16.11.2014 Views

Slides from the talk - CP3-Origins

Slides from the talk - CP3-Origins

Slides from the talk - CP3-Origins

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Testing <strong>the</strong> Initial Conditions of <strong>the</strong> Universe<br />

with <strong>the</strong> Large-Scale Structure<br />

University of Sou<strong>the</strong>rn Denmark, Odense - September 24th, 2012<br />

Emiliano SEFUSATTI - ICTP<br />

in collaboration with Martin Crocce, Vincent Desjacques (ArXiv:1003.0007, ArXiv: 1111.6966)<br />

+ Dani Figueroa, Toni Riotto & Filippo Vernizzi (ArXiv: 1205.2015)<br />

+ Xingang Chen, James Fergusson & Paul Shellard (ArXiv: 1204.6318)


Outline<br />

• Inflation, Primordial non-Gaussianity & <strong>the</strong> CMB<br />

• (Non-primordial) non-Gaussianity in <strong>the</strong> Large-Scale Structure<br />

• Primordial non-Gaussianity in <strong>the</strong> matter distribution<br />

• Primordial non-Gaussianity in <strong>the</strong> galaxy distribution


Part 1<br />

The “shapes” of Inflation & <strong>the</strong> CMB<br />

Text<br />

!"#$"%&'(%")* +, )-).)<br />

Polarization * +, )-).)<br />

!"#$"%&'(%")* +, )-)/...)<br />

012&%34&516)* +, )-)/...)


Primordial non-Gaussianity<br />

The Gaussianity of primordial fluctuations is one of <strong>the</strong> basic<br />

predictions of <strong>the</strong> simplest model of inflation<br />

confirmed (so far) at 0.1% level by CMB observations<br />

Therefore ...<br />

<strong>the</strong> possible detection of a large non-Gaussianity component in<br />

<strong>the</strong> intial conditions would, by itself, rule-out canonical,<br />

single-field, slow-roll inflation, providing a tool to<br />

discriminate between models of inflation


Non-Gaussian Initial Conditions<br />

Gaussian initial conditions:<br />

• <strong>the</strong>ir statistical properties are completely specified by <strong>the</strong> two-point<br />

correlation function or <strong>the</strong> power spectrum of <strong>the</strong> curvature<br />

perturbations:<br />

• All higher-order correlation functions are vanishing<br />

Bispectrum:<br />

Φ k1 Φ k2 = δ D ( k 1 + k 2 )P Φ (k 1 )<br />

Φ k1 Φ k2 Φ k3 = δ D ( k 1 + k 2 + k 3 ) B Φ (k 1 ,k 2 ,k 3 )=0<br />

Trispectrum:<br />

Φ k1 Φ k2 Φ k3 Φ k4 = δ D ( k 1 + ... + k 4 ) T Φ ( k 1 , k 2 , k 3 , k 4 )=0<br />

Non-Gaussian initial conditions are<br />

characterized by an infinite set of functions:<br />

B Φ (k 1 ,k 2 ,k 3 ) = 0<br />

T Φ ( k 1 , k 2 , k 3 , k 4 ) = 0<br />

, etc ...


Models of primordial non-Gaussianity<br />

Local non-Gaussianity:<br />

A quadratic correction to <strong>the</strong> initial curvature perturbations, Φ:<br />

Φ(x) =φ(x)+f NL φ 2 (x)<br />

leading to <strong>the</strong> initial, curvature bispectrum<br />

B Φ (k 1 ,k 2 ,k 3 )=2f NL P φ (k 1 )P φ (k 2 )+2perm.<br />

with specific properties:<br />

• large values for squeezed triangular configurations<br />

• well represents <strong>the</strong>oretical models where perturbations are<br />

generated outside <strong>the</strong> horizon: curvaton, multiple-field<br />

inflation, inhomogeneous preheating, ....<br />

Equilateral non-Gaussianity:<br />

k 1<br />

k 2<br />

<br />

<br />

B Φ (k 1 ,k 2 ,k 3 )=6f NL −P φ (k 1 )P φ (k 2 )+perm. − 2P 2/3<br />

φ (k 1)P 2/3<br />

φ (k 2)P 2/3<br />

φ (k 3)+...<br />

k 3<br />

• large values for equilateral triangular configurations<br />

• well approximates <strong>the</strong> bispectrum predicted by DBI inflation<br />

or higher derivative models<br />

Orthogonal non-Gaussianity ... and many more<br />

k 1 k 2<br />

k 3


The slang of non-Gaussianity<br />

Most inflationary models predict a scale-invariant curvature bispectrum<br />

B Φ (k, k, k) ∼ P 2 Φ(k) ∼ 1 k 6<br />

What distinguish <strong>the</strong>m is <strong>the</strong> shape<br />

“shape” = <strong>the</strong> dependence of <strong>the</strong> curvature bispectrum predicted<br />

by a given model of inflation on <strong>the</strong> shape of <strong>the</strong> triangular<br />

configuration k1, k2, k3<br />

B Φ (k 1 ,k 2 ,k 3 )=f NL<br />

1<br />

k 2 1 k2 2 k2 3<br />

F<br />

<br />

r 2 = k 2<br />

k 1<br />

,r 3 = k 3<br />

k 1


Models of primordial non-Gaussianity<br />

id est,<br />

Multiple fields<br />

courtesy of G. DʼAmico


The CMB Bispectrum<br />

The Bispectrum of <strong>the</strong> CMB is <strong>the</strong> most<br />

direct probe of <strong>the</strong> initial bispectrum<br />

B l1 l 2 l 3<br />

<br />

∼<br />

B Φ (k 1 ,k 2 ,k 3 )∆ l1 (k 1 )∆ l2 (k 2 )∆ l3 (k 3 )j l1 (k 1 r)j l2 (k 2 r)j l3 (k 3 r)<br />

CMB angular<br />

bispectrum<br />

curvature<br />

bispectrum<br />

transfer<br />

functions<br />

• The CMB provides a snapshot of density perturbations at early times<br />

• Power spectrum measurements (Clʼs) are matched by linear predictions (so far)<br />

• The CMB bispectrum is an optimal estimator for <strong>the</strong> fNL parameter


The CMB Bispectrum<br />

The Bispectrum of <strong>the</strong> CMB is <strong>the</strong> most<br />

direct probe of <strong>the</strong> initial bispectrum<br />

B l1 l 2 l 3<br />

<br />

∼<br />

B Φ (k 1 ,k 2 ,k 3 )∆ l1 (k 1 )∆ l2 (k 2 )∆ l3 (k 3 )j l1 (k 1 r)j l2 (k 2 r)j l3 (k 3 r)<br />

CMB angular<br />

bispectrum<br />

curvature<br />

bispectrum<br />

transfer<br />

functions<br />

• The CMB provides a snapshot of density perturbations at early times<br />

• Power spectrum measurements (Clʼs) are matched by linear predictions (so far)<br />

• The CMB bispectrum is an optimal estimator for <strong>the</strong> fNL parameter<br />

No evidence (yet)!<br />

(despite 2-sigma “hints” in<br />

previous data releases ...)<br />

WMAP 7 years:<br />

Local -10 < fNL < 74<br />

Equilateral -214 < fNL < 266<br />

Orthogonal -410 < fNL < 6<br />

@ 95% CL Komatsu et al. (2011)<br />

The CMB bispectrum is equally sensitive to any model of non-Gaussianity


The CMB Bispectrum<br />

The Bispectrum of <strong>the</strong> CMB is <strong>the</strong> most<br />

direct probe of <strong>the</strong> initial bispectrum<br />

B l1 l 2 l 3<br />

<br />

∼<br />

B Φ (k 1 ,k 2 ,k 3 )∆ l1 (k 1 )∆ l2 (k 2 )∆ l3 (k 3 )j l1 (k 1 r)j l2 (k 2 r)j l3 (k 3 r)<br />

CMB angular<br />

bispectrum<br />

curvature<br />

bispectrum<br />

transfer<br />

functions<br />

• The CMB provides a snapshot of density perturbations at early times<br />

• Power spectrum measurements (Clʼs) are matched by linear predictions (so far)<br />

• The CMB bispectrum is an optimal estimator for <strong>the</strong> fNL parameter<br />

No evidence (yet)!<br />

(despite 2-sigma “hints” in<br />

previous data releases ...)<br />

Planck will improve WMAP<br />

results by a factor of ~ 4<br />

ΔfNL<br />

local<br />

ΔfNL<br />

equilateral<br />

WMAP 21 140<br />

Planck ~ 5 ~ 30<br />

The CMB bispectrum is equally sensitive to any model of non-Gaussianity


Part 1I<br />

(Non-primordial) non-Gaussianity in <strong>the</strong> Large-Scale Structure


Non-Gaussianity in <strong>the</strong> Large-Scale Structure<br />

250<br />

250<br />

200<br />

200<br />

150<br />

150<br />

100<br />

100<br />

50<br />

50<br />

0<br />

0<br />

0 50 100 150 200 250<br />

Mock galaxy distribution<br />

0 50 100 150 200 250<br />

Rayleigh-Lévy flight<br />

ES & Scoccimarro (2005)


Non-Gaussianity in <strong>the</strong> Large-Scale Structure<br />

250<br />

250<br />

200<br />

150<br />

100<br />

200<br />

150<br />

100<br />

Cosmological parameters and<br />

constraints on <strong>the</strong> initial<br />

conditions are typically obtained<br />

<strong>from</strong> power spectrum<br />

measurements<br />

50<br />

50<br />

0<br />

0<br />

0 50 100 150 200 250<br />

0 50 100 150 200 250<br />

-Gaussianity in <strong>the</strong> Large-Scale Structure<br />

<strong>the</strong> power spectrum<br />

cannot distinguish <strong>the</strong><br />

two distributions!<br />

edshift surveys, information on cosmological parameters and <strong>the</strong> initial<br />

ditions is typically obtained <strong>from</strong> measurements of <strong>the</strong> power spectrum<br />

δ k δ k ≡δ D ( k + k )P(k) where δ k FT ↔ δ(x) ≡<br />

ρ(x) − ¯ρ<br />

¯ρ<br />

250<br />

ES & Scoccimarro (2005)


Non-Gaussianity in <strong>the</strong> Large-Scale Structure<br />

250<br />

250<br />

200<br />

150<br />

100<br />

200<br />

150<br />

100<br />

Cosmological parameters and<br />

constraints on <strong>the</strong> initial<br />

conditions are typically obtained<br />

<strong>from</strong> power spectrum<br />

measurements<br />

-Gaussianity in <strong>the</strong> Large-Scale Structure<br />

50<br />

50<br />

t <strong>the</strong>ir non-Gaussian properties, quantifiedby<strong>the</strong>irhigher-ordercorrelation<br />

0<br />

ctions are clearly different:<br />

0 50 100 150 200 250<br />

0<br />

0 50 100 150 200 250<br />

Bispectrum:<br />

δ k1 δ k2 δ k3 ≡δ D ( k 123 )B(k 1 , k 2 , k 3 )<br />

cture<br />

k3<br />

k1<br />

✁<br />

❍ ❍<br />

✁☛ ✟ ✟✟✯ k2<br />

dby<strong>the</strong>irhigher-ordercorrelation<br />

Trispectrum:<br />

rispectrum:<br />

250<br />

δ k1 δ k2 δ k3 δ k4 c ≡ δ D ( k 1234 )T ( k 1 , k 2 , k 3 , k 4 )<br />

200<br />

✁<br />

✁☛<br />

150<br />

k4<br />

❍ ❍<br />

✲ ✻<br />

k1<br />

k2<br />

k3<br />

trispectrum:<br />

δ k1 δ k2 δ k3 δ k4 c ≡ δ D ( k 1234 )T ( k 1 , k 2 , k 3 , k 4 )<br />

⇒<br />

k4<br />

k1<br />

✁<br />

❍ ❍<br />

✁☛ ✲ ✻ k3<br />

k2<br />

<strong>the</strong> power spectrum<br />

cannot distinguish <strong>the</strong><br />

two distributions!<br />

but <strong>the</strong>ir non-Gaussian<br />

properties are very<br />

different!<br />

100<br />

ES & Scoccimarro (2005)<br />

50


Non-Gaussianity <strong>from</strong> Gravitational Instability<br />

A fundamental quantity: <strong>the</strong> matter overdensity<br />

δ(x) ≡<br />

ρ(x) − ¯ρ<br />

¯ρ<br />

≥−1<br />

At early times (z ~ 1000)fluctuations<br />

are small (σδ≪1):<br />

⟨δδ⟩≠0,<br />

⟨δδδ⟩≃0<br />

⟨δδδδ⟩≃0<br />

At late times fluctuations grow, σδ >1<br />

Non-Gaussianity is induced by<br />

gravitational evolution<br />

⟨δδ⟩≠0,<br />

⟨δδδ⟩≠0<br />

⟨δδδδ⟩≠0


Non-Gaussianity <strong>from</strong> Gravitational Instability<br />

At large scales fluctuations are small, σδ≪1, even at low redshift<br />

we can study <strong>the</strong>ir evolution in terms of Perturbation Theory<br />

Equations of motion for<br />

matter density and velocity:<br />

δ, v<br />

• Continuity eq.<br />

• Euler eq.<br />

• Poisson eq.<br />

∂δ<br />

+ ∇ · [(1 + δ)v] =0<br />

∂τ<br />

∂v<br />

∂τ + Hv +(v · ∇)v = −∇φ<br />

<br />

∇ 2 φ = 3 2 H2 Ω m δ


Non-Gaussianity <strong>from</strong> Gravitational Instability<br />

At large scales fluctuations are small, σδ≪1, even at low redshift<br />

we can study <strong>the</strong>ir evolution in terms of Perturbation Theory<br />

Equations of motion for<br />

matter density and velocity:<br />

δ, v<br />

• Continuity eq.<br />

• Euler eq.<br />

• Poisson eq.<br />

∂δ<br />

+ ∇ · [(1 + δ)v] =0<br />

∂τ<br />

∂v<br />

∂τ + Hv +(v · ∇)v = −∇φ<br />

<br />

∇ 2 φ = 3 2 H2 Ω m δ<br />

Perturbative solution for <strong>the</strong><br />

matter density, in Fourier space<br />

δ k = δ (1)<br />

k<br />

+ δ (2)<br />

k<br />

+ ...<br />

Linear solution<br />

δ (2)<br />

k<br />

=<br />

<br />

d 3 qF 2 ( k − q, q) δ (1)<br />

<br />

δ (1)<br />

k−q q<br />

Quadratic nonlinear correction


Non-Gaussianity <strong>from</strong> Gravitational Instability<br />

At large scales fluctuations are small, σδ≪1, even at low redshift<br />

we can study <strong>the</strong>ir evolution in terms of Perturbation Theory<br />

Equations of motion for<br />

matter density and velocity:<br />

δ, v<br />

Perturbative solution for <strong>the</strong><br />

matter density, in Fourier space<br />

• Continuity eq.<br />

• Euler eq.<br />

• Poisson eq.<br />

δ k = δ (1)<br />

k<br />

+ δ (2)<br />

k<br />

+ ...<br />

Linear solution<br />

∂δ<br />

+ ∇ · [(1 + δ)v] =0<br />

∂τ<br />

∂v<br />

∂τ + Hv +(v · ∇)v = −∇φ<br />

<br />

∇ 2 φ = 3 2 H2 Ω m δ<br />

δ (2)<br />

k<br />

=<br />

Initial conditions δ (1)<br />

k1<br />

δ (1)<br />

k2<br />

= δ D ( k 1 + k 2 )P 0 (k 1 )<br />

B0 and T0 vanish for<br />

Gaussian initial conditions!<br />

<br />

d 3 qF 2 ( k − q, q) δ (1)<br />

<br />

δ (1)<br />

k−q q<br />

Quadratic nonlinear correction<br />

δ (1)<br />

k1<br />

δ (1)<br />

k2<br />

δ (1)<br />

k3<br />

= δ D ( k 1 + k 2 + k 3 ) B 0 (k 1 ,k 2 ,k 3 )<br />

δ (1)<br />

k1<br />

δ (1)<br />

k2<br />

δ (1)<br />

k3<br />

δ (1)<br />

k4<br />

= δ D ( k 1 + ... + k 4 ) T 0 ( k 1 , k 2 , k 3 , k 4 )


Non-Gaussianity <strong>from</strong> Gravitational Instability<br />

At large scales fluctuations are small, σδ≪1, even at low redshift<br />

we can study <strong>the</strong>ir evolution in terms of Perturbation Theory<br />

Equations of motion for<br />

matter density and velocity:<br />

δ, v<br />

Perturbative solution for <strong>the</strong><br />

matter density, in Fourier space<br />

δ k = δ (1)<br />

k<br />

+ δ (2)<br />

k<br />

+ ...<br />

Linear solution<br />

δ (2)<br />

k<br />

=<br />

Initial conditions δ (1)<br />

k1<br />

δ (1)<br />

k2<br />

= δ D ( k 1 + k 2 )P 0 (k 1 )<br />

B0 and T0 vanish for<br />

Gaussian initial conditions!<br />

• Continuity eq.<br />

• Euler eq.<br />

• Poisson eq.<br />

∂δ<br />

+ ∇ · [(1 + δ)v] =0<br />

∂τ<br />

∂v<br />

∂τ + Hv +(v · ∇)v = −∇φ<br />

<br />

∇ 2 φ = 3 2 H2 Ω m δ<br />

<br />

d 3 qF 2 ( k − q, q) δ (1)<br />

<br />

δ (1)<br />

k−q q<br />

Quadratic nonlinear correction<br />

δ (1)<br />

k1<br />

δ (1)<br />

k2<br />

δ (1)<br />

k3<br />

= δ D ( k 1 + k 2 + k 3 ) B 0 (k 1 ,k 2 ,k 3 )<br />

δ (1)<br />

k1<br />

δ (1)<br />

k2<br />

δ (1)<br />

k3<br />

δ (1)<br />

k4<br />

= δ D ( k 1 + ... + k 4 ) T 0 ( k 1 , k 2 , k 3 , k 4 )<br />

Perturbative solution for <strong>the</strong><br />

matter 3-point function<br />

δδδ = δ (1) δ (1) δ (1) + δ (1) δ (1) δ (2) + ...<br />

loop corrections<br />

= B0 = 0 for Gaussian<br />

initial conditions<br />

non-zero bispectrum<br />

induced by gravity!


The Matter Bispectrum induced by Gravity<br />

ateral configurations of <strong>the</strong> matter bispectrum<br />

B G = BG<br />

tree [P 0 ]+B loop<br />

G [P 0]<br />

and <strong>the</strong> linear and 1-loop predictions in PT a<br />

BG<br />

tree<br />

(k 1 ,k 2 ,k 3 )=2F 2 ( k 1 , k 2 ) P 0 (k 1 ) P 0 (k 2 )+2perm.<br />

The bispectrum induced by gravity has a well defined<br />

dependence on scale and on <strong>the</strong> shape<br />

Bk, k, k<br />

110 4<br />

5000<br />

1000<br />

500<br />

matter bispectrum<br />

equilateral configurations<br />

f NL 0<br />

z 0.5<br />

1-loop<br />

Bk, k, k<br />

The equilateral configurations<br />

of <strong>the</strong> matter bispectrum:<br />

B(k, k, k) vs. k<br />

Numerical 1000 simulations and PT<br />

predictions<br />

100<br />

100<br />

50<br />

Tree-level<br />

10<br />

10 4 k h Mpc 1<br />

E.S., M. Crocce, & V. Desjacques (2010)<br />

F. Bernardeau, M. Crocce, E.S. (2010)<br />

0.01 0.02 0.05 0.10 0.20<br />

k h Mpc 1 <br />

0.01 0.02 0.05


The Matter Bispectrum induced by Gravity<br />

The bispectrum represents <strong>the</strong> probability for three particles<br />

(or galaxies) to form a triangle of a given size and shape<br />

Plot of <strong>the</strong> reduced bispectrum Q(k1, k2, k3)<br />

with fixed k1 and k2 as a function of <strong>the</strong><br />

angle between <strong>the</strong> two wavenumbers<br />

2.5<br />

Q(k 1 ,k 2 ,k 3 )=<br />

B(k 1 ,k 2 ,k 3 )<br />

P (k 1 )P (k 2 )+P (k 1 )P (k 3 )+P (k 2 )P (k 3 )<br />

Qk1,k2,Θ<br />

2.0<br />

1.5<br />

Nbody<br />

treelevel<br />

1loop<br />

k 1 0.094 h 1 Mpc<br />

k 2 2k 1<br />

1.0<br />

0.5<br />

matter bispectrum<br />

f NL 0, z 0.5<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Θ<br />

k 1<br />

k 2<br />

k 3 Θ<br />

ΘΠ


Non-Gaussianity <strong>from</strong> Galaxy Bias (more problems?)<br />

Additional non-Gaussianity in <strong>the</strong> galaxy distribution<br />

is induced by nonlinear galaxy bias<br />

The relation between <strong>the</strong><br />

observed galaxy<br />

overdensity and <strong>the</strong> matter<br />

density is nonlinear<br />

δ g (x) ≡ n g(x) − ¯n g<br />

¯n g<br />

= f [δ(x)]<br />

local bias<br />

At large scales, we expand it in<br />

a Taylor series<br />

δ g (x) =b 1 δ(x)+ 1 2 b 2 δ 2 (x)+...<br />

Linear bias<br />

Quadratic bias correction<br />

Perturbative solution for <strong>the</strong><br />

galaxy 3-point function<br />

δ g δ g δ g = b 3 1 δδδ + b 2 1 b 2 δδδ 2 + ...<br />

matter bispectrum<br />

bispectrum induced<br />

by nonlinear bias<br />

B g (k 1 ,k 2 ,k 3 )=b 3 1 B(k 1 ,k 2 ,k 3 )+b 2 1 b 2 P (k 1 ) P (k 2 )+2perm. + ...<br />

The component induced by bias has a different<br />

dependence on <strong>the</strong> shape of <strong>the</strong> triangle


From <strong>the</strong> CMB to <strong>the</strong> Large-Scale Structure<br />

The CMB provides a snapshot of <strong>the</strong> Universe at<br />

very high redshift and its power spectrum<br />

(<strong>the</strong> Cl’s) is matched by linear predictions<br />

The observable Universe to <strong>the</strong><br />

CMB last scattering surface<br />

The Large-Scale Structure is <strong>the</strong> result<br />

of a highly nonlinear evolution, with<br />

different sources of non-Gaussianity<br />

How can we distinguish and detect<br />

<strong>the</strong> primordial component?<br />

Why bo<strong>the</strong>r at all?!<br />

The Sloan Digital Sky Survey<br />

(white dots are galaxies)


From <strong>the</strong> CMB to <strong>the</strong> Large-Scale Structure<br />

The CMB provides a snapshot of <strong>the</strong> Universe at<br />

very high redshift and its power spectrum<br />

(<strong>the</strong> Cl’s) is matched by linear predictions<br />

The observable Universe to <strong>the</strong><br />

CMB last scattering surface<br />

The Large-Scale Structure is <strong>the</strong> result<br />

of a highly nonlinear evolution, with<br />

different sources of non-Gaussianity<br />

How can we distinguish and detect<br />

<strong>the</strong> primordial component?<br />

Why bo<strong>the</strong>r at all?!<br />

Two reasons:<br />

The Sloan Digital Sky Survey<br />

(white dots are galaxies)<br />

1. The CMB is 2D field, <strong>the</strong> LSS is 3D<br />

2. Galaxy bias reserved a surprise for us ...


Part III<br />

Matter<br />

400 particles. Since we are interested mainly in <strong>the</strong> masses<br />

and positions of cluster-sized halos, and not <strong>the</strong>ir internal<br />

structure, we have not used high force resolution: we<br />

employ a Plummer softening length l of 0.2 times <strong>the</strong><br />

mean interparticle spacing. We have checked that using<br />

higher force resolution (l half as large) does not appreciably<br />

change <strong>the</strong> mass function. All simulations were performed<br />

at <strong>the</strong> Sunnyvale cluster at CITA; depending upon<br />

We c<br />

z ¼ 1, 0<br />

[66], w<br />

tions, th<br />

extensiv<br />

are plot<br />

fNL = - 5000<br />

fNL = - 500<br />

fNL = 0<br />

Havin<br />

like to c<br />

used fo<br />

above,<br />

Gaussia<br />

Schecht<br />

function<br />

order o<br />

interest<br />

to <strong>the</strong><br />

adopted<br />

fNL = + 500<br />

( )<br />

fNL = + 5000<br />

Dalal et al. (2008)<br />

FIG. 1 (color online). Slice through simulation outputs at z ¼<br />

0 generated with <strong>the</strong> same Fourier phases but with f ¼


Matter Power Spectrum<br />

In Perturbation Theory ...<br />

P = P 0 + P loop<br />

G<br />

[P 0]+P loop<br />

NG [P 0,B 0 ]<br />

matter power spectrum<br />

Linear power<br />

spectrum<br />

Gravity-induced<br />

contributions<br />

(depending on P0 alone)<br />

Additional gravity-induced contributions<br />

present only for NG initial conditions (B0)


Matter Power Spectrum<br />

In Perturbation Theory ...<br />

P = P 0 + P loop<br />

G<br />

[P 0]+P loop<br />

NG [P 0,B 0 ]<br />

matter power spectrum<br />

Linear power<br />

spectrum<br />

Gravity-induced<br />

contributions<br />

(depending on P0 alone)<br />

Additional gravity-induced contributions<br />

present only for NG initial conditions (B0)<br />

Few percent effect at small scales<br />

for allowed values of fNL<br />

Ratio of <strong>the</strong> non-Gaussian<br />

to <strong>the</strong> Gaussian power<br />

spectrum for fNL = ±100<br />

(local) at z =1<br />

Smith, Desjacques & Marian (2010)


Matter Power Spectrum<br />

In Perturbation Theory ...<br />

P = P 0 + P loop<br />

G<br />

[P 0]+P loop<br />

NG [P 0,B 0 ]<br />

Linear power<br />

spectrum<br />

Gravity-induced<br />

contributions<br />

(depending on P0 alone)<br />

Additional gravity-induced contributions<br />

present only for NG initial conditions (B0)<br />

Few percent effect at small scales<br />

. for Fedeli allowed and L. Moscardini values of fNL<br />

Weak Lensing<br />

Ratio of <strong>the</strong> non-Gaussian<br />

to <strong>the</strong> Gaussian power<br />

spectrum for fNL = ±100<br />

(local) at z =1<br />

Smith, Desjacques & Marian (2010)<br />

Fedeli & Moscardini (2010)<br />

Giannantonio et al. (2011)<br />

From EUCLID we expect:<br />

ΔfNL ~ 20 (local)<br />

ΔfNL ~ 3 (orthogonal)<br />

ΔfNL ~ 10 (equilateral)<br />

(with Planck priors on<br />

cosmology)


Matter Power Spectrum & Bispectrum<br />

In Perturbation Theory ...<br />

P = P 0 + P loop<br />

G<br />

[P 0]+P loop<br />

NG [P 0,B 0 ]<br />

matter power spectrum<br />

Linear power<br />

spectrum<br />

Gravity-induced<br />

contributions<br />

(depending on P0 alone)<br />

Additional gravity-induced contributions<br />

present only for NG initial conditions (B0)<br />

B = B 0 + B tree<br />

G<br />

[P 0 ]+B loop<br />

G<br />

[P 0]+B loop<br />

NG [P 0,B 0 ]<br />

& bispectrum<br />

Primordial<br />

component


The matter bispectrum and PNG: large scales<br />

At large scales I can approximate <strong>the</strong> matter bispectrum with <strong>the</strong> tree-level expression on PT:<br />

B(k 1 ,k 2 ,k 3 ) B 0 + B tree<br />

G [P 0 ]<br />

Primordial<br />

component<br />

Gravity-induced<br />

component<br />

Bk,k,k<br />

5000<br />

2000<br />

1000<br />

500<br />

200<br />

Gravity<br />

Initial, f NL 100<br />

Gravity Initial<br />

0.01 0.02 0.05 0.1<br />

k h Mpc 1 <br />

Equilateral configurations<br />

of <strong>the</strong> matter bispectrum<br />

B 0 (k, k, k) k→0<br />

(k, k, k) ∼<br />

B tree<br />

G<br />

f NL<br />

D(z)k 2<br />

The primordial component has a<br />

different dependence on scale<br />

than <strong>the</strong> gravity-induced one!<br />

It is relevant at large scales<br />

and early times<br />

This is true for almost all models (local,<br />

equilateral, orthogonal ...)


The matter bispectrum and PNG: large scales<br />

At large scales I can approximate <strong>the</strong> matter bispectrum with <strong>the</strong> tree-level expression on PT:<br />

B(k 1 ,k 2 ,k 3 ) B 0 + B tree<br />

G [P 0 ]<br />

Primordial<br />

component<br />

Gravity-induced<br />

component<br />

1.4<br />

1.2<br />

k 1 =0.01 h Mpc −1 , k 2 =1.5 k 1<br />

Reduced bispectrum as a function of<br />

<strong>the</strong> angle between two wavenumbers<br />

Qk 1 ,k 2 ,Θ<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Gravity<br />

Initial, f NL 100<br />

Gravity Initial<br />

Primordial component for<br />

local non-Gaussianity:<br />

large contribution in <strong>the</strong><br />

squeezed limit!<br />

The primordial component has<br />

a different dependence on <strong>the</strong><br />

shape of <strong>the</strong> triangular<br />

configurations<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

ΘΠ<br />

and it is specific to <strong>the</strong> non-Gaussian<br />

model (local, equilateral, orthogonal ...)


The matter bispectrum and PNG: large scales<br />

Qk 1 ,k 2 ,Θ<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

Local NG, 10 f NL 74<br />

Current CMB constraints for different<br />

models of non-Gaussianity as uncertainties<br />

on <strong>the</strong> generic configurations of <strong>the</strong> matter<br />

bispectrum, B B 0 + BG tree [P 0 ]<br />

0.5<br />

The matter bispectrum can distinguish<br />

different non-Gaussian models<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

ΘΠ<br />

2.5<br />

Equilateral NG, 214 f NL 266<br />

2.5<br />

Orthogonal NG, 410 f NL 6<br />

2.0<br />

2.0<br />

Qk 1 ,k 2 ,Θ<br />

1.5<br />

1.0<br />

Qk 1 ,k 2 ,Θ<br />

1.5<br />

1.0<br />

0.5<br />

0.5<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

ΘΠ<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

ΘΠ


The matter bispectrum and PNG: large scales<br />

In Perturbation Theory ...<br />

P = P 0 + P loop<br />

G<br />

[P 0]+P loop<br />

NG [P 0,B 0 ]<br />

matter power spectrum<br />

Linear power<br />

spectrum<br />

Gravity-induced<br />

contributions<br />

(depending on P0 alone)<br />

Additional gravity-induced contributions<br />

present only for NG initial conditions (B0)<br />

B = B 0 + B tree<br />

G<br />

[P 0 ]+B loop<br />

G<br />

[P 0]+B loop<br />

NG [P 0,B 0 ]<br />

& bispectrum<br />

Primordial<br />

component<br />

If B0 was <strong>the</strong> only effect of NG initial conditions on <strong>the</strong> LSS<br />

<strong>the</strong>n future, large volume surveys (~100 Gpc 3 ) could<br />

provide:<br />

ΔfNL local < 5 and ΔfNL eq < 10<br />

Scoccimarro, ES & Zaldarriaga (2004), ES & Komatsu (2007)


The matter bispectrum and PNG: small scales<br />

In Perturbation Theory ...<br />

P = P 0 + P loop<br />

G<br />

[P 0]+P loop<br />

NG [P 0,B 0 ]<br />

matter power spectrum<br />

Linear power<br />

spectrum<br />

Gravity-induced<br />

contributions<br />

(depending on P0 alone)<br />

Additional gravity-induced contributions<br />

present only for NG initial conditions (B0)<br />

B = B 0 + B tree<br />

G<br />

[P 0 ]+B loop<br />

G<br />

[P 0]+B loop<br />

NG [P 0,B 0 ]<br />

& bispectrum<br />

Primordial<br />

component<br />

Nonlinear corrections are also<br />

affected by <strong>the</strong> initial conditions!


B G B G, tree, nw<br />

BNG<br />

BNG BG<br />

BG<br />

1.6<br />

1.4<br />

The matter bispectrum and PNG:<br />

1.4<br />

small scales<br />

1.4<br />

1.2<br />

1.2<br />

B = 1.3 B 0 + BG<br />

tree<br />

1.0<br />

BNG BG<br />

0.8 1.2 Primordial Gravity-induced Additional gravity-induced 0.8 1.2 contributions<br />

component contributions present for NG initial conditions (B0)<br />

0.6<br />

0.05 0.10 0.15 0.20 0.25 0.30<br />

1.1<br />

1.1<br />

0.05 0.10 0.15 0.20 0.25 0.30<br />

k h Mpc 1 <br />

k h Mpc 1 <br />

Squeezed 1.0 configurations B(Δk, k, k)<br />

as a function of k with Δk = 0.01 h/Mpc<br />

1.4<br />

1000<br />

1.3500<br />

1.2200<br />

100<br />

1.1<br />

50<br />

treelevel<br />

oneloop<br />

SC01<br />

ES (2009)<br />

ES, Crocce & Desjacques (2010)<br />

1.0<br />

5000<br />

Ratio B f NL 100 B f NL 0<br />

[P 0 ]+B loop<br />

G<br />

1.0<br />

0.05Squeezed 0.10 0.15configurations 0.20 0.25 0.30 B(∆k, k, k) vs. 0.05 k, 0.10 non-Gaussian ES 0.15 (2009) 0.20 0.25 initial 0.30c<br />

k h Mpc 1 <br />

Ratio Difference B f NL B f100 NL 100 B f NL B f NL 00<br />

z 0z 1<br />

0.010.05 0.02 0.10 0.15 0.05 0.200.10 0.25 0.20.30<br />

k hk Mpc h Mpc 1 <br />

1 <br />

Nbody<br />

treelevel<br />

oneloop<br />

[P 0]+B loop<br />

B G B G, tree, nw<br />

z 1<br />

1.0<br />

1.3<br />

NG [P 0,B 0 ]<br />

BNG BG<br />

BNG BG<br />

200<br />

1.3<br />

BNG BG<br />

1.4<br />

1.2<br />

1.1<br />

1.0<br />

100<br />

50<br />

20<br />

10<br />

Ratio B f NL 100 B f NL 0<br />

k h Mpc 1 <br />

z 2<br />

ES, Crocce & Desjacques (2010)<br />

Ratio Difference B f NL B f100 NL 100 B f NL B f NL<br />

00<br />

z z1<br />

2<br />

0.010.05 0.02 0.10 0.15 0.05 0.200.10 0.25 0.200.30<br />

k hk Mpc h Mpc 1 <br />

1


0.8<br />

0.6<br />

0.01 0.1 1 10<br />

k h Mpc 1 <br />

The matter bispectrum and PNG: even smaller scales<br />

N<br />

Beyond PT: The Halo Model<br />

1000<br />

Difference B f NL 100 B f NL 0<br />

BNG BG<br />

100<br />

10<br />

There is a significant effect of NG<br />

initial conditions of about 5-15% on all<br />

triangles, at small scales and at late<br />

times for fNL = 100<br />

Weak lensing?<br />

NbodyHM<br />

1<br />

1.40.01 0.1 Nbody 1 HM<br />

1.2<br />

1.0<br />

k h Mpc 1 <br />

10<br />

0.8<br />

0.6<br />

0.01 0.1 1 10<br />

k h Mpc 1 <br />

1.3<br />

Ratio B f NL 100 B f NL 0<br />

BNG BG<br />

1.2<br />

1.1<br />

Figueroa, ES, Riotto & Vernizzi (2012)<br />

Squeezed configurations B(Δk, k, k)<br />

as a function of k with Δk = 0.01 h/Mpc<br />

1.0<br />

0.01 0.1 1 10<br />

k h Mpc 1


Part IV<br />

Galaxies<br />

IMPRINTS OF PRIMORDIAL NON-GAUSSIANITIES ON ...<br />

fNL = - 5000<br />

fNL = - 500<br />

fNL = 0<br />

fNL = + 500<br />

fNL = + 5000<br />

Dalal et al. (2008)<br />

FIG. 7 (color online). Cross-power spectra for various f NL .<br />

The upper panel displays P h ðkÞ, measured in our simulations at<br />

z ¼ 1 for halos of mass 1:6 10 13 M


Galaxy bias and <strong>the</strong> galaxy power spectrum<br />

Dalal et al. (2008):<br />

The bias of galaxies receives a significant scale-dependent<br />

correction for NG initial conditions of <strong>the</strong> local type<br />

P g (k) =[b 1 + ∆b 1 (f NL ,k)] 2 P (k)<br />

“Gaussian” Scale-dependent correction<br />

IMPRINTS OF biasPRIMORDIAL due NON-GAUSSIANITIES to local non-GaussianityON ...<br />

Large effect on large scales!<br />

Dalal et al. (2008)<br />

PHYSICAL REVIEW<br />

using <strong>the</strong> halo auto spectra to compute<br />

results as <strong>the</strong> cross spectra; i.e. we<br />

stochasticity. Examples of <strong>the</strong> variou<br />

resulting bias factors are plotted in F<br />

As can be seen, we numerically co<br />

∆b predicted 1,NG (fscale NL ,k) dependence. ∼<br />

f NLBecau<br />

statistics of rare objects, D(z) <strong>the</strong> errors k 2 on<br />

simulations plotted in Fig. 8 are lar<br />

tempt to improve <strong>the</strong> statistics on <strong>the</strong><br />

bining <strong>the</strong> bias measurements <strong>from</strong><br />

Figure 8 plots <strong>the</strong> average ratio betwe<br />

in our simulations and our analytic<br />

using c ¼ 1:686 as predicted <strong>from</strong> t<br />

model [78]. In computing <strong>the</strong> average<br />

we used a uniform weighting across<br />

Measurements of <strong>the</strong> power spectrum of<br />

dark matter halos in N-body simulation<br />

with local NG initial conditions


Galaxy bias and <strong>the</strong> galaxy power spectrum<br />

Dalal et al. (2008):<br />

The bias of galaxies receives a significant scale-dependent<br />

correction for NG initial conditions of <strong>the</strong> local type<br />

P g (k) =[b 1 + ∆b 1 (f NL ,k)] 2 P (k)<br />

“Gaussian”<br />

bias<br />

Scale-dependent correction<br />

due to local non-Gaussianity<br />

QSOs+LRGs: -31 < fNL < 70 (95% CL)<br />

[Slosar et al. (2008)]<br />

AGNs+QSOs+LRGs: 8 < fNL < 88 (95% CL)<br />

[Xia et al. (2011)]<br />

Limits <strong>from</strong> LSS are<br />

already competitive<br />

with <strong>the</strong> CMB!<br />

(at least for <strong>the</strong> local model ...)<br />

high-redshift sources: quasars & AGNs<br />

CMB limits (95% CL): -10 < fNL < 74<br />

[Komatsu et al. (2009)]<br />

From EUCLID we expect:<br />

ΔfNL ~ 5<br />

<strong>from</strong> <strong>the</strong> 3D power spectrum alone<br />

[e.g. Giannantonio et al. (2011)]


shear<br />

by<br />

→<br />

n-<br />

ad<br />

we<br />

0).<br />

er-<br />

L)<br />

ng<br />

nd<br />

nt<br />

llias<br />

=<br />

et<br />

ses<br />

by<br />

w-<br />

Galaxy bias and <strong>the</strong> galaxy power spectrum<br />

Dalal et al. (2008):<br />

The bias of galaxies receives a significant scale-dependent<br />

correction for NG initial conditions of <strong>the</strong> local type<br />

FIG. 4: The scale-dependent part of bias b − b ∞ divided by<br />

b ∞ − 1, for f NL =100andz =0. Thescale-independent<br />

part of bias, b ∞ =1.5 and3forsolidanddottedcurves.The<br />

dashed line is Dalal et al.’s derivation [1].<br />

P g (k) =[b 1 + ∆b 1 (f NL ,k)] 2 P (k)<br />

“Gaussian”<br />

bias<br />

Afshordi & Tolley (2008)<br />

Scale-dependent correction<br />

due to local non-Gaussianity<br />

FIG. 5: This figure illustrates <strong>the</strong> contrast between <strong>the</strong> gaus-<br />

Introduction<br />

PNG and <strong>the</strong> Matter Bispectrum<br />

PNG and <strong>the</strong> Galaxy Bispectrum<br />

Future Perspectives<br />

A local model for primordial non-Gau<br />

Non-Gaussian Local non-Gaussianity<br />

correction to <strong>the</strong> curvatur<br />

introduces a correlation between h<br />

large-scale Φ(x) fluctuations =φ(x)+f and NL<br />

loc.<br />

<strong>the</strong> φ 2 (x) −<br />

small-scales responsible for <strong>the</strong><br />

[Salopek & Bond (19<br />

formation (collapse) of dark matter<br />

halos (and <strong>the</strong>refore, galaxies)<br />

⇒ B Φ (k 1 , k 2 , k 3 )=2fNL loc. [P φ (k 1 )P<br />

k 1<br />

k 2<br />

k 3<br />

Large val<br />

Represen<br />

are gener<br />

Curvato<br />

Multipl<br />

Inhomo


What about o<strong>the</strong>r models?<br />

approach [40]<br />

∆b I = b NG<br />

1 − b G 1 = − ∂ ln RNG (M)<br />

, (6.5)<br />

∂δ c<br />

The scale-dependence of bias can be different<br />

for o<strong>the</strong>r models, or not be <strong>the</strong>re at all ...<br />

R NG (M) being <strong>the</strong> ratio of <strong>the</strong> non-Gaussian to <strong>the</strong> Gaussian mass function. Here,<br />

ver, we treat ∆b I as a free parameter and compare it later on with <strong>the</strong> prediction<br />

ed <strong>from</strong> <strong>the</strong> mass functions. We choose q as <strong>the</strong> second free parameter. All o<strong>the</strong>r 1<br />

tities in Eq. (6.4) are we derive <strong>from</strong> <strong>the</strong> <strong>the</strong>ory and are kept fixed.<br />

In Fig. 8, we show as an example <strong>the</strong> effect of local non-Gaussianity on <strong>the</strong> halo bias<br />

alos of mass 1.2 − 2.4 × 10 14 M ⊙ /h at z = 0. Note that we plot ∆b(k)+0.1. As ∆b I is<br />

tive, this addition of 0.1 is needed to still make use of <strong>the</strong> logarithmic scale.<br />

The different line types visualize <strong>the</strong> effect of <strong>the</strong> different terms in Eq. (6.4). The 0.1<br />

s lines show <strong>the</strong> best fit to <strong>the</strong> data (using all modes up to k max =0.1Mpc/h) and<br />

des all terms given above. The short-dashed lines neglects ∆b I appearing inside <strong>the</strong><br />

re brackets in Eq. (6.4). The inclusion of this term makes <strong>the</strong> non-Gaussian bias nonr<br />

in f NL [55], since ∆b I depends on f NL . The dot-dashed line neglects ∆b I completely.<br />

scale-dependent bias shift becomes important on smaller scales (k >0.02), for which<br />

cale-dependent part becomes small.<br />

!b + 0.1<br />

10<br />

1<br />

0.1<br />

1<br />

k<br />

Orthogonal orthogonal NG<br />

Gaussian bias. This has <strong>the</strong> advantage that by doing this we do not need to include β(k<br />

<strong>the</strong> modelling of ∆b(k) (seeEq.(2.1) and Eq. (2.4)).<br />

!b + 0.1<br />

0.4<br />

f NL = -1000<br />

1.2x10 14 < M<br />

f NL = -250<br />

halo < 2.4x10 14<br />

3x10 13 < M halo < 6x10<br />

Figure 8. Local non-Gaussian bias of halos with mass 1.2 × 10 14 Mpc/h < 13<br />

M < 2.4 × 10 14 M<br />

at z = 0. The difference of <strong>the</strong> bias measured <strong>from</strong> <strong>the</strong> non-Gaussian simulations and Gau<br />

simulations is depicted 0.2 by <strong>the</strong> data points (for computation of <strong>the</strong> errorbars, see App. B). The<br />

lines show <strong>the</strong> best fit using <strong>the</strong> model given in Eq. 6.4. The dot-dashed lines show <strong>the</strong> m<br />

predictions when <strong>the</strong> scale-independent bias shift, ∆b I , is neglected. The short-dashed lines ne<br />

<strong>the</strong> term which is non-linear 0 in f NL (see text for details). Thick lines and red symbols correspon<br />

f NL = 250, while thin lines and blue symbols show <strong>the</strong> results for f NL = 60. Note that we act<br />

show ∆b +0.1 to allow for a logarithmic scale.<br />

!b<br />

10<br />

0.01<br />

0.003 0.01 0.1<br />

-0.2<br />

-0.4<br />

1<br />

k 2<br />

local<br />

Local NG<br />

k [h/Mpc]<br />

f NL = 250<br />

f NL = 60<br />

As <strong>the</strong> non-Gaussian and <strong>the</strong> Gaussian simulation share <strong>the</strong> same realization of<br />

initial Gaussian field, ∆b(k) is almost free of sample variance and, in addition, has sm<br />

shot noise than b NG (k) and b G (k) individually. We estimate <strong>the</strong> error on ∆b(k) directly f<br />

const.<br />

<strong>the</strong> distribution of ∆b(k) in each k bin (for details, see App. B).<br />

Following Eq. 2.1, wemodel∆b(k) by equilateral<br />

Wagner & Verde (2010)<br />

Equilateral NG<br />

0.01<br />

0.003 0.01 0.1<br />

k [h/Mpc]<br />

where b G 1<br />

<br />

∆b(k) =∆b I + f NL b<br />

G<br />

1 + ∆b I − 1 qδ c F M (k)<br />

D(z) M M (k) , (<br />

-0.6<br />

0.003 0.01 0.1<br />

k [h/Mpc]<br />

is <strong>the</strong> linear halo bias obtained <strong>from</strong> <strong>the</strong> Gaussian simulation on large scales


What about o<strong>the</strong>r models?<br />

approach [40]<br />

∆b I = b NG<br />

1 − b G 1 = − ∂ ln RNG (M)<br />

, (6.5)<br />

∂δ c<br />

The scale-dependence of bias can be different<br />

R NG (M) being <strong>the</strong> ratio of <strong>the</strong> non-Gaussian to <strong>the</strong> Gaussian mass function. Here,<br />

ver, for we o<strong>the</strong>r treat ∆b I<br />

models, as a free parameter or not and be compare <strong>the</strong>re it at later all on ... with <strong>the</strong> prediction<br />

ed <strong>from</strong> <strong>the</strong> mass functions. We choose q as <strong>the</strong> second free parameter. All o<strong>the</strong>r 1<br />

tities in Eq. (6.4) are we derive <strong>from</strong> <strong>the</strong> <strong>the</strong>ory and are kept fixed.<br />

In Fig. 8, we show as an example <strong>the</strong> effect of local non-Gaussianity on <strong>the</strong> halo bias<br />

alos of mass 1.2 − 2.4 × 10 14 M ⊙ /h at z = 0. Note that we plot ∆b(k)+0.1. As ∆b I is<br />

tive, this addition of 0.1 is needed to still make use of <strong>the</strong> logarithmic scale.<br />

The different line types visualize <strong>the</strong> effect of <strong>the</strong> different terms in Eq. (6.4). The 0.1<br />

s lines show <strong>the</strong> best fit to <strong>the</strong> data (using all modes up to k max =0.1Mpc/h) and<br />

des all terms given above. The short-dashed lines neglects ∆b I appearing inside <strong>the</strong><br />

re brackets in Eq. (6.4). The inclusion of this term makes <strong>the</strong> non-Gaussian bias nonr<br />

inNB: f NL [55], A since careful ∆b I depends definition f NL . The dot-dashed of <strong>the</strong> line neglects ∆b I completely.<br />

scale-dependent bias shift becomes important on smaller scales (k >0.02), for which 0.01<br />

cale-dependent part becomes small.<br />

templates might be in order ...<br />

!b + 0.1<br />

10<br />

1<br />

0.1<br />

1<br />

k<br />

?<br />

Orthogonal orthogonal NG<br />

Gaussian bias. This has <strong>the</strong> advantage that by doing this we do not need to include β(k<br />

<strong>the</strong> modelling of ∆b(k) (seeEq.(2.1) and Eq. (2.4)).<br />

!b + 0.1<br />

Text<br />

0.4<br />

f NL = -1000<br />

1.2x10 14 < M<br />

f NL = -250<br />

halo < 2.4x10 14<br />

3x10 13 < M halo < 6x10<br />

Figure 8. Local non-Gaussian bias of halos with mass 1.2 × 10 14 Mpc/h < 13<br />

M < 2.4 × 10 14 M<br />

at z = 0. The difference of <strong>the</strong> bias measured <strong>from</strong> <strong>the</strong> non-Gaussian simulations and Gau<br />

simulations is depicted 0.2 by <strong>the</strong> data points (for computation of <strong>the</strong> errorbars, see App. B). The<br />

lines show <strong>the</strong> best fit using <strong>the</strong> model given in Eq. 6.4. The dot-dashed lines show <strong>the</strong> m<br />

predictions when <strong>the</strong> scale-independent bias shift, ∆b I , is neglected. The short-dashed lines ne<br />

<strong>the</strong> term which is non-linear 0 in f NL (see text for details). Thick lines and red symbols correspon<br />

f NL = 250, while thin lines and blue symbols show <strong>the</strong> results for f NL = 60. Note that we act<br />

show ∆b +0.1 to allow for a logarithmic scale.<br />

!b<br />

10<br />

-0.2<br />

-0.4<br />

1<br />

k 2<br />

local<br />

Local NG<br />

0.003 0.01 0.1<br />

k [h/Mpc]<br />

f NL = 250<br />

f NL = 60<br />

As <strong>the</strong> non-Gaussian and <strong>the</strong> Gaussian simulation share <strong>the</strong> same realization of<br />

initial Gaussian field, ∆b(k) is almost free of sample variance and, in addition, has sm<br />

shot noise than b NG (k) and b G (k) individually. We estimate <strong>the</strong> error on ∆b(k) directly f<br />

const.<br />

<strong>the</strong> distribution of ∆b(k) in each k bin (for details, see App. B).<br />

Following Eq. 2.1, wemodel∆b(k) by equilateral<br />

Wagner & Verde (2010)<br />

Equilateral NG<br />

0.01<br />

0.003 0.01 0.1<br />

k [h/Mpc]<br />

where b G 1<br />

<br />

∆b(k) =∆b I + f NL b<br />

G<br />

1 + ∆b I − 1 qδ c F M (k)<br />

D(z) M M (k) , (<br />

-0.6<br />

0.003 0.01 0.1<br />

k [h/Mpc]<br />

is <strong>the</strong> linear halo bias obtained <strong>from</strong> <strong>the</strong> Gaussian simulation on large scales


The interesting case of Quasi-Single Field Inflation<br />

k −3/2<br />

3 ln k 3<br />

,<br />

k 1<br />

QSF inflation predicts a family of models<br />

parametrized by<br />

α = 1 2 − ν ,<br />

m 2<br />

H 2 ≈ 9 (1)<br />

4 ,<br />

<br />

9 ν ≡ 4 − m2<br />

H 2 . “isocurvaton” fields, i.e. field (2)<br />

non-Gaussianity with intermediate and “shapes” is present between even<strong>the</strong><br />

if <strong>the</strong> non-Gaussianity is perfectly scaleheequilateral<br />

inflaton requires and local m 2 ≥ 0, so α ≥−1. As m 2 /H 2 > 9/4, <strong>the</strong> isocurvatons<br />

significant effects on density perturbations. So we are mainly interested in<br />

a momentum dependence lies between that of <strong>the</strong> equilateral shape (α = 1)<br />

large non-Gaussianity or its direct multifield generalization, and that of <strong>the</strong><br />

ultifield models with light isocurvatonssqueezed-limit<br />

m H. (See [9–11] for reviews.)<br />

n <strong>the</strong> isocurvaton masses may be model-dependent in more general situations,<br />

dependence in <strong>the</strong> squeezed limit is a robust evidence for <strong>the</strong> existence of such<br />

atively as follows [6, 7]. The fluctuations of <strong>the</strong> massive scalars decay after<br />

y decay immediately after <strong>the</strong> horizon-exit, and for lighter scalars <strong>the</strong>y decay<br />

responsible for <strong>the</strong> large non-Gaussianities, are <strong>the</strong>refore generated between<br />

n scales. The former<br />

ν = 0.2<br />

is responsible for <strong>the</strong> equilateral-like ν = 1 shapes, and <strong>the</strong><br />

cy check, if we look at <strong>the</strong> special limit of massless scalars, <strong>the</strong> superhorizon<br />

over <strong>the</strong> characteristic local shape in <strong>the</strong> squeezed limit. This momentum<br />

titatively as follows [8], at least for α close to −1 . Ignoring <strong>the</strong> physics within<br />

ed limit of <strong>the</strong> three-point function can be regarded as <strong>the</strong> modulation of <strong>the</strong><br />

ngth modes <strong>from</strong> a long-wavelength mode. After horizon exit, we know that<br />

ays as ∼ a −1−α • Inflationary phenomenology.<br />

as a function of <strong>the</strong> scale factor a. So <strong>the</strong> amplitude of <strong>the</strong><br />

1+α<br />

m is <strong>the</strong> mass of <strong>the</strong><br />

orthogonal to <strong>the</strong> inflaton<br />

trajectory in field-space<br />

Figure 1. Thisfigureillustratesamodelofquasi-singlefieldinflation in ter<br />

The θ direction is <strong>the</strong> inflationary direction, with a slow-roll potential. The<br />

isocurvature direction, which typically has mass of order H.<br />

PHYSICAL REVIEW D 81, 063511 (2010)<br />

larger than O(H), quasi-single field inflation makes <strong>the</strong> same predic<br />

inflation. However, once large couplings exist and <strong>the</strong> mass are of orde<br />

<strong>the</strong>se massive isocurvatons can have important effects on density pert<br />

In this paper, we shall study a simple model of quasi-single fiel<br />

model, <strong>the</strong> coupling between <strong>the</strong> inflaton and <strong>the</strong> massive isocurvat<br />

turning trajectory. The tangential direction of this turning trajector<br />

direction, while <strong>the</strong> orthogonal direction is lifted by a mass oforderH<br />

The motivations for investigating quasi-single field inflation are<br />

• UV completion and fine-tuning in inflation models. To satisfy t<br />

tion, fine-tunings or symmetries should generally be evoked. Atl<br />

<strong>the</strong> case for models that have reasonable UV completion in string<br />

ity [3, 4]. For slow-roll inflation, this means that, in <strong>the</strong> inflati<br />

light fields will typically acquire mass of order <strong>the</strong> Hubble para<br />

heavy to be <strong>the</strong> inflaton candidates. On <strong>the</strong> o<strong>the</strong>r hand, in a UV<br />

tiple light fields arise naturally. Taking <strong>the</strong>se facts into considera<br />

of inflation emerges: There is one inflation direction with mass m<br />

directions in <strong>the</strong> field space with m ∼ H. In contrast to <strong>the</strong> sl<br />

higher order terms in <strong>the</strong> potential such as V ′′′ ∼ H and V ′′′′ ∼<br />

<strong>the</strong>se non-flat directions. To have more than one flat direction n<br />

The above picture for inflation suggests <strong>the</strong> quasi-single field in<br />

When Chen <strong>the</strong> & inflaton Wang trajectory (2010) tu<br />

isocurvature perturbation is converted to curvature perturbation<br />

ing <strong>the</strong> effect of such a conversion on density perturbations is in


The interesting case of Quasi-Single Field Inflation<br />

11<br />

The scale-dependent<br />

bias correction<br />

b bG<br />

b bG<br />

b bG<br />

10<br />

1<br />

QSF, Ν 1.5 10 1<br />

QSF, Ν 1<br />

1<br />

1<br />

k 2 k 3/2<br />

0.1<br />

0.1<br />

0.01<br />

0.01<br />

0.001<br />

0.001<br />

0.001 0.01 0.1<br />

0.001 0.01 0.1<br />

k h Mpc 1 <br />

k h Mpc 1 <br />

10<br />

QSF, Ν 0.5 10<br />

QSF, Ν 0<br />

1<br />

1<br />

1<br />

1 √<br />

k<br />

k<br />

0.1<br />

0.1<br />

0.01<br />

0.01<br />

0.001<br />

0.001<br />

0.001 0.01 0.1<br />

0.001 0.01 0.1<br />

k h Mpc 1 <br />

k h Mpc 1 <br />

10<br />

Local NG 10 Equilateral NG<br />

1<br />

z 1<br />

1<br />

k 2 M 10 12.5 h 1 M <br />

b 1,G 1.2<br />

0.1<br />

b bG<br />

b bG<br />

b bG<br />

0.1<br />

0.01<br />

M 10 13.5 h 1 M <br />

b 1,G 2.0<br />

∼ const<br />

0.001<br />

0.001<br />

ES, Chen, Fergusson & Shellard (2012)<br />

0.001 0.01 0.1<br />

k h Mpc 1 <br />

0.001 0.01 0.1<br />

k h Mpc 1


The interesting<br />

Νcase 1.5<br />

of Quasi-Single Field Inflation<br />

Ν 1.5<br />

50 100<br />

Given a positive<br />

detection of fNL,<br />

how well can we<br />

constrain<br />

<strong>the</strong> parameter ν,<br />

150 200<br />

in future galaxy surveys?<br />

f NL<br />

f NL 50<br />

0.2<br />

0.0<br />

1.4<br />

1.2<br />

f NL 100<br />

0 50 100 150 200<br />

f NL<br />

0.2<br />

0.0<br />

1.4<br />

1.2<br />

0<br />

f N<br />

Ν <br />

1.0<br />

1.0<br />

Fisher matrix analysis of<br />

galaxy power spectrum<br />

measurements at k < kmax(z)<br />

kmax(0) = 0.075 h Mpc -1<br />

Ν<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

f NL 0.6 50<br />

Ν 1<br />

0.4<br />

0.2<br />

50 100 150 200<br />

f NL<br />

0.0<br />

Ν<br />

0 50 Ν 1.5 100 150 200<br />

ES, Chen, Fergusson & Shellard (2012)<br />

1.4 1.4<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

f NL 0.0<br />

0 50 100 150 200<br />

f NL<br />

LSS, V1<br />

CMB<br />

LSS, V1 CMB<br />

f NL 50<br />

Ν<br />

f NL 100<br />

Ν 1<br />

Ν<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

1.4 1.4<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

f N<br />

Ν <br />

0 50 100 150 2<br />

f NL<br />

f NL 10<br />

Ν 1.


What about o<strong>the</strong>r models?<br />

approach [40]<br />

∆b I = b NG<br />

1 − b G 1 = − ∂ ln RNG (M)<br />

, (6.5)<br />

∂δ c<br />

The scale-dependence of bias can be different<br />

R NG (M) being <strong>the</strong> ratio of <strong>the</strong> non-Gaussian to <strong>the</strong> Gaussian mass function. Here,<br />

ver, for we o<strong>the</strong>r treat ∆b I<br />

models, as a free parameter or not and be compare <strong>the</strong>re it at later all on ... with <strong>the</strong> prediction<br />

ed <strong>from</strong> <strong>the</strong> mass functions. We choose q as <strong>the</strong> second free parameter. All o<strong>the</strong>r 1<br />

tities in Eq. (6.4) are we derive <strong>from</strong> <strong>the</strong> <strong>the</strong>ory and are kept fixed.<br />

In Fig. 8, we show as an example <strong>the</strong> effect of local non-Gaussianity on <strong>the</strong> halo bias<br />

alos of mass 1.2 − 2.4 × 10 14 M ⊙ /h at z = 0. Note that we plot ∆b(k)+0.1. As ∆b I is<br />

tive, this addition of 0.1 is needed to still make use of <strong>the</strong> logarithmic scale.<br />

ThePower different linespectrum<br />

types visualize <strong>the</strong> effect of <strong>the</strong> different terms in Eq. (6.4). The 0.1<br />

s lines<br />

measurements<br />

show <strong>the</strong> best fit to <strong>the</strong> data<br />

are<br />

(using<br />

not<br />

all modes<br />

equally<br />

up to k max =0.1Mpc/h) and<br />

des all terms given above. The short-dashed lines neglects ∆b I appearing inside <strong>the</strong><br />

re brackets sensitive in Eq. (6.4). to The all inclusion NG ofmodels!<br />

this term makes <strong>the</strong> non-Gaussian bias nonr<br />

in f NL [55], since ∆b I depends on f NL . The dot-dashed line neglects ∆b I completely.<br />

scale-dependent bias shift becomes important on smaller scales (k >0.02), for which 0.01<br />

cale-dependent part becomes small.<br />

!b + 0.1<br />

10<br />

1<br />

0.1<br />

1<br />

k<br />

Quasi-Single Field NG<br />

orthogonal<br />

ν = 0.5<br />

0.01<br />

0.003 0.01 0.1<br />

k [h/Mpc]<br />

Gaussian bias. This has <strong>the</strong> advantage that by doing this we do not need to include β(k<br />

<strong>the</strong> modelling of ∆b(k) (seeEq.(2.1) and Eq. (2.4)).<br />

!b + 0.1<br />

Text<br />

0.4<br />

f NL = -1000<br />

1.2x10 14 < M<br />

f NL = -250<br />

halo < 2.4x10 14<br />

3x10 13 < M halo < 6x10<br />

Figure 8. Local non-Gaussian bias of halos with mass 1.2 × 10 14 Mpc/h < 13<br />

M < 2.4 × 10 14 M<br />

at z = 0. The difference of <strong>the</strong> bias measured <strong>from</strong> <strong>the</strong> non-Gaussian simulations and Gau<br />

simulations is depicted 0.2 by <strong>the</strong> data points (for computation of <strong>the</strong> errorbars, see App. B). The<br />

lines show <strong>the</strong> best fit using <strong>the</strong> model given in Eq. 6.4. The dot-dashed lines show <strong>the</strong> m<br />

predictions when <strong>the</strong> scale-independent bias shift, ∆b I , is neglected. The short-dashed lines ne<br />

<strong>the</strong> term which is non-linear 0 in f NL (see text for details). Thick lines and red symbols correspon<br />

f NL = 250, while thin lines and blue symbols show <strong>the</strong> results for f NL = 60. Note that we act<br />

show ∆b +0.1 to allow for a logarithmic scale.<br />

!b<br />

10<br />

-0.2<br />

local<br />

Local NG<br />

0.003 0.01 0.1<br />

k [h/Mpc]<br />

-0.6<br />

0.003 0.01 0.1<br />

k [h/Mpc]<br />

f NL = 250<br />

f NL = 60<br />

As <strong>the</strong> non-Gaussian and <strong>the</strong> Gaussian simulation share <strong>the</strong> same realization of<br />

initial Gaussian field, ∆b(k)<br />

const.<br />

is almost free of sample variance and, in addition, has sm<br />

shot noise than b NG (k) and b G (k) individually. We estimate <strong>the</strong> error on ∆b(k) directly f<br />

-0.4<br />

<strong>the</strong> distribution of ∆b(k) in each k bin (for details, see App. B).<br />

Following Eq. 2.1, wemodel∆b(k) byEquilateral equilateral<br />

NG<br />

where b G 1<br />

1<br />

k 2<br />

Wagner & Verde (2010)<br />

<br />

∆b(k) =∆b I + f NL b<br />

G<br />

1 + ∆b I − 1 qδ c F M (k)<br />

D(z) M M (k) , (<br />

is <strong>the</strong> linear halo bias obtained <strong>from</strong> <strong>the</strong> Gaussian simulation on large scales


The Galaxy Bispectrum: NG and nonlinear bias<br />

The galaxy bispectrum at large scales<br />

B g (k 1 ,k 2 ,k 3 )=b 3 1 B(k 1 ,k 2 ,k 3 )+b 2 1 b 2 P (k 1 ) P (k 2 )+2perm. + ...


The Galaxy Bispectrum: NG and nonlinear bias<br />

The galaxy bispectrum at large scales<br />

B g (k 1 ,k 2 ,k 3 )=b 3 1 B(k 1 ,k 2 ,k 3 )+b 2 1 b 2 P (k 1 ) P (k 2 )+2perm. + ...<br />

B = B 0 + B tree<br />

G<br />

Primordial component<br />

(large scales)<br />

[P 0 ]+B loop<br />

G<br />

[P 0]+B loop<br />

NG [P 0,B 0 ]


The Galaxy Bispectrum: NG and nonlinear bias<br />

The galaxy bispectrum at large scales<br />

B g (k 1 ,k 2 ,k 3 )=b 3 1 B(k 1 ,k 2 ,k 3 )+b 2 1 b 2 P (k 1 ) P (k 2 )+2perm. + ...<br />

B = B 0 + B tree<br />

G<br />

P = P 0 + P loop<br />

G<br />

[P 0]+P loop<br />

NG [P 0,B 0 ]<br />

[P 0 ]+B loop<br />

G<br />

[P 0]+B loop<br />

NG [P 0,B 0 ]<br />

Primordial component<br />

(large scales)<br />

Effect on nonlinear<br />

evolution (small scales)


The Galaxy Bispectrum: NG and nonlinear bias<br />

The galaxy bispectrum at large scales<br />

b 1,G + ∆b 1,NG (f NL ,k) b 2,G + ∆b 2,NG (f NL , k 1 , k 2 )<br />

Scale-dependent<br />

bias corrections<br />

B g (k 1 ,k 2 ,k 3 )=b 3 1 B(k 1 ,k 2 ,k 3 )+b 2 1 b 2 P (k 1 ) P (k 2 )+2perm. + ...<br />

B = B 0 + B tree<br />

G<br />

P = P 0 + P loop<br />

G<br />

[P 0]+P loop<br />

NG [P 0,B 0 ]<br />

[P 0 ]+B loop<br />

G<br />

[P 0]+B loop<br />

NG [P 0,B 0 ]<br />

Primordial component<br />

(large scales)<br />

∆b 1,NG (f NL , k)=∆b 1,si (f NL )+∆b 1,sd (f NL ,b 1,G , k)<br />

∆b 2,NG (f NL , k 1 , k 2 )=∆b 2,si (f NL )+∆b 2,sd (f NL ,b 1,G ,b 2,G , k 1 , k 2 )<br />

Effect on nonlinear<br />

evolution (small scales)<br />

ES (2009)<br />

Giannantonio & Porciani (2010)<br />

Baldauf, Seljak & Senatore (2010)


The Galaxy Bispectrum: NG and nonlinear bias<br />

The galaxy bispectrum at large scales<br />

b 1,G + ∆b 1,NG (f NL ,k) b 2,G + ∆b 2,NG (f NL , k 1 , k 2 )<br />

Scale-dependent<br />

bias corrections<br />

B g (k 1 ,k 2 ,k 3 )=b 3 1 B(k 1 ,k 2 ,k 3 )+b 2 1 b 2 P (k 1 ) P (k 2 )+2perm. + ...<br />

B = B 0 + B tree<br />

G<br />

P = P 0 + P loop<br />

G<br />

[P 0]+P loop<br />

NG [P 0,B 0 ]<br />

[P 0 ]+B loop<br />

G<br />

[P 0]+B loop<br />

NG [P 0,B 0 ]<br />

Primordial component<br />

(large scales)<br />

∆b 1,NG (f NL , k)=∆b 1,si (f NL )+∆b 1,sd (f NL ,b 1,G , k)<br />

∆b 2,NG (f NL , k 1 , k 2 )=∆b 2,si (f NL )+∆b 2,sd (f NL ,b 1,G ,b 2,G , k 1 , k 2 )<br />

Effect on nonlinear<br />

evolution (small scales)<br />

ES (2009)<br />

Giannantonio & Porciani (2010)<br />

Baldauf, Seljak & Senatore (2010)<br />

• We test this model in N-body simulations<br />

with local NG initial conditions<br />

• We fit all triangular configurations<br />

up to k = 0.07 h/Mpc<br />

for b1,G, b2,G, Δb1,G and Δb2,G<br />

δ h δ h δ h = δ D ( k 123 ) B h<br />

P h<br />

→ b 1,G , ∆b 1,si<br />

B h,G → b 2,G<br />

∆B h,NG<br />

→ ∆ b 2,si


B<br />

B NG<br />

Sims Sims Theory Theory<br />

B NG B G<br />

1.10<br />

4000<br />

1.05<br />

2000<br />

1.00<br />

0<br />

B h, NG<br />

b 10<br />

b 10<br />

c 01 k<br />

b 20<br />

b 20<br />

c 11 k<br />

b 20 c 01<br />

B<br />

∆ 2<br />

The 20 000 Halo Bispectrum:<br />

φ (k) ≡ k3 P φ (k)/(2π 2 )=A<br />

<strong>the</strong>ory<br />

φ (k/k<br />

vs.<br />

0 ) ns−1 . The non-Gaussianity is of <strong>the</strong> local fo<br />

0<br />

0 simulations<br />

standard (CMB) convention in which Φ(x) is primordial, and not extrapolated to<br />

Ω<br />

5000<br />

m =0.279, Ω b =0.0462, n s =0.96, and a normalization of <strong>the</strong> Gaussian curvatu<br />

Halo bispectrum:<br />

B NG B NG Bat G <strong>the</strong> pivot point k 2000 B NG B NG B 0 =0.02Mpc −1 , close to <strong>the</strong> best-fitting G values inferred <strong>from</strong> C<br />

1.5 3<br />

a density<br />

2<br />

B h (k 1 ,k 2 ,k 3 )=b 3 fluctuations amplitude σ3<br />

8 0.81 when <strong>the</strong> initial conditions are Gauss<br />

each 1(f of which NL ,k) has B(kf NL 1 ,k 2 =0, ,k 3 ) ±100, 2 were run with <strong>the</strong> N-body code gadget [8]<br />

1.0 1<br />

field φ is employed in each set of 1runs so as to minimize <strong>the</strong> sampling variance.<br />

0.5 0<br />

generated +b 1 (f NL at redshift ,k 1 )b 1 (fz NL ,k 2 )b 2 (f 0 NL ,k 1 ,k 2 ) P (k 1 ) P (k 2 )+cyc.<br />

1<br />

i = 99 using <strong>the</strong> Zel’dovich approximation [9].<br />

1<br />

0.2 0.4<br />

We study 0.6<br />

<strong>the</strong> 0.8<br />

distribution of FoF halos 0.2<br />

in two0.4 mass bins.<br />

0.6The low-mass<br />

0.8<br />

bin is d<br />

B(k1, k2, θ) as a function of 1.6 θ × with 10<br />

ΘΠ<br />

k1 13 = h −1 0.05 Mh/Mpc, k2 =0.07 h/Mpc<br />

⊙ while <strong>the</strong> high-mass bin is given by M>1.6 × 10<br />

ΘΠ<br />

13 h −1 M ⊙ . W<br />

z =0.5 (precisely z =0.509).<br />

Sims Theory<br />

B NG B G<br />

1.10<br />

Ratio B NG B G<br />

1.05<br />

1.00<br />

2<br />

O f NL <br />

0.95<br />

2000<br />

3<br />

2<br />

1<br />

0<br />

1000<br />

1<br />

500<br />

0<br />

500<br />

1000<br />

1.10<br />

Sims Theory<br />

Ratio B NG B G<br />

0.2 0.4 0.6 0.8<br />

B NG B NG B G<br />

0.2 0.4 0.6 0.8<br />

ΘΠ<br />

B NG B NG 2 B G 2<br />

0.2 0.4 0.6 0.8<br />

ΘΠ<br />

0.2<br />

Ratio B NG <br />

0.4<br />

B G 0.6 0.8<br />

ES, Crocce & Desjacques (2011)<br />

ΘΠ<br />

2<br />

O f NL <br />

0.95<br />

1000<br />

500<br />

0<br />

500<br />

1000<br />

ΘΠ<br />

B NG B NG 2 B G 2<br />

ES, Crocce & Desjacques (2011)<br />

k 1 k 3 Θ<br />

Θ<br />

0.2 0.4 0.6 0.8<br />

ΘΠ<br />

k 2


B<br />

B NG<br />

2<br />

O f NL <br />

20500<br />

000<br />

∆ 2<br />

The Halo Bispectrum:<br />

φ (k) ≡ k3 P φ (k)/(2π 2 )=A<br />

<strong>the</strong>ory<br />

φ (k/k<br />

vs.<br />

0 ) ns−1 . The non-Gaussianity is of <strong>the</strong> local fo<br />

simulations<br />

10 000 0<br />

standard (CMB) convention in which Φ(x) is primordial, and not extrapolated to<br />

0<br />

Ω m =0.279, Ω b =0.0462, n s =0.96, and a normalization of <strong>the</strong> Gaussian curvatu<br />

5000<br />

Halo bispectrum:<br />

B NG B NG at B G <strong>the</strong> pivot point k 0 =0.02Mpc −1 , close B NG to <strong>the</strong> B NG best-fitting B G values inferred <strong>from</strong> C<br />

1.5 3 0.2 0.4<br />

a density<br />

0.6 0.8<br />

3<br />

B<br />

2 h (k 1 ,k 2 ,k 3 )=b 3 fluctuations amplitude σ 8 0.81 when <strong>the</strong> initial conditions are Gauss<br />

each 1(f of which NL ,k) has B(kf NL 1 ,k 2 =0, ,k 3 ) ±100, 2 were run with <strong>the</strong> N-body code gadget [8]<br />

1.0 1<br />

field φ is employed in each set of 1runs so as to minimize <strong>the</strong> sampling variance.<br />

0.5 0<br />

generated +b 1 (f NL at redshift ,k 1 )b 1 (fz NL ,k 2 )b 2 (f 0<br />

i = 99 using <strong>the</strong> NL Zel’dovich ,k 1 ,k 2 ) P approximation (k 1 ) P (k 2 )+cyc. [9].<br />

1<br />

1<br />

We study <strong>the</strong> distribution of FoF halos in two mass bins. The low-mass bin is d<br />

0.2 0.4 0.6 0.8<br />

0.2 0.4 0.6 0.8<br />

B(k1, k2, θ) as a function of 1.6 θ with × 10k1 13 = h −1 0.07 Mh/Mpc, k2 =0.08 h/Mpc<br />

⊙ while <strong>the</strong> high-mass bin is given by M>1.6 × 10 13 h −1 M<br />

ΘΠ<br />

ΘΠ<br />

⊙ . W<br />

z =0.5 (precisely z =0.509).<br />

Sims Theory<br />

B NG B G<br />

1.15<br />

10 000<br />

1.10<br />

1.05<br />

5000<br />

1.00<br />

0.95<br />

0<br />

0.90<br />

3<br />

2<br />

1<br />

10000<br />

500 1<br />

0<br />

500<br />

1000<br />

1.25<br />

Sims Theory<br />

1.20<br />

ΘΠ<br />

B<br />

Ratio B NG<br />

1.25<br />

<br />

B<br />

B G Ratio B NG B G<br />

h, NG b 20<br />

1.20<br />

b 10<br />

b 20<br />

b 1.15<br />

10<br />

c 11 k<br />

c 01 k<br />

b 20 c 01<br />

1.10<br />

1.05<br />

1.00<br />

B NG B NG B G<br />

0.95<br />

0.2 0.4 0.6 0.8<br />

0.2 0.4 0.6 0.8<br />

B NG B NG 2 B G 2<br />

0.2 0.4 0.6 0.8<br />

ΘΠ<br />

0.2 Ratio B NG 0.4 B G 0.6 0.8<br />

ΘΠ<br />

ES, Crocce & Desjacques (2011)<br />

2<br />

O f NL <br />

Sims Theory<br />

B NG B G<br />

1000<br />

500<br />

0<br />

500<br />

1000<br />

ΘΠ<br />

B NG B NG 2 B G 2<br />

ES, Crocce & Desjacques (2011)<br />

k 1 k 3 Θ<br />

0.2 0.4 0.6 0.8<br />

Θ<br />

ΘΠ<br />

k 2


Halo Power Spectrum vs. Halo Bispectrum<br />

10<br />

Low mass halos:<br />

8.8 10 12 Mh 1 M <br />

1.6 10 13<br />

z 0.5<br />

f NL 100<br />

10<br />

High mass halos:<br />

M 1.6 10 13 h 1 M <br />

z 0.5<br />

f NL 100<br />

S N kmax<br />

S N kmax<br />

1<br />

1<br />

P m<br />

P h<br />

B m , matter<br />

B h , halos<br />

P m<br />

P h<br />

B m , matter<br />

B h , halos<br />

0.05 0.10 0.15 0.20 0.25<br />

k max h Mpc 1 <br />

Cumulative signal-to-noise for <strong>the</strong> effect of NG initial conditions<br />

on matter and galaxy correlators (P & B)<br />

Sum of all configurations up to kmax<br />

S<br />

N<br />

2<br />

P<br />

=<br />

k<br />

max<br />

k<br />

(P NG − P G ) 2<br />

∆P 2 S<br />

N<br />

2<br />

B<br />

=<br />

k<br />

max<br />

(B NG − B G ) 2<br />

∆B 2<br />

k 1 ,k 2 ,k 3<br />

0.05 0.10 0.15 0.20 0.25<br />

k max h Mpc 1 <br />

The cumulative NG<br />

effect is comparable<br />

at mildly nonlinear<br />

scales


A Fisher matrix analysis for Galaxy correlators<br />

The uncertainty on fNL (local)<br />

<strong>from</strong> Power Spectrum &<br />

Bispectrum (& both)<br />

100<br />

50<br />

V 10 h 3 Gpc 3 , z 1<br />

k min 0.009 h Mpc 1<br />

b 1 2, b 2 0.8<br />

fNL<br />

20<br />

marginalized (b1, b2)<br />

10<br />

5<br />

P<br />

B<br />

PB<br />

0.02 0.04 0.06 0.08 0.10<br />

k max h Mpc 1 <br />

FIG. 15: One-σ uncertainty on <strong>the</strong> f NL parameter, mar


Conclusions<br />

• The CMB is currently <strong>the</strong> best test of <strong>the</strong> Gaussianity of <strong>the</strong> Initial Conditions:<br />

Planck will soon improve WMAP constraints by a factor of 4<br />

• The impact of NG on nonlinear evolution of structure is significant,<br />

particularly in terms of <strong>the</strong> matter bispectrum: can this be detected in<br />

weak lensing surveys?<br />

• Due to a scale-dependent correction to linear bias, galaxy power spectrum<br />

measurements are currently providing constraints on fNL comparable to<br />

WMAP’s, but for local NG only!? Quasi-Single Field inflation is <strong>the</strong><br />

perfect case study of initial bispectrum in <strong>the</strong> squeezed limit<br />

• We do have a good understanding of <strong>the</strong> multiple effects of PNG on <strong>the</strong><br />

galaxy bispectrum at large scales (with room for improvement!)<br />

• A complete analysis of <strong>the</strong> large-scale structure (e.g. galaxy power<br />

spectrum and bispectrum) can do better than power spectrum alone:<br />

smaller uncertainties on NG parameters for virtually any model of non-<br />

Gaussianity

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!