Permeable Reactive Zones for Groundwater Remediation

Permeable Reactive Zones for Groundwater Remediation Permeable Reactive Zones for Groundwater Remediation

17.11.2014 Views

Permeable Reactive Zones for Groundwater Remediation Richard T. Wilkin * , Ph.D. waste PRB treated water Office of Research and Development *National Risk Management Research Laboratory, Ground Water and Ecosystems Restoration Division, Ada, OK July 2008 NARPM

<strong>Permeable</strong> <strong>Reactive</strong> <strong>Zones</strong> <strong>for</strong><br />

<strong>Groundwater</strong> <strong>Remediation</strong><br />

Richard T. Wilkin * , Ph.D.<br />

waste<br />

PRB<br />

treated<br />

water<br />

Office of Research and Development<br />

*National Risk Management Research Laboratory, Ground Water and Ecosystems Restoration Division, Ada, OK<br />

July 2008<br />

NARPM


Outline of Topics<br />

•Technology Background<br />

•Field Case Examples – focus on COCs<br />

‣Zerovalent Iron (Cr, TCE, As)<br />

‣Organic Carbon (NO 3 , Pb, pH)<br />

‣Mechanisms<br />

•Summary Remarks<br />

1


<strong>Permeable</strong><br />

<strong>Reactive</strong><br />

<strong>Zones</strong><br />

GROUNDWATER REMEDIATION<br />

Zerovalent<br />

Iron: Solvents,<br />

Inorganics<br />

Advantages<br />

• Subsurface Treatment<br />

• Plume capture complete<br />

• Passive treatment<br />

• Lower costs/P&T<br />

• Adaptable<br />

• Focused monitoring<br />

Limitations<br />

• Greater capital investment<br />

• Longevity concerns<br />

‣Treatment per<strong>for</strong>mance<br />

‣Hydraulic per<strong>for</strong>mance<br />

Cr, TCE<br />

As?<br />

2


Depth of PRZ Installations<br />

Number of Installations<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 >80<br />

Depth of PRB Installation, ft bgs<br />

3


• Long-term per<strong>for</strong>mance evaluations at full-<br />

scale zero-valent iron and organic carbon-based<br />

based<br />

reactive barriers<br />

- Geochemical-Hydrologic<br />

Hydrologic-Microbiological<br />

-<br />

• Pilot demonstrations to examine new<br />

applications of the technology ( (e.g. e.g., , Arsenic, Lead)<br />

• Laboratory studies that explore fundamental<br />

geochemical processes important in PRBs<br />

• Technical Assistance<br />

PRB Research at EPA<br />

4


Iron/Water/Contaminant<br />

Interactions<br />

• Increase in pH (~10), Decrease in Eh ( FeOOH, , adsorption<br />

- Precipitate metal hydroxides<br />

- Metal plating reactions (Hg)<br />

- Precipitate Ca and Fe carbonates<br />

- Microbiology: Sulfate-reducers<br />

Precipitate Fe sulfides, Me sulfides<br />

- Fe 0 => Green Rust => Magnetite<br />

5


Role of Secondary<br />

Precipitates<br />

a<br />

Fe<br />

10 um<br />

Pore infilling – hydraulics<br />

Coat ZVI surfaces – reactivity<br />

Creates secondary reactivity<br />

Govern long-term per<strong>for</strong>mance<br />

Control degradation<br />

mechanisms<br />

Qtz<br />

20 um<br />

Can be predicted!<br />

Qtz<br />

Fe<br />

SEM/TEM<br />

6<br />

b<br />

Fe


Total<br />

Dissolved<br />

Solids<br />

Longevity<br />

TDS<br />

7


ZVI Examples<br />

Elizabeth City, NC<br />

Cr and TCE<br />

Full scale installed in 1996<br />

150 ft length, 2 ft wide, 25 ft deep<br />

Trencher<br />

East Helana, MT<br />

As<br />

pilot-scale installed 2005<br />

30 ft length, 6 ft wide,<br />

45 ft deep<br />

Long-arm excavator<br />

8


Chromium – Elizabeth City<br />

-3.0<br />

-3.5<br />

PRB<br />

location<br />

1997<br />

1998<br />

2001<br />

2003<br />

Ground-water flow<br />

2005<br />

2007<br />

Depth, meters below ground surface<br />

-4.0<br />

-4.5<br />

-5.0<br />

-5.5<br />

-6.0<br />

-6.5<br />

-7.0<br />

-0.1000<br />

0.2125<br />

0.5250<br />

0.8375<br />

1.150<br />

1.462<br />

1.775<br />

2.087<br />

2.400<br />

Chromium mg/liter<br />

9<br />

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3<br />

Distance, meters<br />

Transect 2<br />

~40 wells


TCE – Elizabeth City<br />

Depth, meters below ground surface<br />

-3.0<br />

-3.5<br />

-4.0<br />

-4.5<br />

-5.0<br />

-5.5<br />

-6.0<br />

-6.5<br />

-7.0<br />

PRB<br />

location<br />

2002<br />

2003<br />

2004<br />

2005<br />

Ground-water flow<br />

2006<br />

2007<br />

TCE ug/liter<br />

0<br />

100.0<br />

200.0<br />

300.0<br />

400.0<br />

500.0<br />

600.0<br />

700.0<br />

800.0<br />

900.0<br />

1000<br />

>1000<br />

10<br />

0 1 2 3 0 1 2 3 0 1 2 3 1 2 3<br />

Distance, meters<br />

0 1 2 3 0 1 2 3


TCE – Downgradient of PRB<br />

40<br />

Frequency of TCE detects in downgradient<br />

transect<br />

30<br />

Frequency<br />

20<br />

10<br />

0<br />

0 25 50 75 100 125 150 175 200 225 250<br />

TCE, ug/L<br />

2002-2007<br />

11


East Helena SF site<br />

East Helena SF site<br />

12<br />

N<br />

300 m


PRB<br />

Source<br />

Isolation<br />

GW<br />

flow<br />

13


Arsenic Concentrations<br />

5<br />

4<br />

Upgradient Concentration<br />

25 mg/L<br />

Wells in PRB<br />

Arsenic, mg/L<br />

3<br />

2<br />

1<br />

n=24<br />

n=19 n=25<br />

0<br />

14<br />

0 5 10 15 20 25 30<br />

Months of Operation


Arsenic Flux<br />

• Discrete interval<br />

sampling, concentrations<br />

• Discrete interval<br />

hydraulic conductivity<br />

determinations<br />

• Continuous<br />

water levels/gradient,<br />

3-point problem<br />

Base of<br />

PRB<br />

15


East Helena<br />

Conclusions<br />

• Zerovalent iron is effective <strong>for</strong> arsenic<br />

• Arsenic removal mechanisms are<br />

complex<br />

• Finite uptake capacity requires detailed<br />

site assessments<br />

• Source control measures are desirable to<br />

reduce subsurface arsenic flux and<br />

maximize PRB lifetime<br />

16


PRB Research:<br />

Carbon-Based <strong>Reactive</strong> Media<br />

o Arsenic: Columbia Nitrogen Superfund Site,<br />

Charleston, SC (Compost + Limestone + Iron)<br />

o Lead: Delatte Superfund Site, Ponchatoula, LA<br />

(Cow Manure; Wood Chips, Limestone)<br />

o Nitrate: Cimarron Pork hog farm, Stillwater, OK<br />

(Haystraw)<br />

o TCE: Altus AFB, OK (Cotton Burr)<br />

17


Mechanisms in Carbon<br />

Systems<br />

Media options<br />

(Cost vs. Longevity vs. Reversibility)<br />

• Metals:<br />

Sulfate reduction<br />

Precipitation of CdS, ZnS, , and PbS<br />

Co-ppt<br />

ppt/adsorption with FeS<br />

Interactions with OC<br />

• Degradation of nitrate/perchlorate<br />

• Organics:<br />

Abiotic pathways, iron sulfides<br />

Biotic pathways<br />

18


Background - Cimarron Pork<br />

• Concentrated Animal Feeding Operation site located in OK<br />

• Facility in operation <strong>for</strong> approx. 7 y, closed in 1999; ground-water<br />

impact from leaking lagoon<br />

• Ground water remediation strategy developed <strong>for</strong> separate<br />

ammonia and nitrate plumes<br />

• Remedies implemented in late 2002 (site owner, OK Dept.<br />

Agriculture, EPA Region 6)<br />

• EPA ORD began monitoring of<br />

Nitrate PRB in 2003<br />

‣ Per<strong>for</strong>mance evaluation<br />

‣ Longevity issues<br />

19


Contaminant Plumes<br />

MW6<br />

MW9<br />

MW10<br />

MW7<br />

MW3<br />

MW13A<br />

MW13B<br />

MW8<br />

MW31<br />

MW34<br />

MW35<br />

MW11<br />

NH 4 -N<br />

Old<br />

Lagoon<br />

MW17<br />

NO 3 -N 100<br />

75<br />

MW12<br />

MW14<br />

50<br />

300<br />

MW5<br />

200<br />

100<br />

150<br />

MW4<br />

MW2<br />

MW30<br />

50<br />

MW16<br />

MW15<br />

MW1<br />

25<br />

MW18<br />

20<br />

MW29<br />

200 ft


Site <strong>Remediation</strong> Plan<br />

MW6<br />

NORTH<br />

MW31<br />

MW17<br />

MW7<br />

MW10<br />

MW34<br />

MW35<br />

MW11<br />

MW3<br />

MW13A<br />

MW13B<br />

MW5<br />

MW9<br />

Old<br />

Lagoon<br />

MW8<br />

Evaporation<br />

Basin<br />

MW23<br />

MW32<br />

MW30<br />

MW29<br />

MW14<br />

MW16<br />

MW15<br />

MW12<br />

MW2<br />

MW4<br />

MW18<br />

MW1<br />

MW21<br />

MW22<br />

MW26<br />

MW20<br />

MW33<br />

MW28<br />

MW19<br />

MW27<br />

MW24<br />

MW25<br />

Observation Well Locations<br />

Pumping Well Locations<br />

Access Well Locations<br />

Nitrate <strong>Reactive</strong> Barrier<br />

Ammonia <strong>Remediation</strong> Trench<br />

21


22<br />

PRB Installation


80<br />

Nitrate<br />

Nitrate-N, mg/L<br />

Nitrate-N, mg/L<br />

Nitrate-N, mg/L<br />

60<br />

40<br />

20<br />

0<br />

80<br />

60<br />

40<br />

20<br />

0<br />

80<br />

60<br />

40<br />

20<br />

T2A<br />

T1A<br />

T2E<br />

T1E<br />

upgradient<br />

0 10 20 30 40 50 60<br />

T2av<br />

T1av<br />

PRB<br />

0 10 20 30 40 50 60<br />

downgradient<br />

‣ Average % removal<br />

ranges from 10 (T1) to<br />

99 (T2), based on<br />

influent & effluent<br />

‣ Nitrate removal within<br />

PRB is 92 – 100%,


Denitrification<br />

2NO 3<br />

-<br />

2NO 2<br />

-<br />

2NO N 2 O N 2<br />

Nitrate ions<br />

(+5)<br />

Nitrite ions<br />

(+3)<br />

2NH 4<br />

+<br />

Nitric oxide<br />

(+2)<br />

Nitrous oxide<br />

(+1)<br />

Dissimilatory<br />

Nitrate reduction<br />

to ammonia<br />

(under low electron acceptor conditions,<br />

i.e., C>>>NO 3 - )<br />

Dinitrogen<br />

gas (0)<br />

24


Heterotrophic Denitrification<br />

5CH 2 O + 4NO 3- = CO 2 + 2N 2 + 3H 2 O + 4HCO 3<br />

-<br />

4000<br />

3500<br />

Mean DOC values in transect wells<br />

DOC, mg/L<br />

3000<br />

2500<br />

2000<br />

1500<br />

Mean DOC values in cluster<br />

Wells, n = 14<br />

Decrease in<br />

capacity from<br />

~2200 to 38 mg/L<br />

Nitrate-N<br />

To N 2,<br />

based on reaction<br />

stoichiometry<br />

1000<br />

~40 mg/L<br />

500<br />

0<br />

25<br />

0 5 10 15 20 25 30 35 40<br />

Months of Operation


Downgradient Response<br />

MW34 – center location<br />

20<br />

15<br />

Potassium source from haystraw<br />

K, mg/L<br />

10<br />

5<br />

56 ft travel<br />

in<br />

510 days<br />

0<br />

Nitrate-N, mg/L<br />

36<br />

30<br />

24<br />

18<br />

12<br />

6<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

~ 0.11 ft/day<br />

Seepage velocity<br />

0 5 10 15 20 25 30 35 40<br />

Months of Operation<br />

26


27<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

TEPA<br />

1-A<br />

TEPA<br />

1-B<br />

TEPA<br />

1-C<br />

TEPA<br />

1-D<br />

TEPA<br />

1-E<br />

TEPA<br />

1-G<br />

TEPA<br />

1-H<br />

Apr-04<br />

Oct-04<br />

Jun-05<br />

Apr-06<br />

Apr-07<br />

Apr-08<br />

0.0<br />

2.0<br />

4.0<br />

6.0<br />

8.0<br />

10.0<br />

12.0<br />

14.0<br />

16.0<br />

18.0<br />

20.0<br />

TEPA<br />

1-A<br />

TEPA<br />

1-B<br />

TEPA<br />

1-C<br />

TEPA<br />

1-D<br />

TEPA<br />

1-E<br />

TEPA<br />

1-G<br />

TEPA<br />

1-H<br />

Apr-04<br />

Oct-04<br />

Jun-05<br />

Apr-06<br />

Apr-07<br />

Apr-08<br />

pH<br />

Pb,<br />

ug/L<br />

upgradient PRB downgradient<br />

Delatte<br />

Delatte Metals PRB<br />

Metals PRB


Dissolved Organic Carbon - Per<strong>for</strong>mance<br />

upgradient<br />

downgradient<br />

100<br />

90<br />

DOC,<br />

mg/L<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

Apr-04<br />

Oct-04<br />

Jun-05<br />

Apr-06<br />

Apr-07<br />

Apr-08<br />

10<br />

0<br />

TEPA<br />

1-A<br />

TEPA<br />

1-B<br />

TEPA<br />

1-C<br />

TEPA<br />

1-D<br />

TEPA<br />

1-E<br />

TEPA<br />

1-G<br />

TEPA<br />

1-H<br />

28


Summary Remarks<br />

• Many case studies show consistent degradation of<br />

contaminants over years<br />

• Need <strong>for</strong> coupling PRZs with source control measures<br />

• <strong>Reactive</strong> medium options<br />

• Design <strong>for</strong> highest concentrations – flux based evaluations<br />

• Site Characterization!<br />

– ZVI (ground water chemistry/hydrology)<br />

– Organic Carbon (DOC concentrations)<br />

– Flux based<br />

• More in<strong>for</strong>mation: wilkin.rick@epa.gov<br />

– (http://www.epa.gov/ada/publications/html)<br />

29


Acknowledgements<br />

• EPA – Cindy Paul, Steve Hutchins, Ralph Ludwig,<br />

Robert Puls, John Wilson, Tony Lee, Steve Acree,<br />

Randall Ross<br />

• Sam Lien, Tom He, Doug Beak (post-docs)<br />

• EPA Regions 8, 6, 4<br />

• U. S. Coast Guard<br />

• Shaw Environmental<br />

• Asarco, Inc.<br />

• Argonne National Laboratory<br />

30


Technical Assistance<br />

• Ground Water Technical Support Center<br />

• Dr. David S. Burden,<br />

Director(burden.david@epa.gov<br />

burden.david@epa.gov)<br />

580-436<br />

436-8606<br />

QUESTIONS ????<br />

31

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!