

5.0 10 5 K<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Ε 1 10 3<br />

Ε10 3<br />

15.0<br />

10.0<br />

5.0<br />

PMN<br />

10 2 Hz<br />

10 3 Hz<br />

10 5 Hz<br />

10 9 Hz<br />

T 410 K<br />

1.2 10 5 K<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

Ε 1 10 3<br />

500 550 600 650 700 750 800 850<br />

T K<br />

200 300 400 500 600 700<br />

T K<br />

sharp peak<br />

follows Curie-Weiss law<br />

little frequency dispersion (< 10 12 Hz)<br />

broad peak<br />

deviates Curie-Weiss law (T < T B )<br />

strong frequency dispersion


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

S<strong>of</strong>t Modes<br />

S<strong>of</strong>t Modes (<strong>Ferroelectrics</strong>)<br />

P. W. Anderson, Fizika Dielektrikov, Akad. Nauk. (1960); W. Cochran, Phys. Rev. Lett. 3 412, (1959);<br />

G. Shirane et al., Phys. Rev. B. 2, 155 (1970)<br />

60<br />

ħTO 2 meV 2 <br />

50<br />

40<br />

30<br />

20<br />

10<br />

PTO, q ⩵0<br />

T c<br />

<br />

<br />

<br />

<br />

700 800 900 1000 1100<br />

Inversion symmetry must be broken.<br />

Lattice instability (TO mode s<strong>of</strong>tens).<br />

T K<br />

Lyddane-Sachs-Teller: ɛ(0)<br />

ɛ(∞) = ( ΩLO<br />

Ω TO<br />

) 2<br />

∝ 1<br />

T T c<br />

Pb 4<br />

Ti 2<br />

O 2<br />

T −Tc .<br />

T T c


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

S<strong>of</strong>t Modes<br />

S<strong>of</strong>t Modes (<strong>Relaxor</strong>s)<br />

C. Stock et al., J. Phys. Soc. Jpn. 74, 3002 (2005).<br />

ħTO 2 meV 2 <br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

T CW<br />

<br />

<br />

PMN,q ⩵0<br />

T B<br />

<br />

<br />

<br />

0<br />

0 200 400 600 800 1000<br />

T K<br />

Inversion symmetry is not broken macroscopically.<br />

Minimum at T CW .<br />

Overdamped for 200 K T 620 K.


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

Diffuse Scattering<br />

Diffuse Scattering: <strong>Ferroelectrics</strong> vs <strong>Relaxor</strong>s<br />

Y. Yamada et al., Phys. Rev. Lett. 177, 848 (1969); S. N. Gvasaliya et al., J. Phys.: Condens. Matter 17, 4343 (2005)<br />

Internsitya.u.<br />

Internsitya.u.<br />

Internsitya.u.<br />

BTO,T 393K<br />

10 6 PMN,T ⩵ 450 K<br />

<br />

<br />

10 5 Bragg Peak<br />

10 5<br />

<br />

Diffuse Scatt.<br />

<br />

10 4<br />

<br />

10 3<br />

10 3<br />

<br />

<br />

10 2<br />

<br />

<br />

<br />

<br />

10 1<br />

10 1<br />

100.50.40.30.20.10.00.10.20.30.40.5<br />

7 0.50.40.30.20.10.00.10.20.30.40.5<br />

<br />

BTO,T0,1q,0 ≃393K r.l.u. 10 6 PMN,T ⩵1,1,q 300 K r.l.u.<br />

10 7 10 7 10 5<br />

10 5<br />

<br />

10 3<br />

<br />

10 4<br />

10 3<br />

<br />

10 2<br />

<br />

<br />

<br />

10 1<br />

10 1<br />

100.50.40.30.20.10.00.10.20.30.40.5<br />

7 0.50.40.30.20.10.00.10.20.30.40.5<br />

<br />

BTO,T0,1q,0 ≲393K r.l.u. 10 6 PMN,T ⩵1,1,q 150 K<br />

r.l.u.<br />

<br />

10 5<br />

10 5<br />

10 4<br />

10 3<br />

10 3<br />

<br />

<br />

10 2<br />

<br />

10 1<br />

0.5 0.25 0.0 0.25<br />

10 1<br />

0.5 0.5 0.25 0.0 0.25 0.5<br />

0,1q,0 r.l.u.<br />

1,1,q r.l.u.<br />

Internsitya.u.<br />

Internsitya.u.<br />

Internsitya.u.<br />

Elastic diffuse scattering in PMN does not behave as a simple Lorentzian.


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

Diffuse Scattering<br />

Diffuse Scattering: <strong>Ferroelectrics</strong> vs <strong>Relaxor</strong>s<br />

Y. Yamada et al., Phys. Rev. Lett. 177, 848 (1969); S. N. Gvasaliya et al., J. Phys.: Condens. Matter 17, 4343 (2005)<br />

Intensity a.u.<br />

T c<br />

BTO<br />

Yamada et al . 101<br />

397 420 450 480<br />

T K<br />

Intensity a.u.<br />

12.0<br />

9.0<br />

6.0<br />

3.0<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0.0<br />

0 100 200 300 400 500 600 700<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

T K<br />

PMN<br />

Hiraka110 ,100<br />

Gvasaliya110<br />

<br />

<br />

FE fluctuations extend over narrow temperature range.<br />

RFE fluctuations extend over broad temperature range and<br />

saturate.


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

Outline<br />

1 <strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong><br />

Unit Cell<br />

Dielectric Constant<br />

S<strong>of</strong>t Modes<br />

Diffuse Scattering<br />

2 <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong><br />

Model Hamiltonian<br />

Lorentz and Onsager Approximations<br />

3 Results<br />

S<strong>of</strong>t Mode<br />

Diffuse Scattering<br />

Dielectric Constant<br />

4 Conclusions


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

Model Hamiltonian<br />

Model Hamiltonian<br />

Anharmonic potential (V (|u i |))+ dipole forces (v ij ) + local quenched random fields (h i )<br />

H = ∑ i<br />

( |Πi | 2<br />

2M<br />

)<br />

+ V (|u i|) − ∑ u i · v ij · u j − ∑<br />

i


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

Lorentz and Onsager Approximations<br />

Lorentz and Onsager Fields<br />

Onsager, J. Am. Chem. Soc. 58,1486 (1936); Van Vleck, J. Chem. Phys. 5 320 (1937); Brout and Thomas., Phys. 3, 317 (1967)<br />

Lorentz Field (LF):<br />

E local<br />

i<br />

≃ E Lorentz<br />

i<br />

= ∑ j<br />

Clausius-Mossotti (CM):<br />

ɛ − 1<br />

ɛ + 2 = 4π 3<br />

Water is FE at ∼ 100 ◦ C!<br />

np 2<br />

3k B T<br />

v ij 〈u j 〉 th<br />

Onsager Field (OF):<br />

E local<br />

i<br />

≃ E Onsager<br />

i<br />

= E cavity<br />

i<br />

Onsager formula (Of):<br />

ɛ − 1 =<br />

No FE at finite T .<br />

ɛ 4πnp 2<br />

2ɛ + 1 k B T<br />

+ E reaction<br />

i<br />

Onsager: LF overestimates the local field.<br />

Van Vleck: from high T expansion, CM (1/T 2 ), Of (1/T 4 ).<br />

Brout and Thomas: OF guarantees fluctuation-dissipation theorem.


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

Lorentz and Onsager Approximations<br />

Model Hamiltonian (without compositional disorder)<br />

M 0<br />

⊥ <br />

2 v0<br />

⊥<br />

0.3<br />

0.2<br />

0.1<br />

Onsager<br />

Lorentz<br />

t Ons<br />

∝<br />

Ln1 t Ons <br />

0.0<br />

0.0 0.5 1.0 1.5 2.0<br />

T T c<br />

Lorentz<br />

∝t L<br />

3Γ kBTc v 0<br />

⊥2<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

Lorentz<br />

Onsager<br />

0.00<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

v 0 ⊥ Κ<br />

v 0<br />

⊥<br />

Dipole forces + OF → logarithmic corrections.<br />

Fluctuations suppress T c .


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

Lorentz and Onsager Approximations<br />

Model Hamiltonian (with compositional disorder)<br />

Compositional disorder, Vilfan and Cowley (1985).<br />

〈u i 〉 th = ∑ 〈 〉<br />

χij<br />

c h j<br />

j<br />

Self-consistent equations<br />

〈 〈<br />

u 2 i<br />

〉 0<br />

th〉<br />

c<br />

) 2<br />

+<br />

(v ⊥ 0 − vq )<br />

,<br />

MΩ 2 q<br />

(Ω = M ⊥ 0<br />

( ) (〈 2 〈 〉 0<br />

M Ω ⊥ 0 = κ + 3γ ui<br />

th〉<br />

2 c<br />

〈<br />

− 〈u i 〉 0 2 〉<br />

th = 1 ∑<br />

c N<br />

q<br />

<br />

2MΩ q<br />

coth<br />

〈<br />

〈u i 〉 0 2 〉<br />

th = 1 ∑ ∆ 2<br />

( )<br />

c N<br />

q MΩ 2 2<br />

.<br />

q<br />

〈<br />

+ 〈u i 〉 0 2 〉<br />

th<br />

c<br />

( βΩq<br />

2<br />

)<br />

,<br />

)<br />

− v ⊥ 0 ,


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

Outline<br />

1 <strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong><br />

Unit Cell<br />

Dielectric Constant<br />

S<strong>of</strong>t Modes<br />

Diffuse Scattering<br />

2 <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong><br />

Model Hamiltonian<br />

Lorentz and Onsager Approximations<br />

3 Results<br />

S<strong>of</strong>t Mode<br />

Diffuse Scattering<br />

Dielectric Constant<br />

4 Conclusions


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

Diffuse Scattering (PMN)<br />

a 2 10 3<br />

3.0<br />

2.0<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Hiraka 110 ,100<br />

Gvasaliya 110<br />

Present Model<br />

S 0.05<br />

⊥<br />

1.0<br />

<br />

<br />

0.0<br />

0.0 100 200 300 400 500 600 700<br />

<br />

<br />

<br />

<br />

<br />

<br />

T K<br />

<br />

<br />

<br />

<br />

S q =<br />

<br />

2MΩ q<br />

coth<br />

( βΩq<br />

2<br />

)<br />

+ ( ∆2<br />

( ) 2 )<br />

)<br />

MΩ 2 2<br />

, MΩ 2 q = M Ω ⊥ 0 +<br />

(v 0 ⊥ − vq<br />

q


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

Diffuse Scattering (PMN)<br />

S q<br />

⊥ a<br />

2<br />

<br />

10 6 <br />

a 150K<br />

10 5<br />

<br />

<br />

10 4<br />

<br />

<br />

10 3<br />

<br />

<br />

10 2<br />

<br />

<br />

<br />

<br />

<br />

<br />

10 1<br />

q rlu<br />

S q<br />

⊥ a<br />

2<br />

10 6 <br />

b 300 K<br />

10 5<br />

<br />

10 4<br />

<br />

<br />

<br />

10 3<br />

<br />

10 2<br />

<br />

<br />

<br />

q rlu<br />

<br />

<br />

<br />

<br />

<br />

10 1<br />

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.3 0.2 0.1 0.0 0.1 0.2 0.3<br />

<br />

<br />

<br />

<br />

<br />

<br />

S q =<br />

<br />

2MΩ q<br />

coth<br />

( βΩq<br />

2<br />

)<br />

+ ( ∆2<br />

) 2 )<br />

)<br />

MΩ 2 2<br />

, MΩ 2 q<br />

(Ω = M ⊥ 0 +<br />

(v 0 ⊥ − vq<br />

q


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

<br />

<br />

Dielectric Constant (PMN)<br />

4 Π<br />

10 3<br />

Ε 1<br />

4 Π<br />

3<br />

6.0<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

<br />

<br />

<br />

a PMN<br />

<br />

<br />

<br />

<br />

<br />

<br />

10 2 Hz<br />

<br />

<br />

<br />

<br />

<br />

<br />

10 3 Hz<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

10 9 Hz<br />

<br />

<br />

<br />

<br />

Present Model w<br />

<br />

<br />

<br />

ConstantDamping<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0.0<br />

100 200 300 400 500 600 700<br />

T K<br />

4 Π<br />

10 3<br />

Ε 1<br />

4 Π<br />

3<br />

6.0<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

<br />

<br />

<br />

b PMN<br />

<br />

<br />

<br />

<br />

<br />

<br />

10 2 Hz<br />

<br />

<br />

<br />

<br />

<br />

<br />

10 3 Hz<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

10 9 Hz<br />

<br />

<br />

<br />

<br />

Present Model w<br />

<br />

<br />

<br />

Variable Damping<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0.0<br />

100 200 300 400 500 600 700<br />

T K<br />

χ −1<br />

0 (ω) = M(Ω⊥ 0 )2 + iωΓ[ω], Γ[ω]: damping function.<br />

(<br />

ɛ(ω) = 1 + 4π nz ∗2) χ 0 (ω).<br />

Discrepancy will be discussed at the end.


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

S<strong>of</strong>t Mode<br />

Results: s<strong>of</strong>t mode<br />

M 0<br />

⊥ <br />

2 v0<br />

⊥ 10<br />

1<br />

3.0<br />

2.0<br />

1.0<br />

2 v 0 ⊥ a 2 ⩵1.00<br />

2 v 0 ⊥ a 2 ⩵0.50<br />

2 v 0 ⊥ a 2 ⩵0.25<br />

2 v 0 ⊥ a 2 ⩵0.00<br />

0.0 0.5 1.0 1.5 2.0<br />

T T c<br />

Dipole forces and random fields suppress long-range order<br />

for arbitrarily small disorder.


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

Diffuse Scattering<br />

Results: elastic diffuse scattering<br />

400<br />

S0a 2<br />

300<br />

200<br />

2 v 0 ⊥ a 2 ⩵0.0<br />

2 v 0 ⊥ a 2 ⩵0.8<br />

2 v 0 ⊥ a 2 ⩵0.9<br />

2 v 0 ⊥ a 2 ⩵1.0<br />

2 v 0 ⊥ a 2 ⩵1.1<br />

2 v 0 ⊥ a 2 ⩵1.5<br />

2 v 0 ⊥ a 2 ⩵2.0<br />

100<br />

S q =<br />

<br />

2MΩ q<br />

coth<br />

0<br />

0.0 0.5 1.0 1.5 2.0 2.5<br />

( βΩq<br />

2<br />

T T c<br />

)<br />

+ ( ∆2<br />

( ) 2 )<br />

)<br />

MΩ 2 2<br />

, MΩ 2 q = M Ω ⊥ 0 +<br />

(v 0 ⊥ − vq<br />

q


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

Diffuse Scattering<br />

Results: elastic diffuse scattering<br />

Sqa 2<br />

500<br />

100<br />

50<br />

10<br />

5<br />

T T c ⩵0.0<br />

T T c ⩵1.0<br />

T T c ⩵2.0<br />

2<br />

Sqa 2<br />

v 0 ⊥ a 2 ⩵ 0.8 2 1 0 1 2<br />

500<br />

100<br />

50<br />

10<br />

5<br />

T T c ⩵0.0<br />

T T c ⩵1.0<br />

T T c ⩵2.0<br />

2<br />

v 0 ⊥ a 2 ⩵2.0<br />

1<br />

2 1 0 1 2<br />

q x<br />

,0,0<br />

2 Π a<br />

1<br />

q x<br />

,0,0<br />

2 Π a<br />

S q =<br />

<br />

2MΩ q<br />

coth<br />

( βΩq<br />

2<br />

)<br />

+ ( ∆2<br />

( ) 2 )<br />

)<br />

MΩ 2 2<br />

, MΩ 2 q = M Ω ⊥ 0 +<br />

(v 0 ⊥ − vq<br />

q


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

Diffuse Scattering<br />

Results: correlation functions <strong>of</strong> polarization<br />

Mukamel and Pytte, Phys. Rev. B 25, 4779 (1981); Lines, Phys. Rev. B 9, 950 (1974)<br />

Short-range forces without disorder Short-range forces with disorder<br />

(<br />

) 2<br />

〈 〉 k uq u −q ∝ B T<br />

χ −1<br />

∆<br />

+|qa|<br />

0<br />

2 χ −1 +|qa|<br />

0<br />

2<br />

〉<br />

[ ] 〈u i u j ∝<br />

k B T Exp − √ (r/a)<br />

χ0<br />

/r ∆ 2√ [ ]<br />

χ 0 Exp − √ (r/a)<br />

χ0<br />

Dipole forces without disorder<br />

〈<br />

uq u −q<br />

〉<br />

∝<br />

k B T<br />

〈u i u j<br />

〉<br />

∝<br />

(χ ⊥ 0 )−1 +4π q2 z<br />

|q| 2 +η|(qa)|2 −3η(qz a) 2<br />

{<br />

k B T (χ ⊥ 0 )2 /r 3 , r ‖ ẑ<br />

−k B T (χ ⊥ 0 )1/2 /r 3 , r ⊥ ẑ<br />

Dipole forces with disorder<br />

⎛<br />

⎞2<br />

⎜<br />

∆<br />

⎟<br />

⎝<br />

(χ ⊥ 0 )−1 +4π q2 z<br />

|q| 2 +η|(qa)|2 −3η(qz a) 2 ⎠<br />

{<br />

∆ 2 (χ ⊥ 0 )3 /r 3 , r ‖ ẑ<br />

−∆ 2 (χ ⊥ 0 )3/2 /r 3 , r ⊥ ẑ<br />

slowly varying and highly anisotropic.<br />

positive (ferroelectric) correlations stronger than negative<br />

(antiferroelectric) correlations.<br />

similar behavior for near-neighbor correlations (next slide).


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

Diffuse Scattering<br />

Results: near-neighbor correlations (polar nanoregions)<br />

uiu j thc ui<br />

2 thc<br />

uiu j thc ui<br />

2 thc<br />

uiu j thc ui<br />

2 thc<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

⊥ a<br />

a ⩵1<br />

a<br />

⊥ a<br />

10 0 <br />

<br />

10 1<br />

10 2<br />

10 3<br />

0<br />

10 0 <br />

<br />

<br />

<br />

1<br />

<br />

<br />

2<br />

<br />

<br />

3<br />

<br />

4<br />

a<br />

<br />

<br />

<br />

<br />

<br />

5<br />

z ija<br />

T<br />

<br />

<br />

<br />

<br />

<br />

6<br />

Tc⩵10.0<br />

v 0<br />

v ⊥ 0<br />

v ⊥ 0<br />

v 0<br />

<br />

7<br />

2 2 2 2 <br />

8<br />

⩵0<br />

⩵10<br />

⩵100<br />

<br />

<br />

9 10<br />

b T Tc⩵1.1<br />

<br />

<br />

10 1 <br />

<br />

<br />

<br />

<br />

<br />

<br />

10 2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

10 3<br />

<br />

<br />

<br />

<br />

<br />

<br />

4 5 6 7 8 9 10<br />

0 1 2 3<br />

z ija<br />

<br />

c T Tc⩵0.0<br />

<br />

10 1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

10 2<br />

<br />

<br />

<br />

<br />

<br />

10 3<br />

<br />

<br />

<br />

<br />

0 1 2 3 4 5 6 7 8 9 10<br />

10 0 <br />

<br />

zij a<br />

uiu j thc ui<br />

2 thc<br />

uiu j thc ui<br />

2 thc<br />

uiu j thc ui<br />

2 thc<br />

<br />

10 0 <br />

<br />

10 1<br />

10 2<br />

10 3<br />

10 4<br />

0<br />

10 0 <br />

<br />

<br />

<br />

1<br />

<br />

<br />

2<br />

<br />

3<br />

<br />

4<br />

d<br />

<br />

5<br />

z ija<br />

T<br />

<br />

6<br />

Tc⩵10.0<br />

7 8<br />

<br />

<br />

9 10<br />

e T Tc⩵1.1<br />

10 1<br />

<br />

<br />

10 2 <br />

<br />

<br />

<br />

<br />

10 3<br />

<br />

<br />

<br />

<br />

10 4<br />

0 1 2 3 4 5 6 7 8 9 10<br />

z ija<br />

f T Tc⩵0.0<br />

10 1<br />

<br />

<br />

10 2 <br />

<br />

<br />

<br />

10 3<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

10 4<br />

0 1 2 3 4 5 6 7 8 9 10<br />

10 0 <br />

<br />

xij a


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

Dielectric Constant<br />

Results: dielectric susceptibility<br />

Χ0Ωv 0<br />

⊥<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Ω v 0 ⊥ ⩵ 5 10 3<br />

Χ0Ωv 0<br />

⊥<br />

600<br />

300<br />

Ω v 0 ⊥ ⩵ 0<br />

0<br />

0.0 1.0 2.0<br />

T T c<br />

Ω v 0 ⊥ ⩵1 10 2 Ω v 0 ⊥ ⩵ 5 10 2<br />

0<br />

0.0 0.5 1.0 1.5 2.0<br />

χ −1<br />

0 (ω) = M(Ω⊥ 0 )2 + iωΓ(ω).<br />

(<br />

ɛ(ω) = 1 + 4π nz ∗2) χ 0 (ω).<br />

T T c<br />

Curie-Weiss constant ∝ γ −1 ; γ: anharmonic coefficient.<br />

M(Ω ⊥ 0 [Tmax])2 = ω (Re[Γ(ω)] − Im[Γ(ω)]).<br />

χ max(ω) = (2ωRe[Γ(ω)]) −1 .


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

Dielectric Constant<br />

Results: T B and T max<br />

TCWTc<br />

1.0 <br />

1.0<br />

<br />

<br />

0.5<br />

<br />

0.5<br />

0.0<br />

<br />

0.0<br />

0.5<br />

1.0<br />

<br />

0.5<br />

<br />

1.0<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

v 0 ⊥ 2<br />

TBTc<br />

TmaxTc<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

2 v ⊥ 0 a 2 ⩵0.10<br />

0.2<br />

2 v ⊥ 0 a 2 ⩵0.15<br />

2 v ⊥ 0 a 2 ⩵0.25<br />

0.0<br />

0.0 1.0 2.0 3.0 4.0 5.0<br />

Ωv 0 ⊥ 10 2<br />

M(Ω ⊥ 0 [T max]) 2 = ω (Re[Γ(ω)] − Im[Γ(ω)]).


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

<br />

<br />

Dielectric Constant<br />

Dielectric Constant (PMN)<br />

4 Π<br />

10 3<br />

Ε 1<br />

4 Π<br />

3<br />

6.0<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

<br />

<br />

<br />

a PMN<br />

<br />

<br />

<br />

<br />

<br />

<br />

10 2 Hz<br />

<br />

<br />

<br />

<br />

<br />

<br />

10 3 Hz<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

10 9 Hz<br />

<br />

<br />

<br />

<br />

Present Model w<br />

<br />

<br />

<br />

ConstantDamping<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0.0<br />

100 200 300 400 500 600 700<br />

T K<br />

4 Π<br />

10 3<br />

Ε 1<br />

4 Π<br />

3<br />

6.0<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

<br />

<br />

<br />

b PMN<br />

<br />

<br />

<br />

<br />

<br />

<br />

10 2 Hz<br />

<br />

<br />

<br />

<br />

<br />

<br />

10 3 Hz<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

10 9 Hz<br />

<br />

<br />

<br />

<br />

Present Model w<br />

<br />

<br />

<br />

Variable Damping<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0.0<br />

100 200 300 400 500 600 700<br />

T K<br />

More elaborate damping function needed.


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

Outline<br />

1 <strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong><br />

Unit Cell<br />

Dielectric Constant<br />

S<strong>of</strong>t Modes<br />

Diffuse Scattering<br />

2 <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong><br />

Model Hamiltonian<br />

Lorentz and Onsager Approximations<br />

3 Results<br />

S<strong>of</strong>t Mode<br />

Diffuse Scattering<br />

Dielectric Constant<br />

4 Conclusions


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

Conclusions<br />

Minimal model for relaxor ferroelectricity: local anharmonic forces,<br />

dipole forces, quenched random fields.<br />

Any solution must consider fluctuations <strong>of</strong> polarization and disorder at<br />

the replica level.<br />

Compositional disorder and dipolar forces extend the region <strong>of</strong><br />

fluctuations down to T = 0 K.


<strong>Ferroelectrics</strong> vs <strong>Relaxor</strong> <strong>Ferroelectrics</strong> <strong>Theory</strong> <strong>of</strong> <strong>Relaxor</strong> <strong>Ferroelectrics</strong> Results Conclusions<br />

Acknowledgments<br />

Albert Migliori - Los Alamos <strong>National</strong> <strong>Laboratory</strong><br />

Alexandra Navrotsky - UC Davis<br />

Frances Hellman - UC Berkeley

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!