16.11.2014 Views

The Evolving Threat of ESBL, AmpC, and KPC -lactamases - SWACM

The Evolving Threat of ESBL, AmpC, and KPC -lactamases - SWACM

The Evolving Threat of ESBL, AmpC, and KPC -lactamases - SWACM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>Evolving</strong> <strong>Threat</strong> <strong>of</strong> <strong>ESBL</strong>,<br />

<strong>AmpC</strong>, <strong>and</strong> <strong>KPC</strong> -<strong>lactamases</strong><br />

Philip Lister, Ph.D.<br />

Pr<strong>of</strong>essor, Medical Microbiology <strong>and</strong> Immunology<br />

Creighton University School <strong>of</strong> Medicine


Klebsiella pneumoniae 225<br />

Resistant<br />

Penicillins<br />

Penicillin-inhibitor combinations<br />

1st & 2nd gen cephalosporins<br />

ceftriaxone, cefotaxime, ceftazidime, aztreonam<br />

cefoxitin<br />

aminoglycosides, trimethoprim/sulfa, chloramphenicol<br />

Susceptible<br />

Imipenem <strong>and</strong> fluoroquinolones


Normal<br />

Gram-negative


Resistance Mechanisms<br />

Inactivating Enzymes<br />

Alterations in Target<br />

Altered Permeability<br />

Outermembrane Porins<br />

Active Efflux


ß-<strong>lactamases</strong><br />

O<br />

CH 2 C NH<br />

O<br />

N<br />

S<br />

CH 3<br />

CH 3<br />

COOH<br />

Site <strong>of</strong> Action


L<br />

Gram-negative<br />

L<br />

L<br />

L<br />

L<br />

L<br />

L<br />

Beta-lactamase<br />

Production<br />

L<br />

L


Old Plasmid-Encoded ß-<strong>lactamases</strong><br />

TEM-1<br />

Ampicillin resistance E. coli <strong>and</strong> H. influenzae<br />

Penicillin resistance N. gonorrhoeae<br />

TEM-2<br />

Similar to TEM-1<br />

SHV-1<br />

Cephalothin resistance K. pneumoniae


Attempts to Circumvent<br />

Plasmid-Encoded ß-<strong>lactamases</strong><br />

-lactamase Inhibitors<br />

Enzyme-Resistant Drugs


3 rd Generation Cephalosporins<br />

Cefotaxime<br />

Ceftriaxone<br />

Ceftazidime


Plasmid-Encoded ß-lactamase Evolution<br />

among E. coli <strong>and</strong> K. pneumoniae<br />

TEM-1<br />

TEM-2<br />

SHV-1<br />

Acquire Active Enzyme<br />

Mutate Own Enzyme<br />

Extended-Spectrum<br />

Beta-<strong>lactamases</strong>


Evolution <strong>of</strong> <strong>ESBL</strong>s<br />

TEM-3, 4 ......…………....178<br />

SHV-2, 3 ...………….......134<br />

CTX-M-1, 2……………….113<br />

OXA-2, 10……………......161


Failures <strong>of</strong> Cephalosporin <strong>The</strong>rapy<br />

in Serious Infections with<br />

<strong>ESBL</strong>-positive K. pneumoniae<br />

Isolates reported susceptible to the cephalosporins<br />

Cephalosporin failed in 15/28 (54%) patients<br />

4 <strong>of</strong> 5 were treated with cefepime!<br />

D. Paterson et al JCM (2001) 39: 2206-2212


<strong>ESBL</strong>-producing Organisms<br />

Most Common<br />

E. coli, Klebsiella spp.<br />

Less frequent but clinically significant<br />

Proteus, Citrobacter, Enterobacter,<br />

M. morganii,, Prov. stuartii, Salmonella,<br />

S. marcescens, Shigella, P. aeruginosa,<br />

A. baumannii, A. hydrophila, B. cepacia etc.


New CLSI Breakpoints<br />

Susceptible Breakpoint Lowered 2010 (M100-S20)<br />

Cefazolin, cefotaxime, ceftriaxone, ceftizoxime (< 1 µg/ml)<br />

Ceftazidime, aztreonam (< 4 µg/ml)<br />

No Change in Breakpoint (M100-S20)<br />

Cefepime (< 8 µg/ml)


CLSI 2010 (M100-S20)<br />

• If laboratories have not yet implemented the new<br />

interpretive criteria, test for <strong>ESBL</strong>s. For positive<br />

isolates:<br />

Report resistance to all penicillins, cephalosporins<br />

<strong>and</strong> aztreonam if E. coli, Klebsiella spp, or Proteus<br />

mirabilis<br />

• If laboratories have implemented the new criteria, do<br />

not test for <strong>ESBL</strong>s for therapy (Only test if required<br />

for infection control)<br />

Report susceptibility as interpreted


Many <strong>ESBL</strong> Producers Previously Reported<br />

Resistant to Cefepime Now “Susceptible”<br />

157 <strong>ESBL</strong>-positive<br />

E. coli, K. pneumoniae, K. oxytoca<br />

MIC in µg/ml<br />

< 8<br />

< 1<br />

% Susceptible<br />

77%<br />

34%<br />

63 U.S. Sites – <strong>ESBL</strong>-positive by phenotypic, IEF & molecular testing<br />

Mol<strong>and</strong>, Hanson, Black, Hossain, Song, & Thomson, 2006, J Clin Microbiol 44:3318-3324


2010 Breakpoints:<br />

Are they sufficient?<br />

• MIC 2 µg/ml: cefepime failure, meropenem cure<br />

• MIC 0.5 µg/ml: cefepime + gent 5 days, died<br />

Paterson et al 2001 J Clin Microbiol 39:2206-2212<br />

• MIC 4 µg/ml: cefepime failure<br />

Bhavnani 2006 Diagn Microbiol Infect Dis 54:231-236<br />

• MIC 0.75 µg/ml: cefotaxime failure, cured with<br />

cipr<strong>of</strong>loxacin<br />

Karas et al 1996 J Antimicrob Chemother 37:203-204


Inoculum Effect:<br />

Are Cephalosporin MICs Accurate<br />

E. coli Microdilution MIC in µg/ml<br />

Enzyme Inoculum Cefotaxime Cefepime Imipenem<br />

SHV-3 5 x 10 5 8 2 0.06<br />

SHV-3 5 x 10 7 1024 1024 0.5<br />

19


Inoculum Effect:<br />

In Vitro Artifact?<br />

Treated infections 15 days with PIP, IPM, CAZ, or ATM<br />

Measured <strong>AmpC</strong> activity in sputum samples days 1 <strong>and</strong> 15<br />

Significant rise in <strong>AmpC</strong> activity in sputum <strong>of</strong> patients<br />

treated with PIP, IPM, or CAZ.<br />

No <strong>AmpC</strong> activity detected in the day 15 sputum <strong>of</strong> 19/21<br />

patients treated with ATM.<br />

Overnight dialysis, significant amounts <strong>of</strong> <strong>AmpC</strong> detected.<br />

Competitive inhibition by aztreonam was masking<br />

extracellular <strong>AmpC</strong><br />

Gwicerman et al., AAC 1992;36:71


<strong>ESBL</strong>-producing bacteria resistant to:<br />

Penicillins<br />

Cephalosporins<br />

Aztreonam<br />

Penicillin-inhibitor combinations<br />

Aminoglycosides<br />

Trimethoprim<br />

Sulfonamides<br />

Fluoroquinolones


-lactams Still Active<br />

Carbapenems<br />

Cefoxitin


Plasmid-Encoded ß-lactamase Evolution<br />

among E. coli <strong>and</strong> K. pneumoniae<br />

TEM-1<br />

TEM-2<br />

SHV-1<br />

Acquire Active Enzyme<br />

Plasmid <strong>AmpC</strong><br />

Mutate Own Enzyme<br />

Extended-Spectrum<br />

Beta-<strong>lactamases</strong>


<strong>AmpC</strong>-mediated Resistance<br />

Resistant to<br />

Cephalosporins (1st, 2nd, 3rd gen)<br />

Cephamycins<br />

Aztreonam<br />

Penicillins<br />

β-lactamase inhibitor combinations<br />

Susceptible to<br />

Carbapenems<br />

Cefepime?


Inducible Chromosomal <strong>AmpC</strong><br />

Enterobacter spp.<br />

Serratia spp.<br />

Citrobacter freundii<br />

Providencia spp.<br />

Morganella morganii<br />

Hafnia alvei<br />

Pseudomonas aeruginosa<br />

Aeromonas spp.


Plasmid-mediated <strong>AmpC</strong>s<br />

• Klebsiella spp., E. coli, Salmonella, P. mirabilis,<br />

P. aeruginosa<br />

• Derived from chromosomal <strong>AmpC</strong>s<br />

• Different Families (DHA, CMY, FOX most<br />

common)


Plasmid-encoded <strong>AmpC</strong> Challenges<br />

Detection<br />

False susceptibility<br />

Development <strong>of</strong> carbapenem resistance


Clinical Significance <strong>of</strong> <strong>AmpC</strong> for<br />

K. pneumoniae Bloodstream Isolates<br />

Clinical<br />

DHA-1<br />

(inducible)<br />

CMY-1 like<br />

Extended-spectrum<br />

Cephalosporin as<br />

definitive therapy<br />

Failed CTX/CAZ;<br />

improved on<br />

carbapenem<br />

4/4 died 1/3 died<br />

6 5<br />

30 day mortality 46% 14.3%<br />

DHA-1 (13 pts), CMY (14 pts) Pai et al. AAC 2004 48:3720-28


K. pneumoniae: DHA-1 + Porin Loss<br />

• 11 pts infected – all carbapenem-resistant (MDR)<br />

2 improved with antibiotic Rx<br />

9/11 died in 30 days (81.8%)<br />

• Risk factors<br />

Infection by DHA-1 K. pneumoniae<br />

Carbapenem Rx in previous 3 months<br />

Advanced Age<br />

Long hospital stay<br />

Pers. comm. S. H. Jeong,<br />

Yonsei Univ. College Med. Seoul, Korea


Klebsiella pneumoniae 225<br />

Resistant<br />

Penicillins<br />

Penicillin-inhibitor combinations<br />

1st & 2nd gen cephalosporins<br />

ceftriaxone, cefotaxime, ceftazidime, aztreonam<br />

cefoxitin<br />

aminoglycosides, trimethoprim/sulfa, chloramphenicol<br />

Susceptible<br />

Imipenem <strong>and</strong> fluoroquinolones


Klebsiella pneumoniae 225<br />

Isoelectric<br />

Point<br />

Clavulanate<br />

Sensitivity<br />

Enzyme<br />

5.4 S TEM-1<br />

6.8 S OXA-9<br />

7.6 S SHV-2 (<strong>ESBL</strong>)<br />

8.2 S SHV-5 (<strong>ESBL</strong>)<br />

9.3 R ACT-1 (<strong>AmpC</strong>)<br />

All genes on the same 90 kb plasmid, other unrelated resistance genes


Carbapenemases<br />

Class A (<strong>KPC</strong>, GES, SME etc.)<br />

Serine-based<br />

Hydrolyze all β-lactams (variability)<br />

Inhibited by clavulanate<br />

Class B (Metallo-β-<strong>lactamases</strong> - IMP, VIM, NDM etc.)<br />

Require zinc for activity<br />

Hydrolyze carbapenems rapidly<br />

Hydrolyze all β-lactams except aztreonam<br />

Resistant to clavulanate<br />

Class D (some OXAs)<br />

Poorly inhibited by clavulanate<br />

Acinetobacter, P. aeruginosa, some Enterobacteriaceae


Klebsiella pneumoniae Carbapenemase (<strong>KPC</strong>)<br />

• First reported in 2001 from an isolate in NC<br />

• Very rapid spread<br />

• 10 variants (<strong>KPC</strong>-2 through <strong>KPC</strong>-11)<br />

• Endemic in Northeastern USA, Puerto Rico, Colombia,<br />

Israel, <strong>and</strong> Greece<br />

• K. pneumoniae, other Enterobacteriaceae,<br />

Acinetobacter, P. aeruginosa<br />

• <strong>ESBL</strong> that also hydrolyzes carbapenems<br />

• Extensive multidrug resistance


Miami <strong>KPC</strong> Outbreak<br />

• Admission file: XDR K. pneumoniae<br />

• Ignored<br />

• S to only colistin & gentamicin: PCR = <strong>KPC</strong> positive<br />

• 9 more pts over 3 months (8 identical PFGE type)<br />

• Clinical Impact:<br />

4/5 with bacteremia died<br />

1 other died<br />

2 renal failure<br />

Michelle Morris, University <strong>of</strong> Miami Hospital<br />

ICAAC/IDSA 2008, K-902<br />

36


CLSI Carbapenem Testing: Enterobacteriaceae<br />

• 2010 Susceptible Breakpoints (supplement to M100-S20)<br />

• Doripenem, imipenem, meropenem < 1 µg/ml<br />

• Ertapenem < 0.25 µg/ml (to be reviewed)<br />

• No carbapenemase test for therapy<br />

• If New Breakpoints Not Used, Screen <strong>and</strong> Confirm All Types<br />

<strong>of</strong> Carbapenemases (M100-S19)<br />

• Screen – MIC 2 ertapenem, 2-4 imipenem/meropenem<br />

plus<br />

• Resistance to cefotaxime, ceftriaxone, ceftazidime,<br />

cefoperazone or ceftizoxime<br />

• Confirmation – “Modified Hodge Test”<br />

• If positive <strong>and</strong> isolate is carbapenem-susceptible, report MIC<br />

without interpretation<br />

37


Which MIC do we use?<br />

Carbapenem MICs against <strong>KPC</strong><br />

producers vary significantly between<br />

microdilution, Etest, agar dilution, disk<br />

diffusion, <strong>and</strong> automated assays<br />

Pournaras et al 2010 J Clin Microbiol 48:2601-2604<br />

Bratu et al 2005<br />

Antimicrob Agents Chemother 49:776-778<br />

Antimicrob Agents Chemother 49:3018-3020<br />

Arch Intern Med 165:1430-1435<br />

Samra et al. 2007 IJAA 30:525-529


<strong>KPC</strong>-producing K. pneumoniae:<br />

Carbapenem MICs (µg/ml)<br />

Isolate Method Meropenem Ertapenem<br />

12 VITEK 2 >16 4<br />

BD Phoenix 4<br />

Agar Dilution 16 16<br />

48 VITEK 2 >16


Thanks for your attention!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!