Data Center Kyoto Cooling Air Economizers - Critical Facilities ...

Data Center Kyoto Cooling Air Economizers - Critical Facilities ... Data Center Kyoto Cooling Air Economizers - Critical Facilities ...

cfroundtable.org
from cfroundtable.org More from this publisher

Introducing the Heat Wheel<br />

to the <strong>Data</strong> <strong>Center</strong><br />

Robert (Dr. Bob) Sullivan, Ph.D.<br />

<strong>Data</strong> <strong>Center</strong> Infrastructure Specialist<br />

<strong>Kyoto</strong><strong>Cooling</strong> International<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 1


A New “Free <strong>Cooling</strong>” Technique<br />

• New ASHRAE Environmental Guidelines<br />

• Introducing the Heat Wheel (<strong>Kyoto</strong><strong>Cooling</strong>)<br />

• Efficiency Comparisons<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 2


Computer Product<br />

Environmental Limits ‐ New<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 3


Computer Product<br />

Environmental Limits ‐ New<br />

• Who developed the new limits<br />

– Not ASHRAE<br />

– Computer Manufacturers<br />

• Temperature Ranges<br />

– Recommended<br />

– Allowable<br />

– Prolonged Exposure<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 4


Computer Product<br />

Environmental Limits ‐ New<br />

• Benefits<br />

– Larger environmental envelope<br />

– Wider temperature ranges –to 27 °C (81 °F)<br />

– Change from Relative Humidity to Dew Point<br />

• Range from 5.5 °C (42 °F) to 15 °C (59 °F)<br />

– Greater opportunity for “Free <strong>Cooling</strong>”<br />

• Concerns<br />

– Low Rh levels at low Dew Point and high temperatures<br />

– Latent <strong>Cooling</strong> with cold coil systems and Dew Points<br />

above 10 °C (50 °F)<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 5


Free <strong>Cooling</strong> Techniques<br />

• <strong>Air</strong>side Economizing –“Free <strong>Air</strong> <strong>Cooling</strong>”<br />

• Waterside Economizing – Chilled water<br />

without the refrigeration<br />

• Heat Wheel –the new player in the business<br />

– <strong>Air</strong>side Economizing without air transfer<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 6


Free <strong>Cooling</strong> Techniques<br />

Heat Wheel Application<br />

• Uses a heat wheel to transfer the heat from<br />

the computer room outside environment<br />

• Normal heat wheel (energy recovery system)<br />

application is in building HVAC systems<br />

– Pre‐Cools the air in Summer<br />

– Pre‐Heats the air in Winter<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 7


Typical Heat Wheel Application<br />

• <strong>Cooling</strong> in Summer • Heating in Winter<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 8


Heat Wheel – <strong>Data</strong> <strong>Center</strong> <strong>Cooling</strong><br />

10/5/2009 September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 9


Heat Wheel Application<br />

• Heat wheel applied to a computer room<br />

cooling system<br />

• “Plumbed Wrong”<br />

– Wheel actually isolates computer room and<br />

ambient air<br />

• Isolated Hot Aisle<br />

• Room flooded with cold air<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 10


Enclosed Hot Aisle<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 11


Doors Sealing Hot Aisle<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 12


Open Cold Aisle<br />

and Sealing of Hot Aisle<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 13


Heat Wheel <strong>Cooling</strong> ‐ Illustration<br />

Heated datacenter air is collected<br />

above the datacenter ceiling<br />

Heated air flows through the<br />

heatwheel and is cooled down to a<br />

temperature of 18‐27°C<br />

(adjustable)<br />

Physical separation of<br />

hot and cold air<br />

Exhaust air<br />

Heatwheel<br />

Cold make up air in front<br />

of the IT equipment<br />

‘Cold ‘<br />

outside air<br />

September 10/5/2009 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 14


The Wheel<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 15


The Ventilator<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 16


Heat Wheel Application<br />

• Little exchange of air from ambient to computer<br />

room<br />

– <strong>Air</strong> exchange through wheel


Heat Wheel Application<br />

• Minimal Water usage required<br />

• Supplemental cooling<br />

– Modular DX units located within each cell<br />

– Chilled water supplied from central plant<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 18


Capitol Cost of Installation<br />

• Capitol cost equivalent to conventional chilled<br />

water installation<br />

• KPN estimate for 12.5 MW critical load in the<br />

Netherlands<br />

– $130M<br />

– Includes – Building, Electrical, Mechanical,<br />

Controls, etc.<br />

– Doesn’t include – Land, Computer Equipment,<br />

Cabling, Move In costs<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 19


Heat Wheel Application<br />

Control mechanism<br />

®<br />

Recirculation<br />

of heated<br />

outside air<br />

Increase<br />

rotation speed<br />

of the wheel<br />

Increase of<br />

outside air<br />

volume<br />

Additional<br />

cooling with<br />

DX cooling<br />

capacity<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 20


Heat Wheel Application<br />

Control Mechanism<br />

• Computer Room airflow volume controlled<br />

automatically by:<br />

– Delta T across wheel<br />

– Power dissipated by computer equipment<br />

• Supply air temperature to computer room is<br />

controlled by:<br />

– Rotation speed of wheel<br />

– Ambient temperature<br />

– <strong>Air</strong>flow volume through wheel on ambient side<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 21


Heat Wheel Application<br />

Control Mechanism<br />

• Cold temperatures ‐ below 9 °C (48 °F)<br />

– Warm ambient exhaust air recircurculated back to input<br />

face of the wheel<br />

– Wheel speed and ambient airflow volume at minimum<br />

levels<br />

• Normal temperatures ‐ 10 °C (50 °F) to 23 °C (95 °F)<br />

– Wheel speed increased<br />

– Ambient airflow increased<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 22


Recirculation Louvers<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 23


Heat Wheel Application<br />

Control Mechanism<br />

• Warm air temperatures ‐ above 23 °C (76 °F)<br />

– Heat Wheel combined with supplemental DX or Chilled<br />

water cooling<br />

– Supplemental cooling brought on in stages, keeping heat<br />

wheel at maximum capacity<br />

• Hot temperatures –above 35 °C (95 °F)<br />

– Wheel stops<br />

– All cooling with supplemental cooling<br />

– Computer room fans circulate air through evaporator coil<br />

– Ambient fans dissipate heat from DX condenser coil<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 24


Modular DX System<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 25


Evaporator Coil<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 26


Condenser Coil & Fan Motor<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 27


Heat Wheel Application<br />

Control Mechanism<br />

• Safety Net ‐ If supplemental cooling fails<br />

– Computer room can be maintained at ambient<br />

temperature + 2 °C<br />

– Just using the Heat Wheel and ambient airflow<br />

– Temperature of room will not “run away”<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 28


Summary of Heat Wheel <strong>Cooling</strong> Application<br />

• Novel application of a proven technology<br />

• Components readily available for immediate<br />

construction<br />

• Requires new construction or major<br />

renovation<br />

• Minimal complexity, requires little<br />

maintenance and skill level of facilities<br />

technicians<br />

• Both energy and environmentally efficient<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 30


Summary of Heat Wheel Application<br />

• Limitations and Concerns with Heat Wheel<br />

<strong>Cooling</strong> System<br />

– New to data processing industry<br />

• Reluctance to be the first to implement<br />

– Requires unique architectural configuration<br />

• <strong>Cooling</strong> cell immediately adjacent to computer room<br />

• Hot Aisle containment<br />

• Cold air flooding<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 31


Energy Efficiency Calculations<br />

• Mech Eff = Mechanical Energy<br />

<strong>Critical</strong> Load<br />

– A lower ME value indicates more efficient operation<br />

• The EER‐A (Annualized Energy Efficiency Ratio) or<br />

Coefficient of Performance (COP)<br />

– EER‐A = Annual Energy (<strong>Critical</strong> Load)<br />

Annual Mechanical Energy<br />

– The annual energy usage of the systems being cooled<br />

(<strong>Critical</strong> Load) divided by the annual mechanical<br />

energy usage<br />

– A higher EER‐A value indicates more efficient operation<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 32


Comparison of <strong>Cooling</strong> Techniques<br />

ME = Mechanical Load / <strong>Critical</strong> Load<br />

<strong>Cooling</strong> Type<br />

Hot &<br />

Dry<br />

Cold &<br />

Dry<br />

Marine<br />

Hot &<br />

Damp<br />

Refrigeration Process 0.60 0.60 0.60 0.60<br />

(Baseline)<br />

Baseline with <strong>Air</strong>side 0.22 0.15 0.15 0.23<br />

Economizing<br />

Baseline with Water 0.23 0.23 0.23 0.26<br />

Free <strong>Cooling</strong><br />

Heat Wheel – Single Cell 0.22 0.08 0.10 0.17<br />

Redundant <strong>Cooling</strong> with<br />

Heat Wheel‐ 4 + 1 Cells<br />

0.14 0.05 0.07 0.11<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 33


<strong>Cooling</strong> Type<br />

Comparison of <strong>Cooling</strong> Techniques<br />

Annualized Energy Efficiency Ratio<br />

Hot &<br />

Dry<br />

Cold &<br />

Dry<br />

Marine<br />

Hot & S<br />

Damp<br />

Refrigeration Process 1.67 1.67 1.67 1.67<br />

(Baseline)<br />

Baseline with <strong>Air</strong>side 4.55 6.67 6.67 4.35<br />

Economizing<br />

Baseline with Water 4.35 4.35 4.35 3.85<br />

Free <strong>Cooling</strong><br />

Heat Wheel ‐ Single Cell 4.55 12.50 10.00 8.29<br />

Heat Wheel –4 + 1 Cells 7.14 20.00 14.30 9.09<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 34


Conventional technical infrastructure<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 35<br />

<strong>Kyoto</strong><strong>Cooling</strong>® - The cooling problem solved


<strong>Kyoto</strong><strong>Cooling</strong> infrastructure<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 36<br />

<strong>Kyoto</strong><strong>Cooling</strong>® - The cooling problem solved


Infrastructure you do NOT need anymore<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 37<br />

<strong>Kyoto</strong><strong>Cooling</strong>® - The cooling problem solved


Modular Heat Wheel <strong>Cooling</strong><br />

September 10/5/2009 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 38


Modular Heat Wheel <strong>Cooling</strong><br />

September 10/5/2009 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 39


Roof Mounted Package Units<br />

• old PUE<br />

2,95 (400 kW)<br />

• new PUE<br />

1,15 (1200 kW)<br />

• Annual energy savings with 400 kW > € 630.000<br />

(measured and calculated by ECN)<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 40


<strong>Kyoto</strong><strong>Cooling</strong> Efficiencies<br />

<strong>Kyoto</strong><strong>Cooling</strong> Efficiencies<br />

Supply=25C Delta<br />

T=12C<br />

<strong>Kyoto</strong><strong>Cooling</strong> Efficiencies<br />

Supply=22C Delta<br />

T=12C<br />

Location<br />

Annual<br />

P<br />

U<br />

E<br />

m<br />

+25%<br />

P<br />

U<br />

E<br />

m<br />

100%<br />

K<br />

y<br />

ot<br />

o<br />

Mixed<br />

100%<br />

D<br />

X<br />

Location<br />

Annual<br />

P<br />

U<br />

E<br />

m<br />

+25%<br />

P<br />

U<br />

E<br />

m<br />

100%<br />

K<br />

y<br />

o<br />

t<br />

o<br />

Mixed<br />

100%<br />

D<br />

X<br />

SanFrancisco 0.095 0..188 95.3% 4.6% 0.0%<br />

SanFrancisco 0.107 0.134 88.6% 11.1% 0.2%<br />

Sacvramento 0.124 0.155 79.9% 18.2% 1.9%<br />

Sacvramento 0.140 0175 72.1% 23.1% 4.8%<br />

San Joxe 0.106 0.133 86.7% 12.1% 0.2%<br />

San Joxe 0.122 0153 78.7% 20.4% 0.9%<br />

Seattle 0.090 0.122 94.7% 5.3% 0.0%<br />

Seattle 0.099 0.124 89.9% 9.9% 0.2%<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 41


<strong>Kyoto</strong><strong>Cooling</strong> Efficiencies<br />

<strong>Kyoto</strong><strong>Cooling</strong> Efficiencies<br />

Location<br />

Annua<br />

l<br />

P<br />

U<br />

E<br />

m<br />

+25%<br />

P<br />

U<br />

E<br />

m<br />

Supply=25C Delta T=20C<br />

100%<br />

K<br />

y<br />

o<br />

t<br />

o<br />

Mixed<br />

100%<br />

D<br />

X<br />

SanFrancisco 0.042 0.052 88.6% 11.4% 0.0%<br />

Sacvramento 0066 0082 72.1% 27.8% 0.1%<br />

San Joxe 0.0.51 0.0.64 78.7% 21.3% 0.00%<br />

Seattle 0.039 0.049 89.9% 10.1% 0.0%<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 42


<strong>Kyoto</strong><strong>Cooling</strong> Efficiencies<br />

Efficiency Improvements over chilled water system with<br />

Mech Efficiency of 0.6<br />

Per MW of <strong>Critical</strong> Load<br />

Supply Temperature = 25 C Delta T = 12C<br />

Location<br />

ChW Energy<br />

+25% Mech<br />

Efficiency<br />

Energy<br />

Mech System<br />

Improve<br />

Overall<br />

Improve<br />

Savings/MW<br />

@0.10 / kWHr<br />

kW<br />

kW<br />

SanFrancisco 600 118 80% 30% $422,000<br />

Sacvramento 600 155 74% 28% $398,000<br />

San Joxe 600 133 78% 29% $409,000<br />

Seattle 600 112 81% 30% $427,000<br />

September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 43


More High Density <strong>Cooling</strong> Information<br />

• Robert (Dr. Bob) Sullivan, Ph.D.<br />

– dr‐bob@ix.netcom.com<br />

– 408‐776‐8873<br />

• <strong>Kyoto</strong><strong>Cooling</strong> International, BV<br />

– Mees Lodder<br />

• mlodder@kyotocooling.com<br />

• +31 6 2394 6557<br />

– www.kyotocooling.com<br />

10/5/2009 September 18, 2009<br />

<strong>Critical</strong> <strong>Facilities</strong> Round Table 44

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!